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The problem of the propagation of intense heat pulses, generating quantized vortices and 
interacting with these "proper" vortices, is solved. The limiting cases of short and long pulses 
are considered. A relation is obtained for the velocity of propagation of short pulses, and the 
evolution of their shape is described. It is demonstrated that a vapor film can form near the 
surface of the heater, and the time of formation of this film is estimated. In the case of long 
pulses of low intensity the dynamics of the temperature field and normal velocity when the 
heat flux is switched on in a stepwise manner is investigated. The results are compared with 
data from a number of papers and it is shown that there is good qualitative and quantitative 
agreement with the experimental results. 

1. INTRODUCTION AND BASIC EQUATIONS 

In the flow of helium in capillaries the critical flow ve- 
locities at which quantized vortex lines appear are of the 
order of fractions of a centimeter per second. At the same 
time, in experiments to investigate nonlinear second-sound 
pulses, local values of the relative velocity v, - us reach 
magnitudes of the order of 1-2 m/sec (see, e.g., Refs. 1-3), 
while in Ref. 2 it was shown that the evolution of such pulses 
is well described by the Burgers equation, which follows di- 
rectly from the ordinary (vortex-free) hydrodynamics of He 
11. It appears to us that the reason for the contradiction lies 
in the fact that, in the cited experiments, the wave pulses 
were too short to allow time for the development in the heli- 
um of a vortex structure capable of having an appreciable 
influence on the acoustic characteristics of the system. This 
point of view has been confirmed to a certain extent in Ref. 4, 
in which it was shown that in the wake of an intense and 
sufficiently long heat pulse (to be called henceforth the ref- 
erence pulse) one observes strong damping of the second- 
sound probe wave as a result of friction with the vortex lines 
that are generated by the reference pulse. An analogous con- 
clusion about the role ofthe pulse length was also reached by 
the authors of Refs. 5 and 6, who investigated the propaga- 
tion of paired heat pulses (with the same input parameters) 
and observed strong attenuation of the trailing pulse as a 
result of damping by vortices generated by the leading sig- 
nal. 

Recently, a number of papers on the evolution of very 
intense (and long) heat pulses in He I1 have appeared. The 
authors of these papers point out the considerable discrepan- 
cies between the effects they observe and the predictions of 
the nonlinear acoustics of superfluid helium. Among such 
discrepancies are, e.g., the fact that the asymptotic shape of 
the signal differs from the Burgers the quantita- 
tive disagreement of the data on the nonlinear sound veloc- 
i t~ ,~ , ' and  anumber of others. In contradiction with the clas- 
sical acoustics of He I1 is the fact, noted by several authors, 
of the boiling up of helium and the formation of a vapor film 
near the surface of the In fact, from the formulas 
of acoustics (see, e.g., Ref. 11 1, even in intense pulses of 50 

W/cm2, the amplitude of the temperature disturbance in 
them does not exceed 0.05 K, which is frequently not enough 
even to reach the He-11-vapor equilibrium curve (inp-T co- 
ordinates) ." At the same time, it is known that considerable 
superheating, by up to 0.4 K, is required for the formation of 
a vapor film in He II.l2,I3 It appears that the discrepancies 
described are due to the circumstance that quantized vorti- 
ces capable of altering the laws of the dynamics of such 
pulses to a considerable degree are created in intense and 
long wave pulses. 

In the present paper we give an account of the solution 
of the problem of the evolution of heat pulses generating 
quantized vortex lines and interacting with these "proper" 
vortices. The investigation is carried out in the framework of 
the hydrodynamics of He 11, in which randomly oriented 
vortex lines, or a vortex tangle, appear and develop. Follow- 
ing Feynman,I4 we shall call such a state of He I1 superfluid 
trubulence. The equations of the hydrodynamics of super- 
fluid turbulence were obtained earlier by the author and Le- 
bedev in Ref. 15. 

In the case of second sound propagating along the x 
axis, the equations of motion of turbulent He I1 reduce to the 
following system of relations for the quantities v(x,t)-the 
dimensionless velocity of the normal component, B(x,t)-- 
the dimensionless temperature disturbance, and L(x,t)- 
the dimensionless density of the vortex tangle (the total 
length of lines per unit volume) 15: 

d L - = A,, (vL"-L2) +A3,v5". 
d t 

The third relation is the well known Vinen-Schwarz 
(VS) equation (see Refs. 15, 16, and 17). It is the balance 
relation between the growth of the tangle on account of the 
Magnus force [the first term in the parentheses in (3)  ] and 
the decrease of L as a consequence of the intersection and 
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breaking down of the vortex lines (the second term). The 
tangle draws the energy to increase its length from the main 
flux, and, as a result of breaking down of vortex rings, re- 
turns it to the system in the form of heat. The second relation 
is the equation for the velocity of the normal component. 
Without the right-hand side, it coincides with the equations 
of the nonlinear acoustics of He I1 (compare with Ref. 18). 
The right-hand side contains terms connected with the fric- 
tion with the "frozen" system of vortices and with slowing 
down on account of transfer of part of the energy of the 
growing tangle. The relation (1) is, in essence, the entropy- 
transport equation. The expression on the right-hand side is 
the dissipative function associated with the work of the 
forces of friction and with the energy liberated in the process 
of breaking down of the vortex rings. 

