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The quasiclassical approximation is used to find the probability of a tunnel conversion of a 
light hole into a heavy one in crossed electric and magnetic fields. This process is considered as 
a possible reason for a population inversion of light-hole Landau levels in the passive region. 

1. INTRODUCTION 

Ivanov and Vasil'evl observed stimulated emission 
from germanium as a result of transitions between light-hole 
Landau levels in crossed electric and magnetic fields. The 
population inversion mechanism responsible for such stimu- 
lated emission is not yet clear. Kozlev et a1.' suggested a 
mechanism based on the energy dependence of the time for 
the conversion of light holes into heavy ones as a result of 
scattering by ionized impurities. This time increases with the 
energy and, therefore, the lower light-hole Landau levels are 
emptied faster than the higher ones. 

The light-hole levels are populated in the passive region 
(at energies less than the optical phonon energy) by transi- 
tions from the band of heavy holes when they emit optical 
phonons. For sufficiently strong heating of holes in crossed 
 field^,^,^ the passive region is populated practically uniform- 
ly. Therefore, the scattering of impurities may result in a 
population inversion. 

However, under the conditions of the experiments re- 
ported in Ref. 1 the impurity concentration was low ( ( 10" 
~ m - ~ )  and the mechanism proposed in Ref. 2 was clearly 
ineffective, because the competing process of emptying of 
the levels of light holes-scattering by acoustic phonons- 
has an energy dependence which is the opposite of that in the 
case of impurity scattering. 

We shall consider a different possible population inver- 
sion mechanism which is not associated with the scattering 
and is due to tunnel conversion of light holes into heavy ones. 
Such tunnel transitions were considered in Refs. 5 and 6 and 
it was shown that the tunneling probability increases the 
closer are the hole paths in the velocity space to the origin 
i.e., to the band degeneracy point). If the velocity of drift in 
crossed fields is less than the velocity of cyclotron motion of 
a light hole at the first Landau level, the tunneling probabil- 
ity should decrease as the level number increases. Conse- 
quently, the lower levels will be emptied faster than the high- 
er ones. 

The tunneling probability was calculated numerically 
in Ref. 6 for the case when the paths of light and heavy holes 
between which a transition takes place almost touch, which 
does not correspond to the experimental conditions in Ref. 1. 
We shall obtain an analytic expression for the argument of 
the exponential function governing the probability of tun- 
neling in general. 

If the shortest distance between the paths of light and 
heavy holes with the same energy is small compared with the 
path dimensions, we can obtain also the preexponential fac- 

tor. In this case the problem reduces to calculation of the 
tunneling probability in an electric field (when the magnetic 
field is absent). 

We shall use the expressions for the tunneling probabil- 
ity derived below to consider the conditions for a population 
inversion. 

2. TUNNELING IN AN ELECTRIC FIELD 

We shall consider tunnel transitions of holes in an elec- 
tric field employing the semiclassical approximation. Such 
transitions were studied in Ref. 7. Asymptotic formulas were 
obtained there for the transition probability. The result for 
the semiclassical limit given in Ref. 7 is not quite correct. 
However, as shown below, the correct response differs from 
the result obtained in Ref. 7 only by a numerical factor close 
to unity. 

We shall select a coordinate system with the x axis di- 
rected along an electric field E and they axis along the com- 
ponent of the momentum which is perpendicular tg the field. 
Then,in the representation in which the matrix J, is diag- 
onal (J  are matrices of the momentum 3/2) a system of four 
Luttinger equations splits into two independent subsystems. 
One of them relates the states with J, = 3/2 and J, = - 1/ 
2, and is of the form 

where p is the momentum operator; tC, is a two-component 
c o l u ~ n  with the components @3/2 and @ - ,,,; and the ma- 
trix 2? is given by 

Here, m, is the mass of a free electron; y, and y are the 
Luttinger constants related to the masses of heavy and light 
holes by y, - 2y = m,/m, and y, + 2y = m,/m,. The sec- 
ond system of equations for the functions @ - 312 and a,,, is 
obtained from Eqs. (1)  and (2)  by the substitution 
P y  -* - P y -  

The quantity py is a quantum number which is con- 
served. In the semiclassical approximation we can separate 
the motion of light and heavy holes if we ignore tunnel tran- 
sitions. Then, the relationship between p and x is given by 

Figure la  shows the dependences ofp: onx for light and 
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FIG. 1. Dependences ofp: on x for light (I )  and heavy 
( h )  holes: a) in an'electric field; b) in crossed electric 
and magnetic fierds. 

