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An expression is derived for the probability of tunnel ionization, in an alternating field, of a 
complex atom and of an atomic ion that are in an arbitrary state. The expression for the 
tunnel-ionization probability is obtained in the quasiclassical approximation n* $1. 
Expressions are also obtained for states with arbitrary values of I at arbitrary ellipticity of the 
radiation. A quasiclassical approximation yields results up to values n * ~  1, with accuracy up 
to several percent. 

1. INTRODUCTION 

The theoretical description of tunnel ionization of 
atoms in an alternating field has long attracted attention.' In 
a certain sense this task is more promising than that of ioni- 
zation in the opposite multiphoton case. First, only the ini- 
tial and final states of the electron are significant in tunnel- 
ing, while the intermediate states place no rule. Second, 
when the conditions h < E  and 29 < gat (h is the emitted- 
photon energy, E is the energy of the considered state of the 
electron in the atom, and ga, the atomic field strength) per- 
mit the use of a quasiclassical approximation. Third, the re- 
sults for an alternating field are easily obtained from those 
for a constant field by substituting 8'- 8' cos w t  and inte- 
grating over the period Tof the field. All this permits analyt- 
ic expressions to be obtained for the tunnel-ionization prob- 
ability. So far, however, expressions for the 
tunnel-ionization probability in an alternating field were ob- 
tained only for arbitrary states of the hydrogen a toms. '~~  

In this situation it is expeditious to derive an equation 
for the probability of tunnel ionization of complex atoms or 
atomic ions, and in arbitrary states. To this end it is neces- 
sary, starting from the equation obtained in Ref. 2 for the 
ionization probability for states of the hydrogen atoms, to 
obtain the sought-for equation, in which the states of the 
complex atom are characterized by effective principal and 
orbital quantum number n* and I * that take into account the 
quantum effects, and for the states of the atomic ions also the 
degree of ionization Z .  

2. DETERMINATION OF THE CONSTANT C,,., FOR ATOMS 
AND IONS IN THE QUASICLASSICAL APPROXIMATION 
(n*$-l) 

Assuming that the external electromagnetic field is lin- 
early polarized, the probability of ionization per unit time 
from a state with energy E, orbital quantum number I, and 
its projection m, is described by the expression2 

Here 

Z is the charge of the atomic residue. We use the atomic 
system of units, f i  = m, = e = 1. 

The quantity C,.,. in ( 1 ) is determined from the fol- 
lowing considerations2: in the distance region (2E)-'I2 
< r <  2E /g the atomic-residue field is already weak, but the 
external field can still be neglected. The wave function Y,,,, 
coincides therefore in this region with the asymptotic wave 
function of the free electron at r% (2E) - ' I 2 :  

An analytic expression for the constant C,,.,, is known3 
only for arbitrary states of the hydrogen atom. The values of 
C,.,, obtained from numerical calculations for the ground 
states of complex atoms and single ions are tabulated in Ref. 
4. Here we calculate C,., , for an arbitrary state of an atom or 
an atomic ion in the quasiclassical approximation. 

Consider an atom (ion) in the absence of an external 
field in the quasiclassical approximation, which is valid 
when the condition n* $1 is satisfied. In the classically al- 
lowed region r ,  < r  < r ,  are the classical turning points) the 
quasiclassical radial wave function of an electron with prin- 
cipal quantum number n  and with orbital quantum number I 
is of the form (see Ref. 3, $46) 

where 

V is a small non-Coulomb increment to the potential of the 
interaction between the electron and the atomic residue, 6,  is 
the quantum effect and a,, is a normalization factor. Consid- 
er the case I g n .  The centrifugal potential in the momentum 
p,, can then be neglected. We determine the coefficient a,, 
by using the Bohr-Sommerfeld quantization rule 
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We differentiate (5 )  with respect to n, assuming 6, to be 
independent of n: 

We also use the condition for quasiclassical normalization of 
a radial function: 

From (6 )  and ( 7 )  we obtain the value of a,, : 

In the forbidden region r > r, the radial wave function of the 
electron is (see Ref. 3, $46) 

Equation (9)  should coincide with the asymptotic form of 
the wave function ( 3 )  when r) (2E)- ' I2 .  Simplifying ( 9 )  
with this condition satisfied, we get 

A comparison of (3 )  with ( 10) yields 

It must be pointed here that at 1 4 n  the coefficient C,.,. 
depends only on the quantity n* = n - 6,. 

3. PROBABILITY OF ATOM OR ION IONIZATION IN THE 
CASE l-gn 

Using expression ( 11 ) for C,.,. , we rewrite expression 
(1) :  

Putting next 1 = 1 in (12) ,  we obtain the probability of tun- 
nel ionization of an atom or an ion in the form 

It is important that in these expressions the principal change 
of the ionization probability as a function of the field %' is 
determined not by the exponential, but by the factor 
( Z 3 / $ ~ * 4 ) 2 n ' .  In addition, it must be noted that the rela- 
tion 

i.e., the probability of detachment of an electron with mag- 
netic quantum number m = 0 exceeds substantially the 
probability of detachment of an electron with lm/ = 1 

A tunnel-ionization probability on the order of unity is 
reached, according to (13),  at an electric field strength 
8 - Z  3/n*4, in agreement with earlier classically obtained 
results.' 

