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A scheme is discussed for the topological classification of nonuniform states in condensed 
media whose degeneracy space depends on the characteristic length of the nonuniformities of 
the order parameter and external fields. An algorithm for calculating the topological charges 
of loop defects with nontrivial (continuous and containing point singularities) cores is 
exhibited. Loop defects in superfluid 'He and ferromagnets, and also the nonuniform states of 
a doughnut-shaped drop of a nematic liquid crystal, are investigated in the framework of the 
approach described. 

In recent years considerable attention has been paid to 
the study of nonuniform configurations of the order param- 
eter of condensed media in the framework of the topological 
approach-a new theoretical method which uses the con- 
cepts of homotopic topology (see the reviews in Refs. 1-3). 
This approach has great value for the physics of nonuniform 
states of matter, since it makes it possible to display general 
regular features of the behavior of defects and other topo- 
logical excitations in various systems differing substantially 
in their physical properties, e.g., in ordinary crystals, liquid 
crystals, superfluids, superconductors, and ferromagnets. 
By means of topological methods it is possible, in particular, 
to obtain a criterion for the stability of topological excita- 
tions, a classification of the excitations, the laws of their co- 
alescence, and a description of the influence of topological 
excitations on the macroscopic properties of the condensed 
medium. As a result of the topological classification, excita- 
tions are divided into classes in such a way that passage from 
one class to another requires the creation of a discontinuity 
in the order-parameter field (this involves a considerable 
cost in energy), whereas for the transformation of excita- 
tions within one class a continuous deformation of the order 
parameter is sufficient (such a process usually does not in- 
volve the surmounting of an energy barrier). 

In condensed media with a constant degeneracy space 
the topological excitations of general form are relative topo- 
logical textures (RTT)-nonuniform states of a condensed 
medium whose order parameter in a certain part M of the 
medium has a fixed distribution (e.g., as a result of the action 
of an external field) .4 Each RTT is described by a mapping 

(here K is the volume occupied by the medium and V is the 
degeneracy space of the medium), the restriction of which to 
M is a specified continuous fixed mapping 

Particular cases of RTT are defects: singularities of the order 
parameter (in this case M is the empty set), and particle-like 
~olitons.~ Other examples of RTT and an algorithm for cal- 
culating the topological charges of RTT by the methods of 

obstruction theory are considered in Ref. 4. One example of 
an RTT is depicted in Fig. la. 

However, the concept of RTT, despite its considerable 
generality, is not adequate for the description of nonuniform 
states in condensed media whose degeneracy space is vary- 
ing, i.e., the internal symmetries of the medium can be differ- 
ent at different points of the medium. This is usually asso- 
ciated with dependence of the degeneracy space on 
nonuniformities of the order parameter and with the influ- 
ence of external fields. We introduce the concept of (K, V; - - 
M, V )  configurations, which are analogs of RTT for media 
with a varying degeneracy space. Definition: a (K, V; fi, F) 
donfiguration is a nonuniform state of a condensed medium 
occupying a volumeK, such that in a certain part 2 ( ~ c K )  
of the medium order parameter can take values only in the 
subspace 7 of the degeneracy space V of the medium 
( VC V) . This configuration is described by a continuous 
mappingg: K-+ V, the restriction of which to 2 is a contin- 
uous (nonfixed) mapping 

