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It is shown that the interaction of charge carriers quantized in a two-dimensional channel, 
both with each other and with inhomogeneities, has a fundamental influence on their 
probability of tunneling into the bulk, and as a result there is a slowing down in the decrease of 
the electron density with distance for carriers with a nonzero kinetic energy of motion along 
the surface. In the many-valley case an additional increase in the tunneling probability is 
observed. This increase is connected with the decrease of the mass in the tunneling direction on 
account of virtual intervalley transitions. 

We shall consider a planar two-dimensional channel 
V ( z ) ,  situated on the surface of a semiconductor crystal. We 
shall assume that the channel is formed by a one-dimension- 
a1 potential well that has (for simplicity) a single energy 
level E, and is smooth enough for the effective-mass approxi- 
mation to be applicable. It is known that for a nondegenerate 
carrier-dispersion law, in the absence of electron-electron 
interaction and inhomogeneities, the free motion along the 
channel can be separated completely from the quantized 
transverse motion. For this reason, the wave function Y of 
the charge carrier situated in the channel, irrespective of 
their energy E, decay with distance from the surface at the 
same rate: 

I 

The carriers tunnel into the bulk as if they had not the total 
energy E but the energy E, corresponding to the bottom of the 
surface band, and the kinetic energy of the motion along the 
channel remains irrelevant. 

In this paper we ascertain to what extent this idealized 
picture is applicable to real two-dimensional channels- 
MIS structures and heterojunctions. The above-indicated 
separation of variables by such factors as scattering of carri- 
ers by inhomogeneities of the structure and by each other, 
and this qualitatively changes the situation. However weak 
the scattering processes, at sufficiently large distances they 
lead to the electron-density-decay law that would apply if 
the carriers had tunneled in the one-dimensional potential 
with their total energy: 

In addition, if the dispersion law is complicated, the carriers 
tunnel with that mass value which ensures the slowest decay 
of the tunneling exponential. 

The statement formulated is fairly obvious and can be 
proved in an extremely general form. However, to estimate 
the distances at which the exponential effects under discus- 
sion become appreciable, it is necessary to know also the pre- 
exponential coefficients, which depend on the concrete scat- 

tering mechanism. Below, for illustration, we consider 
model examples in which the exponential dependences are 
trivial, and the scattering processes are taken into account by 
perturbation theory. The simple expressions obtained for the 
pre-exponential factors are valid for practical estimates of 
the strength of the effects under consideration in real struc- 
tures. 

In Sec. 1 we obtain the zeroth approximation to the one- 
particle Green function for a crystal with a short-range 
channel on the surface. Using this Green function, in Sec. 2 
we consider the short-range electron-electron interaction, 
and in Sec. 3 we consider scattering by inhomogeneities in 
the bulk and on the surface. In Sec. 4 we investigate the 
influence of bulk scatterers on the tunneling in the many- 
valley case. In the Conclusion we discuss a general rule for 
the calculation of the tunneling exponential far from the 
channel, and possible experimental consequences. 

1. THE GREEN FUNCTION 

The spatial distribution of electrons with a specified en- 
ergy E is completely described by the one-particle density 
matrixp(r,rll&), which, in turn, is determined by the imagi- 
nary part of the causal Green function: 

p (r, r'I E )  = ~ - ' O ( E ~ - E )  11n G(r, r'l a ) ,  

+or 
( 1 )  

G (r, r1 I e )  = h-' 5 G (r, r' I t-t') erp [ io (1-1') l h ]  dt .  

To study the tunneling of carriers from a surface channel 
into the bulk it is necessary to construct the corresponding 
density matrix and to consider its asymptotic form at large 
distances from the surface. The most important quantity de- 
scribing the electron-density distribution is the concentra- 
tion n ( r , ~ )  = p( r , r  I E )  of electrons of a specified energy. We 
shall not confine ourselves to the diagonal elements of the 
density matrix, since in the study of the various processes 
involving tunneling carriers, e.g., in the calculation of re- 
combination matrix elements, more-complete information is 
required. 

