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An exact solution is presented of the problem of the kinetics of a binary reaction in which a 
passive product is formed. The time dependence of the particle density is calculated under the 
assumption that particles can diffuse from their sites of a one-dimensional lattice and 
annihilate when they encounter one another in one site. 

1. INTRODUCTION 

Much attention is paid lately to diffusion-controllable 
reactions (an extensive bibliography can be found in Ref. 1 ) . 
The main purpose of the research in this field is to determine 
the anomalous asymptotic time dependence of the reagent 
concentrations. The point is that, say, for the annihilation 
reaction the usual time dependence of the concentration 
c - t  - '  predicted by formal kinetics is replaced by another 
that depends on the dimensionality of space. This poses the 
following problem. We must find sufficiently simple initial 
premises that enable us to write correct equations for the 
anomalous asymptotic ones and replace the formal-kinetics 
equation i. = - kc2. Of course, this formulation of the prob- 
lem pertains not only to a 1 + 1-0 reaction but also to all 
other diffusion-controllable reactions. 

1. Treatment based on similarity considerations. This 
approach is highly recommended in Ref. 1. Although this 
yields qualitatively the anomalous asymptotics, it is impossi- 
ble to indicate simple methods of constructing means for a 
quantitative treatment of diffusion-controllable reaction 
(other than direct numerical modeling). 

2. Derivation of systems of kinetic equations by starting 
from the expressions for multiparticle distribution functions 
and using some closure problem to obtain the  equation^.^ In 
my opinion, this is a very cumbersome way, and the reliabil- 
ity of the corresponding closure procedures is not obvious. 
Nonetheless, this approach reproduces correctly some of the 
anomalous asymptotics. 

3. Derivation and solution of evolution equations for 
the generating functions. This means the following idea, 
which is easiest to realize for lattice models of reactions: The 
state of the lattice is characterized by the degree of occupa- 
tion of its sites. Each state is ascribed a time-dependent prob- 
ability, for which one introduces a generating function Y 
such that each state corresponds to a product of variables 
whose powers are determined by the occupation of the corre- 
sponding sites. Next, in accord with the notions concerning 
the character of the process, an evolution operator 2 is con- 
structed and the dependence of 2 on the time t is obtained 
from the evolution equation: 

arY=9Y. (1 

Eq. ( 1 ). The difficulties here are of the same kind as in the 
quantum many-body problem. This very circumstance, 
however, alleviates things-use can be made of the well de- 
veloped variants of perturbation theory or of algebraic meth- 
ods for the construction of the exact solution. All this gives 
grounds for assuming that this briefly outlined approach will 
turn out to be promising for the development of a complete 
theory of diffusion-controllable reactions. 

We have demonstrated the effectiveness of this ap- 
proach, using as an example an exact solution of the problem 
of a diffusion-controllable annihilation reaction in one di- 
mension. In this case it is convenient to construct Y by using 
spin variables. The evolution operator is then quadratic in 
the spin matrices, and it can be diagonalized in the one-di- 
mensional case. The obtained exact expression for Y is used 
to calculate the time dependence of the average density. So- 
lutions are obtained both for a freely reacting system and for 
a system with a source of particle pairs. The latter result is 
used to consider the reversible reaction 1 + 1-0. To this 
end it suffices to regard the source intensity as proportional 
to the density of the particles that took part in the reaction. 

2. EVOLUTION OPERATOR 

To describe the kinetics of the reaction 1 + 1-0 on a 
one-dimensional lattice we use the following simple model. 
Assume that the reacting particles can occupy the sites of a 
one-dimensional lattice closed into a ring. Each particle is 
capable of jumping over to one of the neighboring sites, and 
if it lands on an occupied site, both particles are instanta- 
neously annihilated, and the site becomes free. The probabil- 
ity of particle displacement per unit time is specified and 
assumed equal to D. 