FIG. 1. Examples of nonuniform configurations in condensed media. a)  
Example of a relative topological texture-a nematic in a cylindrical ves- 
sel K. Near the side surface M of the cylinder K the molecules of the 
nematic are rigidly in the direction normal to the surface. The fixed map- 
pingf: M -  V describes the distribution (depicted in the figure) of t_he 
nematic molecules near the surface. b) An exmaple of a (K, V; M, V )  
+figuration-a nematic in a cylindrical vessel K. Near the side surface 
M of the cylinder K the molecules of the nelpatic can rotate only in the 
plane tangential to the surface, i.e., the region Vof variation of the orienta- 
tion of the molecules is S1-a circle. The degeneracy space i_n t_he rest of 
the cylinder is V= RP,-the projective plane. The mappingf: M- V de- 
scribizg the distribution (depicted in the figure) of the nematic molecules 
near M can be varied continuously. 
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An example of such configurations - is - depicted in Fig. lb. 
Other particular cases of (K, V; M, V) configurations are 
surface defects (here K is the volume of the medium and f i i s  
its boundary, with the singular core of the surface defect 
e ~ c i s e d ) , ~  and defects and solitons with nontrivial cores (in 
this case k is the region K (the volume of the medium) with 
the core of the defect or soliton, respectively, - - 
Relative topological textures and (K, V; M, V) configura- 
tions practically exhaust all possible types of nonuniform 
states in condensed media. 

To calculate the set A of topological charges of (K, V; 
M, F) configurations we propose a general scheme, which is 
given in the Appendix. The purpose of the present paper is an 
investigation, in the framework of the scheme indicated - - 
above, one of the most interesting types of (K, V; M, V) 
configurations-loop defects with nontrivial (continuous 
and containing point singularities) cores. 

2. LOOP DEFECTS WITH NONTRIVIAL CORES 

We shall consider a loop defect with a continuous non- 
trivial core in a condensed medium with a varying degener- 
acy space. The core of such a defect is a filled torus (dough- 
nut) (Fig. 2). Within the core the nonuniformities of the 
order parameter are large and as a consequence the degener- 
acy space V describing the internal symmetries of the con- 
densed medium in the core is richer than the degeneracy 
space v~haracter izin~ the symmetries in the rest of the sys- 
tem. For definiteness we shall assume that the entire medi- 
um occupies a cubic volume K. Then the loop defect is a (K, 
V;  k ,  v) configuration, where fi is the cube K with the 
defect core excised. 

A related object for the configuration under considera- 
tion is a simple loop singularity (LS) in the form of a combi- 
nation of a line singularity and a point singularity. The topo- 
logical charge of the LS is the set (a,b), where the 
subcharges a m ,  ( V) and b ~ ? r ,  ( V) characterize the proper- 
ties (inherent to the LS) of the line singularity and point 
singularity, re~pectively.~ The subcharge a is specified by the 
distribution of the order parameter along a closed line con- 
tour D surrounding the LS, and the subcharge b is specified 
by the distribution of the order parameter over the two-di- 
mensional closed surface (a  torus with a glued middle) gen- 
erated by rotation of the contour D around the LS with the 
point roe V held fixed; see Fig. 3 (for more details see Ref. 2). 

In contrast to a loop singularity, in the continuous non- 
trivial core of a loop defect there are no singularities of the 

FIG. 2,Loop defect in a condensed medium occupying a cubic volume K; 
Vand Vare the degeneracy spaces of the medium in and outside the defect 
core, respectively ( VC V). 

FIG. 3. Loop singularity-the thick line L. When the contour D moves 
around the singularity (the point r,, is stationary), the contour D gener- 
ates a two-dimensional closed surface-a torus with a glued middle. 

order parameter; instead, the degeneracy space V "spreads" 
in the core to the large space V. Then, by analogy with an LS, 
we should expect that a loop defect is a combination of a line 
defect and a point defect with continuous cores, and, as a 
consequence, the topological charge of each loop defect, i.e., 
the set ( a ,  p ) ,  is an element of the group 

Here those properties of a line defect with a continuous core 
that are inherent to the loop defect are characterized by the 
subcharge ~ € 7 7 ,  ( v,V), while the point-defect properties are 
characterized by the subchargep~a~ ( v,V). An exact calcu- 
lation (see the Appendix) confirms the above statements. 