We shall consider the simplest formulation of the prob- 
lem, modeling the channel by a very narrow and deep poten- 
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G(') (r, r' 1 E) =-6 (r-r'), ( 6 )  

with a boundary condition analogous to (2).  It is convenient 
to go over to the momentum representation in the plane of 
the channel, while remaining in the coordinate representa- 
tion in thez direction. Solving Eq. (6)  in this representation, 
we obtain the function G'O) in the form 

~ ( 0 )  (k, z, z' I E) = 9 G(O) (r, rf I E ) ~ ~ ~ ( P - P ' )  dZ P 

-- m 
- {exp [ - (k2-2mh-'1) lh n-z' ] 

hZ (k2-2mh-'~) '" 

I - [ (hzk2/2m-E)'"+ (-E,") 1' -- 
E-e0-fi2k2/2m+i0sign (k-k,) 

FIG. 1. The potential V ( z )  of the surface channel. In the left half the 
surface band formed from the shallow level E, in the well V ( z )  is shown. 
The projection of the bulk band on the surface is indicated by the shading. xexp[-  (k'-2mF~-~r)'(rcr') 1 ). ( 7 )  

tial well V ( z ) ,  bounded on the side z < 0 by an infinitely high 
wall. On the crystal side z > 0 we shall neglect the bending of 
the bands (see Fig. 1 ) . We shall ignore the spin-orbit interac- 
tion, and, accordingly, omit the spin indices from the Green 
functions. For the moment we shall assume the effective 
mass m of the electrons to be isotropic. The energy E, of the 
single (for simplicity) bound state in the well V ( z )  will be 
assumed to be considerably smaller than the depth of the 
well. This model is convenient in that the surface wave func- 
tions are localized on scales large in comparison with the size 
of the well, and the well can be replaced by the effective 
boundary condition 

on the electron wave function. 
In the absence of inhomogeneities the one-electron 

wave functions of the surface states have the form 

The physical meaning of the two terms in the curly brackets 
is clear: The first term, which does not contain E,, describes 
the purely bulk tunneling of the electron, while the second 
corresponds to tunneling with reflection from the surface. 
The contribution of the bulk term to the function G'O' in the 
coordinate representation is equal to 

m exp[- (-2mh-'e)% 1 r-r' I ] 
G(') (r, r' 18) = - 

2xR2 I r-r' I . (8) 

This contribution dominates in G'O) when the points r and r' 
are far from the surface, but (for E < 0) does not have an 
imaginary part, which appears in the function G'O) only as a 
result of the participation of the surface states in the sum 
( 5 ) .  

The electron density corresponding to the Green func- 
tion ( 7 )  is 

Y, (r) mexp [- (-2mA-2~a) "zf ikp]  (3  xexp [- (-2mh-2~o)'b ( z f  2') ] ( 9 )  

(p  and k are the two-dimensional position vector and wave 
vector in the xy plane), and correspond to the energies 

IE (k) =A2k2/2m+eo. 

The continuum states are described by the wave functions 

with energies ~ ( k , k ,  ) = h 2(k  + k: )/2m corresponding 
to the bulk dispersion law. The zeroth-approximation Green 
function G(O) (r,rlle) can be obtained as the summation 

G(O) (r, r1 1 8) = x- Y,,*(rl) Yn(r)  
E-~,+iO.sign (E,-E~) 

( 5 )  

over all the stationary states with the appropriately normal- 
ized wave functions (3  ), (4).  The surface band is assumed to 
be filled up to the Fermi level E, = E, + fi2k ; /2m < 0. It is 
simpler, however, to solve directly the Schrodinger equation 
for the function G'O) , 

[Jo(x)  is a Bessel function] and is associated exclusively 
with the surface states. It falls off exponentially with the 
distance of r and r' from the channel, and does not depend on 
E in the interval E~<E(E, .  Below we shall study the change 
of this dependence on account of interactions of the elec- 
trons with inhomogeneities and with each other, the effect of 
which can be interpreted as virtual transitions into the con- 
tinuous spectrum. These interactions will be assumed to be 
short-range and will be taken into account in the Born ap- 
proximation. The latter restriction can be lifted easily be re- 
placing the Born matrix elements by the corresponding scat- 
tering amplitudes (see Ref. 1, Sec. 6 ) .  