Clearly, in such a model each site can be either free or 
occupied by one particle. Therefore each state Q of the sys- 
tem can be characterized by a set of zeros and ones: Q = {0, 
0, 1,0 . . .}. The ones and zeros indicate whether the site is 
occupied or free. To each state Q is ascribed a probability 
W(Q, t ) ,  normalized to unity and having a time dependence 
given by 

The choice of single-site variables and the form of the opera- (2)  
tor are determined by the specifics of the problem. It will be Here Q + are states preceding A,  i.e., those to which a transi- 
shown in the next section how this is actually done. This is tion to Q is possible by a single jump of a particle to an occu- 
usually a simple matter, and it is much more difficult to solve pied or free place. For example, if Q = {o, 0, 1 . . .), Q + can 
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stand for either Q +{O,1,0 . . .) (the transition into Q is via a 
jump of a particle from the second site to the third), or 
Q + = { 1, 1, 1 . . .I (transition to Q via a reaction in the first 
and second sites). 

It is convenient to introduce in place of W(Q,t) the 
generating function Y: 

wheres, (Q) = a: if the site numbered m is occupied in the 
state Q, and s, (Q) = 1 in the opposite case. As always, a+ 
and a- denote respectively a raising and a lowering Pauli 
matrix, and 10) is a vacuum state defined by the equations 
u; 10) = 0 for all m. 

We shall show that for a freely reacting system (without 
a source) the function Y satisfies equation ( 1) with the evo- 
lution operator 

We substitute Y in the form (3) in Eq. ( 1 ) with the evolution 
operator in form (4) and track the result of the action of 
each term of 2,. The operator u; u:+, + OK u,+-, 
moves a particle from a site numbered m to a site numbered 
m + 1 or m - 1, if the former (m ) is occupied and the latter 
are free. Action of the operator on any other state yields 
zero. The corresponding expansion coefficient in the func- 
tion 

will contain arrival terms from all the states Q + that differ 
from Q by the position of one particle. 

To determine correctly the terms of departure from Q to 
Q - by particle jumps from occupied to free sites, we must 
substrate from (5) 

The contribution of this term is proportional to the number 
of free places adjacent to occupied ones, and the correspond- 
ing expansion coefficient (6)  gives the second term of (2). 

Corresponding to particle jumps to occupied sites and 
to vanishing of the pair is the term 

The operator o; u;, , changes the number of particles by 
two and is responsible for arrival from states Q + that differ 
from Q by two particles. The second term lists the number of 
particle pairs capable of entering in a reaction, and accounts 
for the terms of Eq. (2)  that are made to depart by the reac- 
tion. 

Gathering the results of (5)-(7) we arrive at Eq. (4),  
while the terms of order u4 are cancelled. 

There are several ways of introducing an external 
source of particles. We discuss one of them. Assume that the 

particles are added in pairs to neighboring sites. If both sites 
are free, the particles survive and can participate in the ensu- 
ing process. If one site is free and the other occupied, only the 
particle that lands on the free site survives. The second anni- 
hilates with the particle that occupied the site, and the site 
becomes free. If both sites are occupied, the action of the 
source makes them free. Such a model can correspond physi- 
cally to reaction-product decay under the influence, say, of 
light. 

The evolution operator corresponding to the process 
described above is of the form 

where J is the intensity of the source (the number of pairs 
added to the lattice per unit time). 

The total evolution operator is the result of adding Eqs. 
(4) and (8): 

where N is the total number of sites in the lattice. The last 
term in (9) leads to the appearance of a factor exp( - JNt)  
in Y. Both will be left out of the intermediate calculations. 

3. SOLUTION OF EVOLUTION EQUATION 

In the one-dimensional case, the evolution operator (9)  
can be diagonalized, and on this is the solution of the evolu- 
tion equation based. The strategy of the solution is to replace 
the spin operator by fermion operators, after which 2 be- 
comes quadratic in the fermion operators. A Fourier trans- 
form is taken next. The solution of Eq. ( 1 ) then becomes 
trivial. 