The quantities in Eqs. ( 1)-(3) were made dimension- 
less by means of the following relations (the indexp marks 
the dimensional quantities, and the basic notation corre- 
sponds to Refs. 1 1 and 15) : 

Here unO (cm/sec) and t, (sec) are the characteristic veloc- 
ity of the normal component and the duration, respectively, 
in the initial second-sound pulse. The quantities are made 
dimensionless in such a way that the dimensionless ampli- 
tudes of the velocity and temperature in the intial pulse, and 
also the velocity of second sound and the equilibrium density 
of the tangle (see below) are equal to unity. The coefficients 
A in the relations ( 1 )-(3) are functions of the temperature, 
and also of the quantities v,, and t ,  . For illustration, we shall 
write out the values of the coefficients A calculated for the 
temperature T = 1.75 K. In the calculation the data of Refs. 
16 and 17 were used: 

A,,=2.10-%,,0, A , z=4 .7~10-4~nn3t t . ,  A,,=6~10-%v,,3t, ,  

d, ,=8.5.10-%n0, A ~ z = 4 ~ 1 0 - 4 ~ , , o ,  Az3=20.1~,ost. ,  (5) 

A,,=2.3.un,lt,, A3,=15.6vn,'t,, A32=0.37~,,"2ts.  

In contrast to Ref. 15, in the right-hand side of Eq. (3) 
we have introduced a small term A , ,V~ /~ ,  corresponding to 
the spontaneous formation of vortices in the helium flow. In 
this form, this source term was proposed by Vinen.I6 With- 
out the source term, as is easily seen by integration of Eq. (3)  
(for a certain fixed u, switched on at time t = O), the time t, 
of development of the vortex tangle to half its equilibrium 
value (L, = u2)  becomes infinite. In fact, in accordance 
with Eq. (3)  the time of development of a tangle in a station- 
ary flux of intensity Wis equal to (for A,,v"* = 0)  

vz/z  

and it can be seen that the integral diverges at the lower limit 
L -0. The origin of this discrepancy is connected with the 
fact that the VS equation (3) (without the source term) is 
the balance equation between the growth and disappearance 
of vortex lines. The mechanism of spontaneous appearance 
of vortices in the helium flow has not been built into this 

equation. Naturally, Vinen actually observed finite times of 
development of a vortex tangle. Analyzing his experiments 
on the probing of the critical counterflow by second sound, 
he obtained the following empirical relation for the quantity 
r, ( W) (here W is the intensity of the heat flux switched on 
at time t = 0) :  

Here a ( T) is a quantity that depends on the temperature and 
(weakly) on the geometry, and has a characteristic value of 
the order of a ( T )  ~ 0 . 0 5  s e c . ~ m ~ / ~ ~ / ~ .  It is not difficult to 
verify that the small source term A , , v ~ / ~  in Eq. (3)  leads 
[upon calculation of the integral of the type (6)  ] to formula 
(7 ) .  

The form of the source term is explained by Vinen in the 
following way.16 If we assume that the initial appearance of 
vortex nuclei is such that Y,,, a I u ,  - us I, and assume 
further that the vortex nuclei that appear develop in accor- 
dance with the VS equation (3),  we can see that the term 
(dY/a t )  ,,, , having the meaning of the source term, is relat- 
ed as follows to the velocity of the normal component: 

The latter relation follows from the fact that, in second 
sound, p, v, +p,v, = 0. As regards the coefficient of the 
quantity u5/', here there are no theoretical arguments avail- 
able, and the quantity A,, can be determined only experi- 
mentally. Vinen obtained his results (we have in mind the 
dependence (7 )  ) for heat fluxes Wof magnitude not exceed- 
ing 1 w/cm2, and, generally speaking, we have no grounds 
to carry these results over into the region of the heat fluxes 
(up to tens of watts per square centimeter) with which non- 
linear acoustics is concerned. On the other hand, in Ref. 4 
there are certain quantitative results that make it possible to 
determine the development of a vortex tangle, and, conse- 
quently, to calculate the coefficient A,,. 