2. ELECTRON-ELECTRON INTERACTION 

In the perturbation-theory series for the one-particle 
Green function it is necessary to select the diagrams whose 
imaginary part falls off most slowly with distance from the 
surface. It can be seen from the expression (7 )  that diagrams 
in which it is required to take into account the imaginary 
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FIG. 2. Principal diagrams describing the electron-elec- 
tron interaction. The solid lines are the electron G-func- 
tions, and the wavy lines are matrix elements of the inter- 
actions. 

part in the external G'O) -lines decay in accordance with the 
same law exp[ - ( - 2mhp2~0)  l i 2 ( z  + 2') 1, as does the 
imaginary part of the function G'O' itself. Thus, we must 
take into account diagrams whose imaginary part does not 
vanish when, in the external G'O' -lines, only the real parts 
are retained. The first terms of this kind in the perturbation- 
theory series are the two second-order diagrams depicted in 
Fig. 2. In the calculation of the contribution of these dia- 
grams to the imaginary part of the Green function, only the 
imaginary parts of the internal G'O' -functions are impor- 
tant. The contribution of the second diagram of Fig. 2 is 
opposite in sign to that of the first diagram, and, because of 
the summation over the omitted spin indices, has twice the 
magnitude. The calculation differs from that of the damping 
of the quasiparticles in a weakly nonideal Fermi gas (see, 
e.g., Ref. 1, Sec. 21) only in the two-dimensionality of the 
corresponding integrals over the two internal momenta. In- 
stead of the integration over the third components of the 
momenta, an integration over the z-coordinates of the two 
points of collision of the electrons appears. As a result we 
arrive at the expression 

i6nUtmeo2q (8, k) 
ImG(k,z,z'Ie)= 

h2 (hzk2/2m-e) (-9eo+e-h2k2/2m) 

where Uo = ~ U ( r ) d  3r is the Born matrix element of the 
short-range potential U(r) of the electron-electron interac- 
tion. The function 

coincides with the integral appearing in the expression for 
the damping of quasiparticles in a two-dimensional Fermi 
gas (compare with the three-dimensional expression [for- 
mula (2 1.17) in Ref. 1 ] ). Since we are interested in energies 
below the Fermi level, the first term in the curly brackets 
does not give a contribution to the integral ( 1 1 ). Going over 
in ( 10) to the coordinate representation, for a large distance 
of the points r and r' from the surface we can use the method 
of steepest descent, setting k = 0 everywhere except in the 
exponents. As a result, we obtain the density matrix in the 
form 

where (P (v)  is the function obtained from the integral ( 1 1 ) 
for k = 0. As the argument v changes from zero to unity 
(i.e., the energy E changes from the bottom E, to E, ), @(v) 
decreases from 1 - 1n2 ~ 0 . 3 9  to zero ((P(v) , ( 1 - v ) ~ /  
3'I2.4for 1 - v < l ) .  

3. SCATTERING BY INHOMOGENEITIES 

The tunneling of electrons in the presence of sub-barrier 
elastic scattering by randomly distributed identical point de- 
fects with a small concentration was investigated by Lifshitz 
and ~ i r~ ichenkov. '  These authors considered normal inci- 
dence of electrons on a potential barrier of infinite extent in 
two dimensions and of rectangular form in the third dimen- 
sion. Two characteristic ranges of energy of the tunneling 

I 

electrons were distinguished: a resonance region near the 
impurity levels, and a nonresonance region far from the im- 
purity levels. 