The stability of a loop defect with a continuous core 
depends in various ways on the topological subcharges a and 
fl. 1 ) If both subcharges a and fl are trivial ( a  = 0, fl = 0)  , 
the defect is topologically unstable, i.e., it can be completely 
eliminated (transformed into the uniform state) by means of 
a continuous deformation of the order parameter. 2) The 
subcharge a = 0 and the subchargefl is nontrivial. By means 
of continuous changes of the order parameter the defect can 
be broken, after which it is transformed into a point defect 
with a nontrivial core (characterized by fl only see Fig. 4). 
3) The subcharge a is nontrivial and the subcharge P =  0. 
The loop defect is simply a line defect with a nontrivial core, 
folded into a ring. The defect cannot be broken, but, by de- 
creasing the radius of the defect loop (contracting the de- 
fect), one can eliminate it completely (Fig. 5). 4) The sub- 
charges a and 8 are both nontrivial. The defect cannot be 
broken, but, by decreasing the radius of the defect loop, one 
can transform the defect into a point defect with a nontrivial 
core (Fig. 6). In this case the subcharge a is "lost." A simi- 
lar result also obtains for ordinary loop ~ingularities.~ 

There exists the interesting possibility of a transforma- 
tion of loop defects of the type "defect with charge (a ,  8 ) -  
defect with charge (a', fl)", where al#a. This possibility is 
connected with changes of shape of the defects. For example, 
suppose that a loop ( a ,  8)-defect is first compressed into a 
point defect characterized entirely by the subcharge fl (the 
subcharge a is lost), and then transformed again into a loop 

FIG. 4. The case when a = 0 and /3 is nontrivial. The loop defect can be 
broken and transformed into a point defect with a nontrivial core. 
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FIG. 5. The case when a is nontrivial and fi = 0. The loop defect can be 
eliminated entirely by decreasing the radius of its loop. 

defect. In the latter transformation the defect again acquires 
a topological characteristic a', but the latter is arbitrary and 
does not have any connection with the subcharge of the ini- 
tial loop defect. 

In analogy with the case of ordinary line  defect^,^ in the 
cores of loop defects point singularities can be encountered 
(Fig. 7). Topologically stable point singularities separate 
the parts of the core in which the distributions of the order 
parameter differ substantially (the homotopy classes of the 
mappings (specified by the order parameter) of sections of 
the parts separated by the singularities are different). Since 
the smallest possible number of different parts of a loop de- 
fect is equal to two, the number m of topologically stable 
point singularities is m>2.  The characteristics of the "intra- 
core" singularities are intimately related to the form of the 
group a,( V). At the same time, the loop defect also carries 
features of the point singularity situated in the medium with 
degeneracy space t. This is reflected in the structure of the 
topological charge of a loop defect with m intracore singu- 
larities. This charge, which (see the Appendix) is a set 
(~,S,E, ,..., E, ), is an element of the group 

Lm(V,9.)=nz(P)X Im(n,(V,V) L n , ( P ) )  

~ [ ~ e r ( n ~ ( ~ , ~ ) ~ n , ( ~ ) ) l " .  ( 5 )  

Here yea, ( t ) ,  S (an element of the group Im p) is an image 
of the homomorphism p,  and ci is an element of the group 
(Ker p) (the kernel of the homomorphism p ) ,  i = 1, ..., m; 
here ma2, and p belongs to the exact sequence 

-n, (V) -.n,(V) -.n,(V, V) +n,-, (8) +. ( 6 )  

The subcharge y describes features of the point defect asso- 
ciated with a,(V), and the subcharge S,  specified by the 
distribution of the order parameter along a closed contour E 
"encircling" the defect core (Fig. 7),  describes features of 
the line defect (in a medium with degeneracy space t ) ,  both 
sets of features being inherent to the configuration investi- 
gated. The subcharge 6 is contained among the elements of 
the group L O (  v,F), and therefore (partially) characterizes 
as well a loop defect without point singularities in the core. 
Each subcharge E~ characterizes the distribution of the order 

FIG. 6. The cases when a and f i  are nontrivial. The loop defect can be 
compressed (by decreasing the radius of its loop) into a point defect with a 
nontrivial core. 