It is of interest to compare the expression obtained for 
the tunnel-ionization probability ( 13a) with the &potential 
probability w, of tunneling caused by a linearly polarized 
field2: 

Simple algebra leads the ratio of the probabilities of tunnel 
ionization from a Coulomb potential ( 13a) and a 6  potential 
(15), in the form 

It can be seen that w/w, $1 for all n* and Z and for all 
field strengths up to atomic. 

TABLE I. Experimental7 and theoretical [from Eq. ( 13a) ] values of the laser intensity I for two 
values of the ionization probability w. 

( 2c=0,0i~-~ I w=O,ir-l 11 1 1 0 = 0 . 0 1 ~ - ~  I w=~.ir-1 

c.4 

E 3 Atom " 3 E 
or \ 5 - 3  

< 
ion -G gx 

3 - 3 
-G pr -2 :S 2 2  5 2 G- ss 2 *.r 4: 0 2 2  s: 2 4 2  

Note. The experimental dependences of the relative number of recorded ions on the laser intensi- 
ty were compared with the analytic expression ( 13a) for the tunnel ionization probability under 
the assumption that the region of the ion-signal saturation the ionization is the reciprocal of the 
laser-pulse duration T ( T  = 1 .1  ns, Ref. 7 ) .  
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TABLE 11. Comparison of the coefficients C,.,. obtained by numerical methods4 and from the 
analytic equation ( 11 ) .  -- / I Value of coefficients Value of coefficients , 
Atom ~ ~ " 1 %  L',,"l* 

Note. The factor ( Z / n )  " ' O  was introduced because the definition of the coefficients C,.,. in 
Eq. ( 3 )  differs from the coefficients ofA in the h a n d b ~ o k . ~  

Note that ( 13a) agrees well with the experimental This expression is the probability of tunnel ionization of a 
data6.' on tunnel ionization of atoms and atomic ions of no- state with arbitrary value of the orbital quantum number 1. 
ble gases in a large interval of electron binding energies and 
in a wide intensity range of the field in which the ionization 5. TUNNEL IONIZATION IN AN ELLIPTICALLY POLARIZED 

took daceX (see Table I ) .  ELECTROMAGNETIC FIELD 

We have considered so far a linearly polarized electro- 
4. TUNNEL-IONIZATION PROBABILITY FOR AN ARBITRARY magnetic wave field. The dependence of the tunnel ioniza- 
ORBITAL QUANTUM NUMBER I tion probability on the degree of field ellipticity was studied 

In the case of an arbitrary quantum number 1 and for in detail in Ref. 2. The field of an elliptical-polarization wave 
n #n* we must use the effective value I * of the orbital num- is given by 
ber, defined as' 

B ( t ) = 8 ( e ,  cos ot*ee, sin a t ) ,  O<&<I. (22) 
1'=noa- 1. ( 17) 

The probability of ionization in an elliptically polarized al- 
Here n,* is the effective principal quantum number of the ternating field is connected with the probability of ionization 
ground state. To determine the constant C,,,, for arbitrary in a constant field by the relation2 

1 * 5 n* we use the asymptotic form of the radial wave func- & ( i f  E )  -'I1 I--& z3 
tion of an electron in a Coulomb potential': 

lr=(7 ) a(,,) wstac, 

2"Z4* (Zr) "-' Zr Here 
Rnr = 

nn+'((n+L)! (n-1-1) ! ) "  e x p ( - ~ )  
. (18)  

u (x) =e-510(x), 

Using the definition ( 3  of C,*I. and replacing the principal I, ( x )  is a Bessel function of imaginary argument and w,,,, is 
and orbital quantum numbers n and 1 by the effective n* and the ionization probability in a static field. If the wave polar- 
1 * we get ization is circular, we have w,,,, = w,,,, and the ionization 

22,. probability takes in the quasiclassical approximation [see 
c:.,. = 

n*T (n*+l'+ 1) r (n8-1') ' ( I 9 )  (13a)l  

Using Stirling's factorial formula, we get from ( 19) 

If / * <n*, Eq. ( 2 0 )  goes over into the equation obtained for 
C i,,, in the quasiclassical approximation [see ( 1 1 ) 1. 

We substitute (20) in Eq. ( 1) for the tunnel ionization 
probability: 

If the field polarization is not too close to circular, we have2 

where w,,,, is the ionization probability in a linearly polarized 
field. We have a ratio 

w ,,,, /W ,,,, = ( ~ r Z ~ / g n * ~ ) ' ~ > i  (27) 

since the field f? is weak compared with the atomic field. 

6. CONCLUSION 

It must be noted that the coefficients C,,,, calculated in 
the quasiclassical approximation (n* % 1 ) using Eq. ( 1 1 ) for 
atoms and ions in the ground state (n* -- 1 ) are in good 
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agreement8 with the numerical calculations4 of these coeffi- 
cients (see Table 11). This agreement confirms the fact that, 
for numerical reasons, the quasiclassical approximation is 
highly accurate up to principal quantum numbers of order 
unity." This was corroborated many times by numerical cal- 
culations (see Ref. l l ,  $8.4. l ). 
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