In application to the problem considered here, the the- 
ory of Ref. 2 describes tunneling of electrons from the bot- 
tom of the surface band. In nonresonance conditions the ef- 
fect of the impurities is that multiple scattering causes a 
linear (in the small concentration of scatterers) change in 
the decay constant describing the decay of the electron den- 
sity in the interior of the forbidden region. However, for 
electrons with a nonzero kinetic energy of motion along the 
surface,') for the reasons outlined in the Introduction the 
decay constant should experience a decrease of zeroth order 
in the concentration. This change is already discernible in 
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the first (linear in the concentration of scatterers) correc- 
tion to the density matrix; this correction will be calculated 
here. Allowance for multiple scattering leads only to a small 
additional change in the decay constant-a change that is 
linear in the concentration and will not be taken into account 
here. The situation is analogous to a certain extent to that 
considered by Shklovskii and E f r o ~ , ~  who showed that in a 
strong magnetic field scattering by impurities qualitatively 
changes the character of electron tunneling. 

For the Green function we shall consider the perturba- 
tion-theory series in the scattering amplitude for scattering 
by defects. Upon averaging over the positions of the scat- 
terers, we obtain a technique similar to the usual "cross" 
technique (see Ref. 4, Sec. 39). The integration over the z- 
coordinates of the impurities should be carried out explicit- 
ly. It can be verified that the contributions of the diagrams in 
which each scatterer is encountered once decay in accor- 
dance with the same law as G 'O' ( k j j ' l ~ ) .  The first diagram 
giving a slowly decaying contribution to the averaged den- 
sity matrix (p  (r,r '  I E )  ) is the second-order diagram in which 
both scatterings are by the same impurity (Fig. 3 ) .  In the 
external G'O' -lines we need take into account only the real 
part, and in the middle G'O' -line, only the imaginary part. 
For the density matrix far from the surface we obtain 

(13) 
where n is the concentration of impurities, U, = SU(r)d 3r is 
the integral of the potential U(r)  of a single impurity, and R 
is the same as in ( 12). But this expression describes scatter- 
ing in the bulk by a random Gaussian potential g ( r )  of the 
"white noise" type with correlator 

(0  ( r )O (r') >=nU,ZG(r-r'). 

Besides scattering in the bulk of the semiconductor, 
scattering by inhomogeneities of the two-dimensional chan- 
nel itself can be important for the tunneling. We shall treat 
the latter inhomogeneities as small fluctuations of the chan- 
nel depth that lead to a dependence of the energy E, of the 
bottom of the surface band on the coordinates p in the plane 
of the channel: 

Instead of taking this dependence into account in the bound- 
ary condition ( 2 ) ,  it is more convenient, from the point of 

FIG. 3. Cross-technique diagram describing the linear (in the impurity 
concentration) contribution to the electron Green function. The crosses 
denote matrix elements of the impurity potential. The dashed line shows 
that the two crosses correspond to the same impurity. 

view of application of perturbation theory, to replace it by a 
fluctuating surface potential 

u (r) = "") P (z+o). 
2 (-2mA-'eo) 'I1 

The main contribution to the density matrix is given, as in 
the case of scattering by impurities, by the second order of 
perturbation theory in the potential G( r ) .  Calculating this 
contribution in analogy with the calculation of the diagram 
of Fig. 3, we obtain 

(14) 
where 

is a Fourier component of the correlator of the binding ener- 
gy, and R is the same as in ( 12). 

4. INTERVALLEY SCATTERING 

We now consider a semiconductor whose conduction 
band has several identical valleys with an anisotropic effec- 
tive mass. To be specific, we shall have in mind silicon, the 
six valleys of which in k-space have a larger longitudinal 
effective mass mi l  and a smaller transverse effective mass m, 
and are oriented in pairs along mutually perpendicular axes 
of a cubic lattice. 