FIG. 7. Loop defect with m internal singularities. The contour E "encir- 
cles" the defect. Each subcharge E,  characterizes the distribution of the 
order parameter on the part of the core situated between the ith and 
( i  + I )th singularities. 

parameter on that part of the core situated between the ith 
and (i + 1 )st point singularities (Fig. 7).  In the terminology 
ofRef. 7, E~ is the linear-soliton index on the part from the ith 
to the (i + 1 )st singularity. The subcharges E, _ , and .ci to- 
gether describe the ith point singularity associated with 
a2( V). If E; - = E ~ ,  the ith singularity is topologically un- 
stable. 

A loop defect can be compressed to a point defect with a 
nontrivial core containing point singularities. In this case 
the configuration loses two subcharges: a and one of the ci.  
If S = 0 and E, = 0 for a certain value ofj, then on the part of 
the core characterized by E, the loop defect can be broken by 
means of a continuous deformation of the order parameter, 
and this also transforms the loop defect into a point defect 
(here the subcharges S and E, are lost). 

3. EXAMPLES 

A )  Ferromagnet with "easy-axis" anisotropy. Outside 
the defect core the degeneracy space = S I ,  and in the de- 
fect core we have V = S 2. Then 

where Z is the group of the integers. As shown by (7) ,  any 
loop defect with a continuous core can be characterized by a 
set (zl,z,,z3) of integers, each of which is a topological invar- 
iant, i.e., an invariant under continuous deformations of the 
order parameter of the ferromagnet (the magnetization vec- 
tor). In this case the subcharge a = (zl,z2) and the sub- 
charge P = z,. Loop defects with point singularities in the 
core are classified, according to (8) ,  by the sets 
(z ,,..., z, + , ) of integers, in which S = z , , ~ ,  = z, + , , and y is 
always trivial, since the group a2(S ') is trivial. 

B) SuperJIuid 3He-A in a magneticjeld. Outside the 
defect core the condition l,, 6 ,  < A  is fulfilled, where A is 
the characteristic length of the nonuniformities of the order 
parameter, f ,  is the dipole length, and f M  is the magnetic 
length. In the core the gradients of the order parameter are 
greater (A is smaller) and the condition f ,  < A  5 6,  is ful- 
filled. Then the degeneracy space V=S0(3 )  and - 
V = S ' x S 1  (Ref. 2). Thegroup 

The loop defects with a continuous core are classified by the 
sets (z,,z,,z,) of integers (in this case a = (z , ,~,)  and 
,B =~~).ThegroupKer[~~(S0(3),S'~S~)-~~(S'xS~)] 
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is trivial. Therefore, all the subcharges E~ = 0, and this indi- 
cates the impossibility of the existence of topologically stable 
point singularities in the core of the defects described. 

C) Superfluid ,He-A in a weak magneticjeld. Outside 
the core the condition gD ( A  5 lM is fulfilled, and in the core 
the condition A 5  lD ,gM is fulfilled. The degeneracy space 
V= [ s ~ x s o ( ~ ) ] / z , , ~ ~ ~ ~ = s o ( ~ )  (Ref.2).Thegroup 

The topological charge of a loop defect with a continuous 
core is the set (z,,.z2) of integers (a = z,, p = z,). Loop de- 
fects with m intracore singularities are classified by the sets 
(z ,,..., z, )-the elements of the group 

L"' ( [S'XSO (3)] /z2, SO (3) ) = (2) "; (11) 

here the subcharges y and S are trivial, and E~ = zi . 
D) Strongly nonuniform superfluid ,He-A in a magnetic 

field. Outside the defect core the characteristic lengths satis- 
fy the condition lM ( A  5 g D ,  and in the core they satisfy the 
condition A 5  lM , f D  . Then2 we have 

v= [S2XS0 (3) ]/Z2, P= [S'XSO (3) 112,. 