heavy holes. The classically allowed regions (p: > 0) are 
bounded by the turning points a, = p$/2ml eE and a,  = p:/ 
2mh eE. In the classically inaccessible region (p: < 0) there 
is a singularity at x = 0, where the value ofp: is the same for 
light and heavy holes. Therefore, in the classically inaccessi- 
ble region there is a path on which a light hole is transformed 
into a heavy one. It is known8 that the action S calculated 
along this path determines the exponential dependence of 
the probability of such a conversion: Wcr exp( - = / t i ) ,  
where 

Our aim will be to calculate the preexponential factor. 
A special feature of the case under consideration is that the 
transition point x = 0 is not a branching point of the func- 
tion p ( x ) ,  as is usually the case, but a point at which two 
branches of the same function intersect (Fig. la). 

We shall now adopt the momentum representation, i.e., 
we shall replacex in Eq. ( 1 ) with the operator iM /dp, .  The 
semiclassical solution of Eq. ( 1) corresponding to a light 
hole is9 

Dr 

where the dependence x, (p ,  ) is governed by the first equa- 
tion in +e system (3) and X ,  is the eigenfunction of the 
matrix F satisfying the equation 

Equation ( 5  ) includes F = dp, /d t  = eE instead of the usual 
v = dx/dt  in the coordinate representation. The coefficient 
bi satisfies the equation9 

Here, D, = i& (x,  , ax, /ap, is a matrix element of the dipole 
moment. In the momentum representation, we have db,/ 
dt = eEdb, /dp, .  The semiclassical solution corresponding 
to a heavy hole is analogous to Eq. ( 5 ) . 

The columns xI and ,yh are given by 

1 
Xi = px + i p ,  

Px - ZP, 

Using these functions, we find Dh = 3 0 ,  = eCipy /2p2. Final- 
ly, we obtain the following expressions for the semiclassical 
wave functions of light and heavy holes: 

where a dimensionless variable k =p,py  is introduced and 
the notation R,,, = p:/(2eE+iml,, ) is employed. 

We can find the probability of a tunnel transition con- 
verting a light hole into a heavy one by writing down the 
solution of Eq. ( 1 ) in the form t,b = A, @, + A, @, . Then, the 
coefficients A, and A, are described by the following system 
of equations7: 

dAl 3% k-i 
i-=- 

dk 2 ( k Z + l ) "  
exp[  i l l (  k  + g)] Ah, 

i-=- dk 3'h 2  (kz+l )"  e x p [ - i ~ ( k  + F)] A,, ( 9 )  

where R = R ,  - R ,  is a dimensionless parameter; in the 
quasiclassical approximation the condition IR I ) 1 is 
obeyed. 

We shall first assume that py > 0. Then, we have R > 0 
and the system of equations ( 9 )  should be solved subject to 
the boundary conditions A, ( - co ) = 1 ,  A, ( - ca ) = 0. 
The transition probability is W = IA, ( X, ) 1 2. 

The singularity at x = 0 corresponds to the points 
k = * i in the momentum representation. We shall inte- 
grate the system (9)  along a contour passing through the 
point k = - i and parallel to the real axis near this point. In 
the vicinity of this point we find that the assumption 
k = - i + sR - ' I 2  allows us to obtain the following results 
from the system (9): 

dAl 3" exp ( s z )  dB 3" exp( -sz )  
-=-- 
as 4  SI B, -=-- ds 4  s'" A! ,  ( 1 0 )  

where instead of A, we now have a function 

B=2'"R1" exp (2R/3- in /4)  Ah. 

The system ( 10) reduces to a quadratic equation for B and 
the general solution of this equation can be expressed in 
terms of confluent hypergeometric functions 

The phases in the above expression should be selected in the 
same way as the phases of k + i in the system (8) .  We shall 
consider the specific case when the phase varies from 0 to 2 ~ .  

Using the asymptotic formula for the functions F and 
the boundary conditions in the limits- - co , we obtain 

201 Sov. Phys. JETP 65 (I), January 1987 M. I. D'yakonov and V. I. Perel' 201 



The function B(s) decreases exponentially in the direc- 
tion of negative values of s and reaches a constant value de- 
scribed by Eq. (12) when s )  1. Therefore, the use of Eqs. 
( lo),  which is valid when s & IR 1 ' I 6  is justified in the semi- 
classical limit 1 R 1 ) 1. 