In Ref. 4 a second-sound signal with large (-40W/ 
cm2) amplitude (i.e., a nonlinear wave) was used to probe 
the wake of the reference pulse. It is well known that the 
velocity of a nonlinear wave depends on its amplitude, and 
the latter, because of itneraction with the vortices, decreases 
during propagation of the wave through a vortex tangle. 
Thus, there is the possibility of relating the time of flight tf of 
the probing pulse to characteristics of the superfluid turbu- 
lence. Corresponding calculational formulas were obtained 
in Ref. 15, and experimental results for tf, for different inten- 
sities and durations of the reference pulse, are given in Ref. 4 
in the form of tables. Calculations performed in accordance 
with the above ideas lead to the value of A,, given in the 
relations (5).  We note immediately that for a number of 
reasons, associated both ~i th 'ex~erimental  complexities and 
with difficulties arising in the theoretical interpretation of 
specific experiments, the coefficient A,, has been calculated 
rather roughly-in practice, in order of magnitude. Hence- 
forth, therefore, we shall regard the quantity A,, as a param- 
eter of the theory, a provisional value of which is given in the 
relations (5).  

In the system of equations ( 1 )-(3) we have omitted 
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small (in the conditions of the cited experiments) terms as- 
sociated with the contribution of vortices to the fluxes of 
energy and entropy, to the momentum-flux tensor, to the 
chemical potential, etc. (see Ref. 15). In addition, in the left- 
hand side of the VS equation (3)  we have omitted the term 
div (v, L )  describing the drift of the tangle. The point is that 
the drift velocity v, is connected with the velocity v, of the 
normal component by the relation v, = b(T)v,, and the 
quantity b(T) is small in the temperature range 1.8-2.1 K in 
which most of the experiments have been performed (see, 
e.g., Ref. 17). 

The equations ( 1 )-( 31, as can be seen, are very cum- 
bersome, and in the general case their complete solution (for 
certain boundary and initial conditions) can be obtained 
only numerically. It has turned out to be possible, however, 
to perform an analytical investigation in the case of very 
short and very long pulses. By short pulses we mean heat 
pulses of intensity Wwhose duration t, is much shorter than 
the quantity r,. The evolution of pulses of short duration 
will be described in the next section of the article. The oppo- 
site limiting case, of long pulses with r, (t,, henceforth 
called the adiabatic case, will be considered in Sec. 3 of the 
article. 

2. PROPAGATION OF SHORT PULSES 

In pulses of short duration the growth of the tangle is 
determined by the source term in the VS equation (3) ,  
which, in the present case, has an obvious solution: 

i.e., the relation between the value of the velocity v(x,t) and 
the tangle density L (x,t) is nonlocal in time, and the length 
of the vortex lines at a certain point x increases as the pulse 
passes through. By means of (9),  we can eliminate the quan- 
tity L from Eqs. ( 1)-(2) and thus obtain a closed system of 
equations for v(x,t) and B(x,t) that contains, however, non- 
local terms of the type (9).  

Simple estimates show that in the case under considera- 
tion the right-hand sides of Eqs. ( 1 ) and (2)  are small in 
comparison with both the linear terms and the nonlinear 
terms in the left-hand sides.2 This gives the possibility of 
solving the equations by the methods of perturbation theory, 
in which, as the zeroth iteration, one must select the ordi- 
nary nonlinear second-sound wave described in Ref. 2. First, 
in Eqs. ( 1 ) and (2)  we perform a certain transformation, 
connected with the following circumstance. If in these equa- 
tions the right-hand side were absent, we would have a sys- 
tem of two homogeneous quasilinear equations. It is known 
that in such a formulation of the problem, when the wave is 
propagating from a wall into the undisturbed liquid, the so- 
lution of the homogeneous system is realized in the form of a 
so-called simple wave or Riemann invariant (see, e.g., Ref. 
19). In a simple wave there is a single-valued functional rela- 
tionship 0 = 6(v) between the (generally speaking) inde- 
pendent variables v and 6, and the evolution of the wave is 
determined by one equation, which in our case has the form 

Here a = a,,,, vn0 /c2, where a,,, is the nonlinearity coeffi- 
cient of the second sound, calculated earlier by Khalatni- 
kov." For T = 1.75 K the quantity a,,,, ~ 0 . 5 .  The form of 
the function 8 = 8(v) is given (in dimensional quantities) in 
Ref. 18. In the presence of vortices, i.e., with allowance for 
the right-hand sides of Eqs. ( 1 ) and (2), the above state- 
ments are incorrect, but one can assume that the corrections 
to the function 8 = 6(u) and to Eq. (10) are small to the 
extent that the terms associated with the vortex tangle are 
small, i.e., one can set 

O=O (v)+*(x, t ) ,  (11) 

with $4 6. A solution of the type ( 1 1 ) is called a quasisimple 
w a ~ e . ' ~ , ~ '  The function $(x,t) can be determined from the 
conditions for compatibility of Eqs. (1) and (2) ,  which 
[after substitution of ( 11 ) ] can be considered as a system of 
algebraic equations for au/at and &/ax. Computations per- 
formed in the spirit of Ref. 18 lead to the following evolution 
equation for the quantity v (in the coordinate frame moving 
with the velocity of the second ~ o u n d ) ~ :  

and the connection between the temperature B(x,t) and the 
velocity v(x,t) is expressed by the relation 

We shall solve Eq. (12) by the method of successive 
approximations. The zeroth iteration vtO' is described by an 
equation of the type (12) without the right-hand side. As is 
well known (see, e.g., Ref. 2), the single-pulse evolves in 
accordance with this equation via a series of stages, such as 
steepening of the wave profile, formation of a shock front, 
and transformation of the wave into a "Burgers" triangle. 
The asymptotic form of any single pulse is a triangle with 
decreasing amplitude. Therefore, in order not to encumber 
the text with long calculations, we shall carry through the 
solution for a signal that is triangular from the outset. 