The topological charges of loop defects with continuous 
cores are sets (z,,z,,z,) that are elements of the group 

with a = (z,,z2) and /3 = z,. For loop defects with cores 
containing m point singularities, the topological charges 

(21, . , zrn+i)~L~([S'XS0 (3) 1/22, [S1XS0 (3) 1/22) 
= ( z ) m + l  ; (13) 

here 6 = z,, E~ = zi + , and y is always trivial, since T, 7 = 0. 
E )  Finally we consider a doughnut-shaped drop of a 

nematic liquid crystal-an object similar in nature to the 
loop defects. The degeneracy space V = RP2 of the nematic 
is the projective plane. On the drop boundary (a  torus 
S ' x S ' ) the degeneracy space is narrowed either to a point or 
to v = S I .  We shall study the latter case. The set of topologi- 
cal charges of the nonuniform states in the drop being de- 
scribed is the group (see the Appendix) 

x 
Lo (RP,, S') X Ker(nl (S') -+TI (RP,)) = (2)" ( 14) 

where the  homomorphism^ belongs to (6). If in the dough- 
nut-shaped drop there are m point singularities (m )2),  the 
nonuniform states of the drop are classified by the elements 
of the group 

Lm (RP2, S1) X Ker (nl ( s ' ) L  n, (RP,) ) = (2) "+'. (15) 

4. CONCLUSION 

In this paper we have introduced the concept of (K, V; 
2 ,  P) configurations, which is necessary for the description 
of nonuniform states of general form in condensed media 
with a varying degeneracy space. A scheme for calculating 
the topological charges of the (K, V; fi, p) configurations is 
proposed. It is shown that in condensed media topologically 

stable loop defects with no_ntrivial cores-one of the most 
interesting types of (K, V; M, v) configurations-can exist. 
Each loop defect with a continuous core is a combination of a 
line defect and a point defect, and is characterized, accord- 
ing to (4), by two topological subcharges a and 0 ,  where 
am,( V,F) and PEP,( v,V). This gives rise to different sta- 
bilities of loop defects against attempts to break the defect 
and to compress it into a ball (a  point defect with a nontrivial 
core; see Figs. 4-6) and, in addition, ensures the possibility 
of change in the subcharge a in the course of a transforma- 
tion of the form "loop defect-tpoint defect-loop defect". 
The presence of topologically stable point singularities in the 
core of a loop defect leads to a substantially different (in 
comparison with the case of defects with nontrivial cores) 
form of the topological charge characterizing the configura- 
tion (formula (5) ) . 

In conclusion the author expresses his sincere gratitude 
to V. I. Vladimirov and A. E. Romanov for useful discus- 
sions. 

APPENDIX 

1. The set A of topological charges of (K, V; M, v) configu- 
rations can be represented in the form A = B X C. Here B is 
the set of homotopy classes of mappings3 &+ having the 
continuous extension g: K- V, and Cis the set of homotopy 
classes of such extensions. To find B one must use obstruc- 
tion theory, the methods of which are described in, e.g., 
Refs. 4, 10, and 11. The procedure for calculating C can be 
divided conveniently into two stages. First we choose the 
mapping?-a representative of some class from B. Assum- 
ing f to be fixed, we seek by means of obstruction theory the 
set C ' of homotopy classes of the mappingsg: K - V that are 
the extensions to K of the fixed mapping 3 In the second 
stage the condition thatybe fixed is lifted (now7can vary 
within the limits of its homotopy class), and this leads, gen- 
erally speaking, to the introduction of an equivalence rela- 
tion between certain elements of the set C '. The set Cis  the 
set of equivalence classes of the elements of the set C'. 