We introduce thus the fermion operators a, and a; by 
the equations3 

Substitution of ( 10) in (9)  yields 

The next step is taking the Fourier transforms of the fermion 
operators, using the equations 

e-i"/' e'n/4 

a,,, = - Ea,rbm, aq = -x ame-'qn' N" N" 7 (12) 
a m 
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q=*(2k- l )n /N,  k=l, 2 , .  . . M (13) 

and N = 2M is an even number. 
Substitution of ( 12) in ( 11 ) makes 2' diagonal in q: 

We arrange the u- operators in each such product in such a 
way that the one on the extreme left has the greatest number, 
and then transform to fermion operators in accordance with 
Eq. ( 10). It can be seen then that all the powers of ( - 1 ) 
vanish following action on (01. We next arrange the pairs in 
the products a,+a _f , . In accordance with ( 12), we have 

P q = 2  ( I f D )  [cos q(n,+n-,) +sin q(aqa-,-aq+a-,+) 
+2D[sin q(a,a-,+a,+a-,+)-(nq+n-,) 1, ( 14) 

2 a,+a-,+ = -z a,, , ,+a.~ sin y(ml-m2). (25) 
Nm,>m, 

where n, =a,+ a , .  
We can now find the solution of Eq. ( 1 ) in the form 

If the product (24) contains a pair of operators a,, a m 2 ,  on 
averaging in (23) this pair leads to a factor 

where each of the factors satisfies the equation 

 at^,=^,^,. (16) 

We seek the function Y, in the form 

Yq= ( ~ , a , + a - ~ + + i 3 ~ )  10). (17) 

Substituting (17) in (16) with 9, in the form (14), we 
arrive at a system of equations for a, and 19, : 

aq=4aq [ ( J f D )  cos q-Dl-21j3, sin q, 

This result was obtained with account taken of the rule ( 13) 
for the quantization of q. 

It is now easy to guess that F(z,t) is obtained from Y by 
replacing the operator pair a,+ a 2 ,  by - z2cot (q/2), i.e., 

We calculate F(z,t) below for two sets of initial condi- 
tions: 1 ) all the sites are initially occupied, and 2) the lattice 
is empty. 

In the first case, 

P,=-2a, ( J f 2 D )  sin q.  (18) 

Let us find the fundamental solutions of this system. For the 
initial conditions a, (0) = 1 and flq (0) = 0 we have 

s ( t ) =  4(1+2D s;nz(q/2) ) 
(p2eP?f-plePlf), 

(1+2D) sin q (19) 
B P  ( t )  = - (eu:t-e~,l) 

2 ( J f 2 D  sin"q//2) ) 

This can be easily verified by projecting 9 on (01 uc 02 ... 
a;. In accordance with (26) we have 

and ifa, (0)  = Oandfl, (0) = 1, 

I sin q (e~t'-eP2f) 
= 2 (1+2D sin2 ( q l 2 )  ) The last equation is again the consequence of the conditions 

(13) for the quantization of q. Rather laborious calcula- 
tions, using the solution (19), lead to 

wherep, andp, are the roots of the characteristic equation of 
the system ( 18) : 

pi=-2 ( J f 2 D )  (I-cos q), pL=2J(l+cos q ) .  

Here y, r J  + 2 0  sin2(q/2). In the derivation of (3)  we 
took into account the factor exp( - JNt) in Y, and the equa- 
lity, 

4. CALCULATION OF THE MEAN VALUES 

We consider next a system with an even number of par- 
ticles. We calculate the generating function 

In the second case Yo = lo), a, (0)  = 0, and fl, (0) 
= 1. The corresponding generating function, obtained by 

using (20), is 
where n (Q) is the total number of particles in the state Q. 