In itself, the anisotropy of the effective mass, without 
allowance for intervalley transitions, does not introduce 
anything fundamentally new into the effects considered 
above. This is fairly obvious, because of the possibility of 
making the effective mass in any of the valleys isotropic by 
means of a linear change of variables; the surface remains 
planar, and the problem essentially reduces to those already 
considered. I t  is also obvious that intervalley transitions are 
unimportant when the orientations of the valleys are equiva- 
lent with respect to the surface. For example, in silicon all 
the valleys make the same angle with the ( 11 1) surface, and 
transitions from valley to valley cannot facilitate tunneling. 

When the orientations of the valleys are not equivalent 
with respect to the surface, the deepest surface band is 
formed on account of the valleys with the largest mass in the 
direction perpendicular to the surface, while for tunneling it 
is favorable to have the smallest mass in this direction. 
Therefore, virtual transitions from valleys forming the sur- 
face band to other valleys should exponentially increase the 
probability of tunneling. We note that in contrast to the one- 
valley case this increase should occur even for electrons tun- 
neling from the bottom of the surface band. 

As is well known, intervalley transitions are made diffi- 
cult because of the large magnitude of the wave vector separ- 
ating the valleys. Intervalley scattering by inhomogeneities 
is quantitatively small in comparison with intravalley scat- 
tering, and, therefore, in the treatment of intervalley scatter- 
ing fundamental complications do not arise. They do appear, 
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however, when we consider the electron-electron interac- pcr("(r, ~ ' IE )=~(ER-E)  O(E-EQ) ( - - 2 m , , ~ ~ ) ' ~ l ~ f i ~  
tion, which conserves the total momentum of the electrons. x JO ( ( 2 m , f i - 2 ( ~ - ~ o ) ) ' h I p - p ' l )  
For real values ofthe surface Fermi wave vector k,, an inter- x exp [ - (-2mllti-2~o)'b (z+zr)] , a=3, 3'. (17) 
valley transition is possible only as a result of many-particle 
processes in which an electron, crossing over into a favorable 
valley, gathers momentum from several electrons remaining 
in the surface band. 

We shall consider the model of the n-channel on the 
(001) surface of silicon. We shall give the valleys oriented 
along the x axis the labels 1 and l', those along they axis the 
labels 2 and 2', and those along z axis the labels 3 and 3', and 
provide the Green functions2' with the corresponding index 
a. The surface band ( a  double band, when the valley-orbital 
splitting is neglected) is formed from the valleys 3 and 3' 
with their axes perpendicular to the surface. The Green 
functions of the zeroth approximation have for these valleys 
the form (compare with the expression (7)  with an isotropic 
effective mass) 

The narrow and deep well D ( z )  (see Fig. 1 ) , which has for a 
particle of mass m,, a shallow (in comparison with the depth 
of the well) level E ~ ,  practically does not act on a particle of 
the appreciably lower mass m,; this corresponds to the 
boundary condition Y = 0 on the surface. For simplicity, 
this is the condition we shall adopt for the valleys parallel to 
the surface, neglecting the possible difference in the effective 
surface potential for these valleys. With this assumption, for 
the valleys parallel to the surface we obtain purely real G'O' - 
functions: 

m,'" 
G ~ O )  (k, Z, Z' ( E) = 

h2 (k.2/mLlf k;/m,-2~/h') lb' 

k 'b 

{ex. [ -  ( m, (g+ 2 - 5)) 1 z-zf 1 
mil m, h2 I 

for a = 2, 2' we must interchange k ,  and k,. The two-di- 
mensional wave vector k for each a is measured from the 
bottom of the corresponding valley. 

The electron density matrix in the absence of interac- 
tion is obtained from the Green function ( 15) of the valleys 
perpendicular to the surface. Because of the anisotropy of 
the effective mass, the expression (9)  is somewhat modified 
and takes the form 

The componentsp, corresponding to the valleys parallel to 
the surface (a = 1, 11,2,2') are equal to zero. 