The analytical expression for the evolution of a triangu- 
lar pulse having (at time t = 0) amplitude v,, at the shock 
front and duration t, is described by the following formula 
(in the moving coordinate frame): 

During the evolution the spatial length 1 and the ampli- 
tude vjp' of the discontinuity behave as follows: 

We note that 1 ~ 2 ~ '  = 1, corresponding to the conservation 
law 

w 

which follows from Eq. ( 12) (without the right-hand side). 
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The next step in the calculations is to take Eq. ( 12) and 
determine its right-hand side, in which for L (x,t) and v(x,t) 
we must use the relations (9)  and ( 14). Taking into account 
that in reality the integration over the time in formula (9) is 
restricted to the interval At ' 2 1 during which the zeroth in- 
teration changes only slightly (formally, because aAt '< 1 ), 
we can calculate the quantity L (x,t) as follows: 

L (5, t )  = x'lndx 
(I + at)"? 

=- A" [(I + - x':. (I + at)-"']. ( 16) 7 

By substituting ( 16) into Eq. (12) and then linearizing 
Eq. ( 12) about u"', we obtain the following equation for the 
first iteration v"'(x,t): 

where 5 = - A2J,,/7. We shall solve Eq. (17) by the 
method of characteristics. The characteristics in x - , t - , 
and  space are described by the following system of ordi- 
nary differential equations: 

The system ( 18), (19) has the following solution, 
which depends on two arbitrary constants C2 and C,: 

x=C, (It a t ) ,  

We shall select the constants C, and C2 in such a way that the 
characteristics pass through the point t = 0, x = x,, v'" = 0, 
corresponding to the zeroth initial condition for the first it- 
eration, i.e., we shall set v"'(x,t) = 0. By next eliminating 
the parameter x, from the relations obtained, we find that 
v"'(x,t) is equal to 

The sum v"' + v"' = v (the sum of the expressions ( 14) 
and (2 1 ) ) gives the solution of the problem in the approxi- 
mation of interest to us. In the laboratory frame the wave 
profile is described by the function v(x - t,t). 

In Fig. 1 we depict schematically the function 
v (xi - t,t) at different distances xi from the position x = 0 
of the emitter; the function u'O'(x - t,t) is depicted by a 
dashed line. The bending in the function v(xi - t,t) is con- 
nected with the fact that the first iteration v"'(xi - t,t) has 
an intermediate minimum (v"' is negative), the presence of 
which is easily understood from the following qualitative 
considerations. In the leading parts of the heat pulses, vorti- 
ces do not have time to be generated, and so the right-hand 

FIG. 1. 

side of Eq. ( 12) vanishes. At the end of the pulse the right- 
hand side is equal to zero since the zeroth-iteration velocity 
vanishes. In other words, there is no mutual-friction force 
proportional to do'. It is interesting to note that the first 
iteration is not equal to zero at the shock front of the wave 
pulse. This may appear strange at first sight, since in the 
leading parts of the pulse there are no vortices. However, by 
virtue of the fact that the original equation ( 12) contains in 
the left-hand side a nonlinear term of the form avdv/6'x, the 
correction v"' is carried over from the central parts toward 
the leading edge, and the velocity deficit v:" ( t )  at the shock 
front increases monotonically. Since, furthermore, the ve- 
locity U ,  of propagation of the shock front, as follows from 
the Hugoniot relations for He 11, is equal to U ,  = a v ,  /2 
(see, e.g., Ref. 11 ), the velocity deficit v:" at the shock front 
leads to the result that the pulse moves more slowly than it 
would without the vortices. We shall return somewhat later 
to the question of the change of the velocity of propagation of 
a pulse that is generating vortices. 

The above-described behavior of intense heat pulses has 
been observed in many experiments. In Fig. 2 we show for 
comparison a wave-profile oscillogram taken from Ref. 22, 
for x = 0.2 cm, W = 73.5 W/cm2, and t, = 70psec. 