Therefore, ifp, > 0, the transition probability is 

3n exp ( -4R/3)  
W+= - 4 

= 0,51R-' exp( - R )  . [ ( ] ' (2R)  'I1 

We can calculate Wsimilarly in the case whenp, < 0 (in this 
case the contour should pass through the point k = 1): 

For the second pair of states with J, = - 3/2 and 
J, = 1/2 the probabilities W+ and W- are interchanged. 
Equations (13) and (14) differ from the results of Ref. 7 
deduced from perturbation theory [it was assumed in Ref. 7 
that A, = 1 in the second of the equations in the system (9) ] 
simply as a result of numerical factors. This difference, hcw- 
ever, is slight: in Ref. 7 these factors are 0.62 and 4.5, respec- 
tively. 

3. TUNNELING IN CROSSED ELECTRIC AND MAGNETIC 
FIELDS 

Let us assume that a magnetic field is directed along the 
z axis and an electric field along the x axis. We shall use the 
Landau gauge A = (O,Hx,O). In the semiclassical approxi- 
mation whenp, = 0 we still have the system ( 3 )  where the 
kinematic momenta p, and p, are related to the canonical 
momenta P, and P, by the expressions p, = P, and p, 
=Py -eHx/c= (eH/c)(x,-x),  where x,=cP,/eH is 

the position of the center of a Larmor circle, which is the 
same for light and heavy holes. The integral of motion is now 
notp, but P, (i.e., x,). Instead of the system (3),  we now 
have 

where a,,, = eH /m,,, care the cyclotron frequencies oflight 
and heavy holes. 

We shall introduce an energy E = eEx, which should be 
conserved in the course of conversion of a light hole into a 
heavy one. Using the system (15), we can represent this 
quantity in the form 

where v,,, = p/m,,, - u are the velocities of light and heavy 
holes in a system of coordinates moving at the drift velocity 
u = (0, - u,O); here, u = cE/H. It should be noted that the 
quantities m, u:/2 and m, v i  /2 are the energies of cyclotron 
motion of light and heavy holes in a coordinate system 
moving at a velocity u where there is no electric field. These 
are the energies which in the semiclassical approximation 

(when light and heavy holes are independent) assume values 
corresponding to the Landau levels. Equation (6)  describes 
the change in the energy of cyclotron motion as a result of 
conversion of a light hole into a heavy one: m,vi/ 
2 - m,v:/2 = (m, - m, )u2/2. 

Figure lb shows the dependences of pf on x for light 
and heavy holes which follow from the system (15). The 
classically allowed regions for light and heavy holes are 
found between the turning points a, ,  b, and a,, b, , respec- 
tively, where 

The expressions for a, and b, are obtained from the above 
formulas by replacing m, with m, . 

As in Fig. la, in the classically inaccessible region there 
is a path passing through the point x = 0 at which a light 
hole is converted into a heavy one. Calculating, by analogy 
with Eq. (4),  the action S along this path and using the 
formulas in Eq. ( 15), we obtain the argument of the expo- 
nential function which governs the tunneling probability: 

We have introduced here the notation 

Nl=mlv12/2hQl, ~~=m~u~/2fi62~,  (19) 

where the quantities N, and Y, are defined similarly, and are 
related to Nand Y by 

The numbers N, and N, (when large) are the numbers of the 
Landau levels. In the course of tunneling a light hole at a 
level Nl is converted into a heavy one at a level N, . In the 
limit m, /m, -0 Eq. ( 18) becomes 

We shall now consider the case when paths in the mo- 
mentum space of light and heavy holes are close to one an- 
other and have the same value of E .  This is true when 

I E ~  (mlu2 (Ref. 5). Then, Eq. ( 18) yields 

which is in agreement with the argument of the exponential 
function that determines the tunneling probability in an 
electric field (see preceding section) if the expression for R is 
modified by replacing py with E/U. Such a replacement is 
natural because in the region of the transition we have x &x, 
and the kinematic momentum is p, = (eH /c) (x, - x )  
zeHx,/c = E/U. This circumstance is obvious also from a 
comparison of Figs. la and 1 b. 

It is moreover clear that if I E I  &ml u2 then the probabili- 
ties of tunnel conversion of a light hole into a heavy one 
within one cyclotron period in crossed fields (together with 
the preexponential factors) are governed by the formulas 
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( 13) and ( 14) where R is replaced with i?. These results are 
valid if 

Here the first inequality is the condition for the validity of 
the semiclassical approximation ( ~i? ( 9 1 ), whereas the sec- 
ond inequality is equivalent to the requirement that the or- 
bits come closer in the momentum space: (&( <ml u2. 