2. We shall find the setA = B X Coftopological charges 
of a loop defect with a continuous core (Fig. 2) .  The region 
M is homotopically equivalent to a torus with a glued mid- 
dle. Hence, the set of homotopy classes of the mappings 
2- is the product a, ( v) x a, ( v) (Ref. 2) .  Only those 
mapping which are homotopic to a constant mapping (map- 
ping into a point) upon extension of the space v to Vcan be 
extended into the entire region K. Consequently, 

We shall find the set C of homotopy classes of mappings g: 
K + V whose restriction gJ to fibelongs to some class from 
the set B and can vary within the limits of this class. For this 
we consider first the set C ' of homotopy classes of the relative 
topological textures describable by the mappings g: K- V 
whose restriction gIfi to is the fixed maping3 k+ p. By 
obstruction theory, 

C 1 z W ( K ,  57; n2(V))XH3(K, R; n3(V))=n2(V)Xn,(v), 
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where IT (K,&; P, ( V) ) is the group of relative r-dimension- 
a1 cohomologies with coefficients in the homotopy group 
P, ( V). Let C " be the set consisting of those elements of the 
group C ' that are homotopy classes of the mappings h: K -+ v, 
the restriction h of the latter $ohbeing equal to the fixed 

The group 

C"=HZ(K, N ;  
Im (nz(P)-.n2(V)))XH3(K, a; Im (na(V) 

-n,(V)))=Im (nz(V) +nz(V))XIm ( n ~ ( v ) + n ~ ( V ) ) .  

Since the space (cube) K can itself be contracted to a point, 
mappings belonging to the classes C'EC ' are not homotopic 
to a constant mapping only because the mapping h I a =?is 
fixed. Then replacement of the condition that the mapping? 
be fixed by the condition that f can vary within its class leads 
to the expression C = C ' /C  " for the desired set C (the set C 
is the factor space of the group C with respect to its subgroup 
C " ). Taking into account the relations . 
n, (v) /Im (n, (V) +nr(V)) =Ker (n,(V, V)+nr-t(V) ), 

(A.4) 
n,( V, 8) =Ker (nr-t ( v )  +nr-,( v )  ) 

XKer (nr(V, V)+nr-i(V)), (A.5) 

which follow from the exactness properties of the sequence 
(6),  we obtain for C the expression 

and for the set A = B X C, the expression (4). 
3. We shall find the set A, = B, X C, of the topologi- 

cal charges of loop defects with m intracore singularities 
(Fig. 7).  The region & is the same as in the preceding case. 
The region K is a cube with m internal points excised. The set 
of homotopy classes of the mappings h+ t is 
P, ( v) x rZ ( h . upon extension of to V the only mappings 
that cannot be extended into the region K are those belong- 
ing to the homotopy classes characterized by the elements of 
Im(.rr, (v) -n1 ( V )  ). Therefore, 

We shall determine the sets C :, and C in the same way that 
we determined the sets C ' and C " in the preceding case. Ac- 
cording to obstruction theory, 

Then, taking (A.4) into account, we have 

crn=~,'/Crn"=(Ker(nz( V, V)+nt(v)  ) lrn. (A. 10) 

From (A.5), (A.71, and (A.10) we obtain for 
A, = B, xC, the formula (5). 

4. The procedure for calculating the set A do = Bdo x C 
(A do = Bdo x Cm ) of topological charges of the nonuniform 
continuous (resp., with m point singularities) states in a 
doughnut-shaped drop of a nematic differs from the proce- 
dure 2 (resf., 3)  - of this Appendix only in the analysis of the 
mappings M -  V. For a doughnut-shaped drop its boundary 
& is a torus - S ' XS1. The set of classes of the mappings 
S ' XS ' - V = S ' is equal to the direct product 
P, ( S  ' ) X P, (S ) of homotopy groups, the elements of each 
of which are classes of mappings of the generating circles of 
the torus into 7 = S '. Separating out from the given set only 
the classes of mappings that can be extended to the entire 
drop, we obtain the expressions 

Bdo  KC^ (n1(S1)-+nI(HPz))2) 

=RXKer (nl(S1) -n,(RP,)), (A. l l )  

B = (Ker (n, (St) -+ ni (RP,) ) ') 
= BmXKer (nt (St) -+ n, (RPI)  1, (A. 12) 

from which follow formulas ( 14) and ( 15). 
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