The evolution of a pulse having an arbitrary initial ini- 
tial shape can be calculated in a similar manner. It is possible 
also to calculate the evolution of a group of pulses, and this is 
important in the discussion of experiments in which pulses 
are triggered in the stroboscopic regime. The corresponding 
calculations are very cumbersome, and we shall not give 
them here. We note only that after the formation of triangles 
the evolution of the pulses coincides qualitatively with that 
described. 

t 
FIG. 2. 
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We shall discuss the behavior of the temperature per- 
turbation 8(x,t) .  The temperature field can be calculated 
from formula (13). It follows from this formula that the 
temperature disturbance is somewhat larger than it would be 
in the vortex-free regime. The temperature rise is due to dis- 
sipation of the wave energy in friction with the vortices, and 
can turn out to be extremely important and lead to super- 
heating of the helium relative to the saturation line; this can 
become the cause of the formation of a vapor film. We shall 
calculate the time tho, of formation of a vapor film during 
pumping of a constant heat flux of intensity W = STV, , 
switched on at time t = 0. The quantity tho, can be obtained 
from the relation ( 13), if we are given the value of ATcr-the 
superheating critical temperature at which the film appears. 
In formula (13) we neglect the first term B(v), i.e., we ne- 
glect the acoustic temperature disturbance in the wave pulse 
(as was noted earlier, this quantity is not large and cannot be 
the cause of boiling up of the helium) .4 We also neglect the 
shift from the saturation line caused by the excess pressure of 
the column of helium above the heater. Then, for a given 
superheating critical temperature (dimensionless) ABcr , the 
time tboi, of onset of boiling can be obtained from the follow- 
ing relations: 

1 '  
boil 

A@,, = - A;' VL ( t ' )  dl' = - A d 3 2  lbiL :I 
2 

Az3A32 U 7 / 2 t  2 =- 
4 

boil ' (22) 

In dimensional form, formula (22) is equivalent to the fol- 
lowing: 

4ATc, up. 21, 
wt417 = (- _) ST-F ( T )  . (23) 

A 2 d 3 2  z p n  

By substituting into (23) data taken from Refs. 12 and 13 for 
the superheating critical temperature AT,, , we find that for 
T = 1.75 K the quantity F (T)  is equal to 0.5-1 (here the 
heat-flux intensity W is expressed in W/cm2, and the time 
tho, in seconds). 

The formation of a vapor film during pumping of in- 
tense heat pulses in He I1 was observed in Refs. 9 and 10. The 
authors of these papers proposed the following dependence 
for the time of formation of the film: 

wt 0,,5,,+ 0.' = 0.5 [Ref. 91 

0.04 [Ref. 101 

We return to the question of the variation of nonlinear 
extra term that appear in the velocity of sound on account of 
the interaction with vortices generated by this sound. Gener- 
ally speaking, the concept of the velocity of propagation of a 
pulse is not adequate in the sense that this quantity is affect- 
ed by a large number of parameters, including the initial 
shape of the pulse. Moreover, this quantity is variable. 
Therefore, to speak of the nonlinear velocity of propagation 
of a pulse as, e.g., a function of the pulse intensity W has 
meaning only if we have stipulated all the other conditions of 
the experiment. In Ref. 8 measurements were made of the 
quantity c2( W) (which the authors called the nonlinear sig- 
nal velocity), defined as c2( W) = d /t ,, where d is the dis- 

a 0.5 I 

c2 - czo, mlsec ,  

FIG. 3. 

tance between two second-sound detectors positioned at a 
certain distance from the emitter, and t, is the time of flight 
of the signal between these detectors. This quantity, or, more 
correctly, the difference c2( W) - c2 (c, is the velocity of 
linear second sound), is depicted as a function of the intensi- 
ty by the solid line in Fig. 3. Using the conditions of the 
experiment of Ref. 8, the authors of Ref. 2 calculated 
c2( W) - c2 from the Burgers equation [in essence, from Eq. 
( 10) 1. The result of these calculations is represented in Fig. 
3 by the dashed line. As can be seen, the discrepancy is very 
considerable, and cannot be attributed to experimental er- 
ror. 

As follows from what was said earlier, the velocity of 
the shock front in a pulse that creates vortices differs from 
the velocity of an ordinary (vortex-free) wave. In principle, 
solving Eq. ( 12) with the initial conditions that follow from 
the experiment of Ref. 8, one can calculate the quantity 
c,( W) - c2. However, quite apart from the fact that here we 
would necessarily encounter difficulties associated with tak- 
ing all the stages of the evolution of the nonlinear signal into 
account, an exact calculation is also impossible for the fol- 
lowing reason. The point is that the main effect (see Fig. 3 ) is 
observed at large values of W, for which the condition t, 47, 
is violated. Therefore, as in the discussion of the question of 
the boiling of helium, we shall confine ourselves to order-of- 
magnitude relations. In accordance with formula ( 2  1 ), the 
change AU, in the velocity of the shock front on account of 
interaction with vortices is equal to 