It is now necessary to calculate that correction to the 
Green function which is linear in the concentration and is 
described by the same diagram (Fig. 3)  as in the one-valley 
case, by taking for the internal line the G'O' -function (15), 
and for the external lines the G'O' -functions ( 16) corre- 
sponding to the valleys parallel to the surface. For the Born 
matrix element U,, we must now use the matrix element of 
the full Hamiltonian of the crystal plus impurity between the 
Bloch functions of the bottoms of different valleys; here we 
are interested only in transitions from valleys perpendicular 
to the surface to valleys parallel to the surface. The density 
matrix averaged over the distribution of impurities has the 
form 

for a = 1,l'; for a = 2,2' we must interchangex and y. In the 
expression ( 18) we have taken into account a factor 2, which 
arises from the double character of the surface band. Com- 
parison of ( 18) with ( 17) shows that besides the tunneling- 
probability increase on account of the replacement of&,, by E 

in the exponent, as in the one-valley case, there is an addi- 
tional increase on account of the replacement of the larger 
mass m ,  by the smaller mass m, . At large distances from the 
surface the electrons from the valleys parallel to the surface 
should dominate, and this can be manifested, e.g., in the 
polarization of recombination emission at holes far from the 
surface. 

We shall say a few words about the hole channel for a 
degenerate valence band. Despite the presence of two masses 
in the bulk dispersion law in this case, a strong exponential 
effect analogous to that in the many-valley case is impossible 
here. In the wave functions of the surface states the compo- 
nents corresponding to light and heavy holes are mixed to- 
gether (an exception is the point k = o) ,  and the decay con- 
stant of the hole density now contains the mass of the light 
hole. We may expect only a weaker effect, similar to that 
which arises in the nondegenerate one-valley case. Observa- 
tion of this effect is complicated by the fact that, unlike the 
electron density in the n-channel, the hole density depends 
on the energy even in the absence of scattering. 

CONCLUSION 

The illustrative examples considered above confirm the 
qualitative considerations, outlined in the Introduction, 
concerning the influence of different scattering processes on 
the tunneling of carriers from the surface band. It is possible, 
apparently, to formulate the following general rule, valid for 
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an arbitrary (degenerate, or taking account of spin-orbit in- conductor of scatterers having bound states with levels in the 
teraction, or nonparabolic) bulk dispersion law ~ ( k , k ,  ) for region of the surface-band energies, the exponential depen- 
the carriers, and for an arbitrary form of the potential V(z). dences can change even as a result of the resonance-tunnel- 

At large distances from the channel the density matrix ing effect.' 
should have the form We shall say a few words about surface states with ener- 

gies above the bottom of the bulk band (see Fig. 1 ). On an 
p (r, r'I E )  mexp [ ih - 'S(e) ]  , ideal surface of a pure crystal in the one-electron approxima- 

where S(E) is the minimum (in magnitude) value of the 
purely imaginary truncated action Jp-dr on a trajectory go- 
ing from the point r' to a certain point on the surface, and 
from the latter point to the point r, with a specified value of 
the total energy E .  Tunneling corresponds to imaginary val- 
ues of the momentum and of the time of motion, and this is 
why the action is imaginary. In the case of a degenerate dis- 
persion law, we should take as the kinetic energy its light 
branch. For a quadratic dispersion law (in the case of a de- 
generate band the law may be "corrugated"), by a change of 
variables we can reduce the problem to a more visualizable 
form by considering the motion of a particle in real time but 
with a reversed sign of the energy E and potential V(z). In 
explicit form, the action can be written for a nondegenerate 
quadratic dispersion law (see Ref. 5, Sec. 44) 

where map is the effective-mass tensor. The examples con- 
sidered above correspond to the absence of band bending 
( V ( z )  =O) and to a diagonal effective-mass tensor, when 
minimization of the expression (19) leads to a rectilinear 
trajectory that is specularly reflected from the surface. In the 
expressions ( 12)-( 14) the length of this path appears di- 
rectly in the exponent, while the expression (18) contains 
the path length corrected for the mass anisotropy. 