Using Eq. (3), we readily verify that 

A series expansion of the exponential in (23) gives rise to 
products 

(01 U ~ , - U ~ ~ -  . . . (24) 
In the stationary limit t - UJ the two functions are identical 
and are equal to 
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The average number of particles is expressed in terms of 
F(z , t )  as follows: 

Introducing the density c  = Fi/N and taking the limit as 
N+ co we get from (301, (321, and ( 3 3 )  

1 
c i ( t ) = - j [ 1 -  (J+2D)  sinZ ( q / 2 )  

1+2D sin' ( q / 2 )  ( 1  - exp(-4yqt)  ) ]  dy. 
0 

( 3 4 )  

To obtain these equations we replaced the sum by an integral 
n 

5. ANALYSIS OF RESULTS 

By simple manipulations we transform the integrals in 
Eqs. (34) - (36)  into 

c,=c,+exp [-4 ( J + D ) t  J I o ( 4 D t ) ,  ( 3 7 )  

c2=c,+(J12D)exp[-4(J-D)t)1,(4Dt)-21(lW) ( 3 8 )  
DO 

where I, ( x )  is a modified Bessel function. 
It can be seen from ( 3 7 )  that at J = 0  

c l ( t )  -exp ( -4Dt )  Io(4Dt)  = (8nDt)-'h(t+oo). ( 4 0 )  

In the opposite limiting case D = 0 we easily get from ( 35 ) 
and ( 3 7 )  

c i e 2 ( t )  = ( 1 * e - ~ ~ ~ ) l 2 .  (41 1 

At D- Jand Dt ,  1  the densities c, and c2 approach in differ- 
ent manners the equilibrium value c, : 

exp (-4Jt) 
c i ( t ) = c ,  + 

8Jt (8nDt)  " 
exp (-4Jt)  

c, ( t )  = c ,  - 
(8nDt)Ih ' 

This result takes into account the asymptotic equality 
, 

41 j erp  ( -4  ( I+D)  i) 1,(4Dr)  d r  

1 1 
1 (8nDt)  e r p  (-411) [ 1 - - + --I 

8Jt  3Wt  ' 

We now use the results to consider the reversible reac- 
tion 1 + 1 8 0 .  We assume that a neutral product breaks up 
into two molecules of the active component, and these mole- 
cules land on neighboring lattice sites. This model is equiva- 
lent to the one considered above with a source proportional 
to the density of the neutral product or, equivalently, of the 
difference between the initial and the instantaneous densities 
of the active component: 

J( t )=r l  [ c ( O ) - c ( t )  I .  ( 4 2 )  
We assume below that c ( 0 )  = 1. We obtain the equilibrium 
density c( oo ) =c, . To this end we replace J in ( 3 9 )  by 
expression ( 4 2 ) .  Then, introducing x = v / D ,  we obtain the 
following equation for c, : 

Its solution is 

6. CONCLUSION 

The method proposed in this paper permits a relatively 
simple investigation of the kinetics of the simplest binary 
reaction 1  + 1 -, 0. In the one-dimensional case this problem 
was reduced to diagonalization of the evolution operator 
which turned out ultimately to be quadratic in the fermion 
creation and annihilation operators. The solution procedure 
is very similar to that used in Ref. 3  to calculate the partition 
function of a two-dimensional Ising lattice. An analogy is 
obtained here with the problem of the dynamics of a one- 
dimensional Bose gas with infinite repulsion. More detailed 
data on the use of the model of non-interpenetrable spheres 
to analyze the kinetics of binary reactions can be found in 
Ref. 4. The asymptotic result for the case J = 0 is the same, 
but the solution method proposed here has obvious advan- 
tages. A different formulation of the problem of binary-reac- 
tion kinetics on a lattice can be found in Ref. 5. 

The algebraic method used in this paper can be used to 
obtain an exact solution only in the one-dimensional case. 
However, the structure ( 9 )  of the evolution operator itself is 
independent of the dimensionality of the sphere. The kinet- 
ics of the reaction 1  + 1  -. 0  can therefore be investigated by 
the approximate methods developed for the description of 
the dynamics of spin lattices. This is not the best way, since it 
is by far less convenient to deal with spin operators than with 
Bose or Fermi operators. It is therefore advisable, at the cost 
of somewhat complicating the model, to change to another 
treatment. This can be done by permitting an arbitrary num- 
ber of particles to stay in one site, and allow only these parti- 
cles to react. In this model the generating function Y ( x , ,  
x2, ...; t )  for the probability of realizing a specified occupa- 
tion on a lattice obeys Eq. ( 1 ) with evolution operators of 
the type 
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