Here vh') is the vlaue of the first iteration at the shock front 
[see (21)],  and f(t) is a function that can be obtained from 
the exact solution and has a characteristic value close to uni- 
ty. By substituting into (25) the values of the coefficients A,, 
and A,,, we find that AU, 10-5v:/,Z (cm/sec). The results 
of calculations using this relation are represented in Fig. 3 by 
points. Thus, despite the order-of-magnitude character of 
the calculations, here there is good quantitative agreement 
with experiment. 
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3. THE ADIABATIC APPROXIMATION 

In this section we shall consider the case when the char- 
acteristic duration t, of the disturbances is much longer than 
the time of development of a vortex tangle, and the quantity 
L takes its equilibrium (for the velocity v )  value. It is clear 
that in this case we are certainly dealing with pulses of low 
intensity, since in powerful pulses the level of the vortices is 
high, the dissipation is correspondingly high, and the helium 
boils before the tangle is saturated. As a result, the adiabatic 
approximation is valid only for pulses of low (but supercriti- 
cal) intensity and large duration. (For steplike pulses, i.e., 
constant heat fluxes switched on at time t = 0, instead of the 
duration t, we must speak of the observation time after the 
beginning of the experiment. ) Such conditions were main- 
tained in the experiment of Refs. 13, 23, and 24. In these 
experiments investigations were made of the dynamics of the 
temperature field T(x,t) in long (up to 8 m) tubes filled with 
superfluid helium, to one end of which a constant heat flux, 
switched on at time t = 0, was supplied. The resulting dy- 
namics of the temperature field, like that for short pulses, 
cannot be described in the framework of classical two-fluid 
hydrodynamics. 

With the assumption that T, <t, it may be supposed 
that the tangle density L has time to adjust to the change of 
the parameters of the wave and, as follows from the VS equa- 
tion ( 3 ), is equal to L = v2 (the source term is small and acts 
only at the very beginning, when L is small). Substituting 
the value L = v2 into Eqs. ( 1 )-(2), we obtain the following 
system of equations, which, unlike the equations in the pre- 
ceding sections, we write in dimensional form: 

Here T '  is the temperature disturbance, a = Ap 3/p T, and 
b = Ap ,p3/Cp S ,  where A is the Gorter-Mellink constant 
(see, e.g., Refs. 16 and 17). We note that, in contrast to the 
case of short pulses, in the adiabatic approximation the 
source term (the determination of which involves the famil- 
iar difficulties-see Sec. 1) is absent, and we may expect 
results of higher accuracy. In addition, in the left-hand sides 
of the equations of the system (26), (27) we have omitted 
the usual nonlinear terms, which are unimportant in the case 
under consideration. 

The relations (26) and (27) are the equations for the 
propagation of second sound with allowance for damping by 
vortices generated by this sound (the term - av: ) and for 
dissipation associated with this damping (the term but ). We 
shall supplement the system (26), (27) with boundary con- 
ditions corresponding to stepwise liberation of heat 
W = STv,, into undisturbed He 11: 

Here e( t )  denotes the unit step function: e( t )  = 0 for t < 0, 
and e( t )  = 1 for t)O. 

Despite the outwardly simple form of Eqs. (26) and 
(271, there are at present no general methods for solving 

them analytically. However, it has turned out to be possible 
to separate out a particular integral in the form of a traveling 
wave in which the variables v, and T '  are functions of the 
quantity T = x - Ut, i.e., v, (x,t) = v, (T )  and 
T' (x,t) = T' ( T ) .  For the homogeneous (in the derivatives) 
systems of equations, traveling waves are complete solutions 
of the boundary-value problems, i.e., problems in which the 
waves propagate from a wall into the undisturbed liquid; 
here the boundary condition v, (0,t) can be arbitrary. The 
equations, so to speak, can be functionally arbitrary (see 
Ref. 19). In contrast to this, the inhomogeneous equations 
[i.e., the relations (26) and (27)]  admit solutions in the 
form of traveling waves only for a certain class of boundary 
conditions in which, however, a certain constant (here, U) 
can be varied. The system admits a constant leeway (see Ref. 
19). To determine the class of admissible boundary condi- 
tions, we substitute v, (T)  and T ' (T)  into the system (26), 
(27) and solve the system for the derivatives v,, and T;. As 
a result of straightforward calculations we obtain the follow- 
ing system of ordinary differential equations: 

V,, = - 

By integrating Eq. (29) and setting x = 0, we obtain the 
class of admissible boundary conditions 6, (0,t) that depend 
on the parameter U. It is easy to see that for a value of U 
equal to U = bp, m,, /up, = av,, /C the function 6, (0,t) is 
a diffuse step 5, (0,t) = v,,e(t [At) with diffuseness 
At = C 2~:pf/dAp3v~o and amplitude v,, . 

Next we describe the exact solution of the system (26), 
(27) with the boundary condition 5, (O,t), and show that the 
time tin, after which the evolution of the rectangular step of 
interest [see (28 1 reaches the regime of the exact solution is 
much shorter than the observation time in the experiments 
of Refs. 13, 23, and 24. 