We have assumed so far that the projection of the mo- 
mentump, along the magnetic field direction vanishes. We 
shall now consider the dependence of the tunneling probabil- 
ity on p,. We shall do this by allowing for the energy of 
longitudinal motion pt/2m in the system ( 15). At low val- 
ues ofp, this gives rise to an additional term on the right- 
hand side of Eq. ( 18) : 

Therefore, an increase in p, reduces the tunneling 
probability over a characteristic distance 
p, oc m, u (N, - v, ) -'I2. In the case discussed above we have 
IN, - v, / < v, and an allowance forp, reduces to the replace- 
ment, in Eq. (21) for i?, of the quantity c/u with [ (&/ 
u ) ~  +p:]1'2. 

4. DISCUSSION OF RESULTS 

A typical lifetime of a light hole in the process of con- 
version into a heavy hole can be written in the form 

T = - q-' exp 
Q, 

where S is describe (for p, = 0 )  by Eq. (18) and 77 is the 
preexponential factor in the probability of a transition per 
one period. This factor is calculated in the preceding section 
only for the special case when I E I  <mi uZ. In the subsequent 
discussion we shall assume that 7 = 1. This can only overes- 
timate the lifetime r [see Eq. ( 14) I .  

Figure 2 shows how r depends on the Landau level 
number for different values of the parameter vl when mi/ 
m, = 0.13 (representing the case of germanium). If 
N, = v,, the orbits of light and heavy holes in the velocity 
space pass through the origin ( E  = 0) .  Near this point, when 
2 s  / f i  5 1, the probability of a transition per cyclotron orbit is 
maximal and is also of the order of unity. In this region the 

FIG. 2. Dependences of the time T for tunnel conversion of a light hole 
into a heavy one on the light-hole Landau level number forp, = 0. Value 
of v , :  1 )  0.1; 2) 0.5; 3) 0.5; 4)  1.5; 5) 2; 6) 5. 

FIG. 3. Relative populations of the light-hole Landau levels for p, = 0, 
v,, = 4~ loi0 sec-', and different values of the parameter v, :  1 )  0.13; 2) 
0.25; 3) 0.33; 4)  0.4; 5) 0.5; 6) 0.67; 7) 1 .  The crosses correspond to the 
limit of the passive region for H = 20 kOe. The unit population is the value 
in the absence of the tunneling effect. 

semiclassical approximation we have used is no longer valid. 
It is clear from Fig. 2 that if v, < 1, then the lifetime r de- 
creases as the light-hole Landau level increases number and 
the rate of decrease is faster when vl decreases. This favors a 
population inversion. If v, > 1, the lifetime first falls with an 
increase in N, and then (in the range N, > v, ) rises relatively 
slowly. 

The lifetime r should be compared with the characteris- 
tic time Y, for the scattering by acoustic phonons, which 
also result in conversion of light holes into heavy ones. Ac- 
cording to the estimates of Ref. 2, we have va, z 4 X  10'' 
sec-' at 20 K. The dashed line in Fig. 2 corresponds to the 
value In (S2,/2rvac) = 3,4 when H =  20 kOe and 
m, = 0.046m0. Below this line the tunneling process plays 
the dominant role in the emptying of the light-hole Landau 
levels in the passive region. 

In connection with an estimate of the influence of tun- 
neling, we plotted in Fig. 3 the dependence on N, of the 
quantity 

which represents the relative population of the light-hole 
Landau levels when p, = 0. 

It is assumed that the population of these levels is uni- 
form ("wide source") in the passive region (this population 
is due to the emission of optical phonons by heavy holes). 
The strong rise of the population in Fig. 3 is due to suppres- 
sion of the tunneling effect. In these calculations we have 
ignored the weak energy dependence of the frequency vac. 
The various curves in Fig. 3 differ in respect of the main 
dimensionless parameter v, , which form, = 0.046m0 can be 
written in the form Y, = 0.52E 2/H 3, where E is expressed in 
kilovolts per centimeter and the field H i s  in teslas. 

In the experiments described in Ref. 1 the process of 
stimulated emission was observed for v, ~ 0 . 2  - 0.3. 

The authors are grateful to Yu. L. Ivanov for valuable 
discussions. 
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