The rule formulated gives a complete description of the 
principal, exponential effect, which does not depend on the 
form or strength of factors violating the separation of vari- 
ables in the channel, and is entirely general. The weakness of 
the scattering mechanisms leads only to pre-exponential 
smallness of the corrections to the unperturbed density ma- 
trix and essentially effects only the value of the distance from 
the surface at which these corrections begin to dominate on 
account of the more slowly decaying exponential. This dis- 
tance depends on the energy of the tunneling carriers: It is 
smaller the closer is the energy to the bottom of the bulk 
band, and increases (in the one-valley case, to infinity) as 
the energy approaches the bottom of the two-dimensional 
surface band. 

The energy dependence of the pre-exponential factor is 
determined by the concrete scattering mechanism. In all the 
examples considered above, the qualitative character of this 
dependence is the same: The pre-exponential factor de- 
creases monotonically with increase of the energy from the 
bottom of the surface band to E,. This character of the de- 
pendence is evidently a property of the models used. In the 
general case, when one uses the complete energy-dependent 
scattering amplitude instead of the Born matrix elements, 
the energy dependence of the pre-exponential factor in the 
density matrix can vary greatly. In the presence in the semi- 

tion these states do not differ in any essential way from states 
lying in the forbidden band of the semiconductor. But the 
effect of inhomogeneities and electron-electron interaction 
on the different types of surface states is qualitatively differ- 
ent. As the energy of a surface state moves downward to- 
ward the bottom of the bulk band the state becomes more 
and more delocalized, and its wave function decays more 
and more slowly in the interior of the crystal. When the state 
passes through the bottom of the bulk band the virtual tran- 
sitions responsible for the tunneling are transformed into 
real Auger processes and elastic scattering, and the surface 
state becomes a decay (quaistationary) state. 

The effects considered can be manifested experimental- 
ly in different processes involving the tunneling of carriers, 
and primarily in the recombination of carriers with carriers 
of the opposite sign localized outside the channel. At greater 
distances of the recombination centers from the surface the 
rectangular shape of the luminescence line should be de- 
formed on account of the slower decay of its blue edge. The 
one-particle density matrix ( 1 ) can be used in the case when 
the carriers of the opposite sign are localized at sufficiently 
deep centers, when the tunneling of only the surface carriers 
need be taken into account. In the simplest case of direct, 
zero-phonon recombination at deep centers in an allowed 
optical transition, the shape of the recombination-emission 
line is determined by the energy dependence of the electron 
concentration n ( r , ~ )  = p ( r , r I ~ ) .  

Very recently, experimental observations6,' of recom- 
bination radiation of electrons from two-dimensional chan- 
nels have appeared; in the MIS system of Ref. 6 a rectangular 
line shape is observed, while in the heterostructure ofRef. 7 a 
deformed line shape is observed. Evidently, this can be un- 
derstood in the light of the results of the present work, since 
the concentration of impurities in the heterostructure of Ref. 
7 is higher, and the tunneling length in this experiment 
greater, than in the MIS system of Ref. 6. 

The idea of the present work arose in a discussion of the 
results of the experiment of Ref. 7 with V. D. KulakovskiY, to 
whom the author expresses his gratitude. 

'' In the formulation in Ref. 2, this would correspond to oblique incidence 
of electrons on the barrier. 

'' Scattering by inhomogeneities destroys the diagonal character of the 
one-particle Green function in the valley indices, but the contribution of 
interest to us is diagonal after averaging over the positions of the scat- 
terers. 

'E. M. Lifshitz and L. P. Pitaevskii, Statisticheskaya fizika (Statistical 
Physics), Part 2, Nauka, Moscow ( 1978) [English translation published 
by Pergamon Press, Oxford ( 1980) 1 .  

'I. M. Lifshitz and V. Ya. Kirpichenkov, Zh. Eksp. Teor. Fiz. 77, 989 
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