In accordance with what has been said, the velocity 
field 5, (x,t) is described by the relation 
ti, (x,t) = v,,e(t - x/U ]At), i.e., the diffuse step moves as a 
whole in space with velocity U. We now consider the evolu- 
tion of the temperature field T1(x,t) .  Substituting the value 
found for U into Eq. (30), we obtain the relation 

(in the derivation of this relation it has been taken into ac- 
count that the third and fourth powers of the function 
e( t  [At) are also in the form of a diffuse unit step, i.e., 
e3(t I At) =e( t I At) 1, from which, since we know the function 
fi, (T), it is easy to determine the function T1(x,t)  = T' (T) .  
In particular, at the wall, by setting x = 0 and taking into 
account that d /at = - Ud /dx we obtain 

If for a rectangular (not diffuse) step we neglect the change 
oftemperature in the initial time interval -tini,, it is possible 
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to show that the temperature T '  (0,t) of the helium near the 
wall increase linearly: 

The region with the linear increase of temperature pro- 
pagates next in the liquid with velocity U. The rise of the 
temperature near the wall can lead to superheating of the 
helium relative to the saturation line and (as in the case of 
short pulses, too) can lead to the formation of a vapor film. 
However, the dependence of the time tboil of onset of boiling 
on the intensity of the heat flux will now differ from that in 
the short-pulse case considered in the preceding section. The 
time tboil can be calculated from the relation ( 3 1 ) if we are 
given the limiting superheating temperature AT,,, and is 
found to be equal to 

A dependence of the form (32) was observed in the 
experiment of Ref. 13. The value of the constant B agrees 
well with that obtained in Ref. 13. For example, for T = 1.8 
K, for B ,,,, we have (with allowance for the spread in the 
data) B ,,,,, = 90-1 50 W4. sec/cm8, whereas the experimen- 
tal value is Be,, = 110 W4.sec/cm8. At higher temperatures 
the agreement is worse; e.g., for T = 2 K, Be,, = 17 while 
B ,,,,, = 20-40 W4. sec/cm8. 

The described evolution of the temperature field was 
observed in Refs. 23 and 24 (see, e.g., Fig. 3 in Ref. 23). The 
following values were given for the rate of growth aT1/at of 
the temperature and for the velocity U,,, of the front (for 
W = 4.4- lo-' W/cmZ): aTf/6't = 8.3. lo-' K/sec, 
UeXp = 0.27 cm/sec. Our calculations give for these quanti- 
ties the values aTf/6't = 8.6. lo-' K/sec and U,,,,, = 0.32 
cm/sec. 

We now discuss the physical meaning of the exact solu- 
tion obtained. The term in the right-hand side of Eq. (26) 
corresponds to the mutual friction and should lead to a de- 
crease of the quantity v, ( x , t ) .  At the same time, because of 
the dissipation associated with this friction, the temperature 
near the wall increases. But, as is well known, in He I1 a 
temperature drop is a driving force for the velocity v, (for 
j = 0) and can compensate the decrease of the quantity v, . 
The interplay of these two effects gives rise to the possibility 
of the existence of a solution in the form of a traveling wave 
of unchanging profile. It is necessary to note that this mecha- 
nism is specific for a superfluid liquid, since in ordinary me- 
dia the effect of the dissipative function on the flow is much 
weaker. In fact, in classical media a temperature gradient 
due to dissipation does not lead directly to macroscopic con- 
vective flows, and the pressure drop associated with it 
(through the expansion coefficient 8, = - p- ' (ap/aT) ), 
is small by virtue of the smallness of&. 

Starting from the physical meaning of the solution, we 
can estimate the time tinit after which the evolution of a 
strictly rectangular step (specified by the boundary condi- 
tions (28)) coincides with the solution 5, (x,t) that we have 
described. This solution, as already stated, is a step whose 
front is smeared out in space over a length 1 equal to 1 - (6'6, /dr) -'vno. A rectangular step acquires the same dif- 

fuseness after a time tini, = 1 /c,, since the leading edge of the 
step propagates with velocity c, while the value of the veloc- 
ity v, at the leading edge falls practically to zero because of 
the friction. After the rectangular step has acquired spatial 
diffuseness comparable with the quantity 1, the problems of 
the propagation of an exact step and a diffuse step become 
identical. In other words, the evolution of an exact step is 
described with good accuracy by the relations obtained ear- 
lier. By comparing 1 = (afi,, /&) -'vn0 and = tinit c2, we 
find that tinit - CcZ ps /Ap3avi0. It is not difficult to convince 
oneself that the initial time interval tinit is much shorter than 
the times of observation in Refs. 13,23, and 24. For example, 
in the experiment of Ref. 23 the quantity tinit - 10 sec, where- 
as the experiment was performed for an hour, i.e., lo3-lo4 
sec. We note that the time of vortex formation in the cited 
experiment, as calculated from formula (7) ,  was equal to 
r, - 0.5 sec. 

4. CONCLUSION 

We shall summarize briefly the content of the article 
and make some comments. In the paper it has been shown 
that the vortices that are formed in He I1 upon the passage of 
intense second-sound pulses can alter to a considerable de- 
gree (in comparison with ordinary two-fluid hydrodyna- 
mics) the laws of the evolution of such pulses. The results 
obtained agree qualitatively and quantitatively with the ex- 
perimental data from a number of papers in which different 
aspects of the dynamics of heat pulses in a large range of their 
parameters were investigated. 

In Sec. 1 of the article, in a discussion of the discrepan- 
cies between the results of experiments in the study of heat 
pulses and the nonlinear theory of waves in He 11, we put 
forward the hypothesis that these discrepancies are due to 
interaction with vortices generated by the pulses. It seems to 
us that the good agreement between the conclusions of the 
present article and the results of the cited experiments con- 
firms this hypothesis. In fact, the experiments with which 
the comparisons have been made are rather diverse (namely, 
investigation of the evolution of signals, measurement of the 
nonlinear velocity of their propagation, measurement of the 
time of formation of a vapor film, description of the dynam- 
ics of the temperature field, and investigation of the motion 
of trubulence fronts), but nevertheless they all fit well into 
the framework of the model developed here. 

We have remarked on the order-of-magnitude charac- 
ter of the relations (23) and (25), which is associated with 
the approximate solution of Eqs. ( 1 )-(3). There is also an- 
other, "extrinsic" reason why the given relations can de- 
scribe a real experiment only approximately and in order of 
magnitude. The point is that, in the interpretation of experi- 
ments associated with the excitation of heat pulses in He I1 
by a heated wall, a number of problems linked with the pres- 
ence of the He-11-solid boundary arise. Among such prob- 
lems are, e.g., the as-yet uninvestigated question of the sta- 
tionary Kapitz discontinuity and the associated relaxation 
effect at the interface, or, e.g., the problem of the extraction 
of part of the liberated heat into the solid substrate. Also 
fairly serious is the question of the formation of a heat coun- 
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terflow (in which the relation W = STv, is fulfilled) near 
the wall, where viscosity and ordinary thermal conduction 
are important. The solution of this problem described in e.g., 
Ref. 25 cannot be accepted as satisfactory, if only because 
the thickness of the layer in which the ordinary mechanism 
of thermal conduction is replaced by convection is found to 
be of the order of lo-' cm (for T = 2 K ) ,  and hydrodynamic 
treatment is clearly inapplicable. In addition, here there are 
uncertainties in the choice of boundary conditions. The 
questions enumerated above indicate, on the one hand, that 
when solving problems connected with the pumping of heat 
into helium one must analyze carefully the phenomena oc- 
curring at the boundary, and, on the other hand, that quanti- 
tative results in which the dependence W =  STV, is used 
have an approximate character. Here it is also appropriate to 
add that most of the experiments with short pulses are car- 
ried out in the stroboscopic regime of triggering of the sig- 
nals, and in helium there is a certain vortex background 
which, of course, should affect the evolution of the waves. 
We note that the above is practically irrelevant to Sec. 3 of 
the paper. 

The results in this article were reported at the Twenti- 
eth Bakuriani School on the Physics of Quantum Liquids 
( 1986). The author thanks V. L. Pokrovskii and L. P. Mez- 
hov-Deglin, who took an active part in the discussion of the 
work. 

"As a rule, the source of thermal waves (the emitter) is under the action of 
hydraulic pressure produced by the column of liquid above it, and, as a 
consequence, is at a distance (along the temperature axis) AT= (dT/  
dp),pgh from the equilibrium curve. Here (dT /dp), is the derivative of 
the temperature with respect to the pressure along the saturation line and 
h is the height of the column of helium. We note that ( aT /  
dp)gg-5. lov3 K/cm. 

"It is easy to verify this by making use of the fact that in the dimensionless 
form we have u = 1 ,6=  1, a/dx = 1, and a /at= 1, and using the values 
given in (5) for the coefficients A. 

"In the right-hand sides of the relations ( 12) and (13) we have kept only 
the term describing the force of the friction of the normal component 
against the "frozen" system of vortex lines. All the other terms appear- 
ing in Eqs. ( I) ,  (2) and associated with the presence of a vortex tangle 
give, in the present case, a much smaller contribution. 

4'Strictly speaking, for vlaues of $(x , t )  comparable to B(v), the quasisim- 
ple-wave approximation, i.e., the representation of the solution in the 
form (1 I ) ,  is inapplicable. In addition, in experiments in which boiling 

of the helium occurs, the time of formation of the vapor film is compara- 
ble to the time of formation of the tangle. Therefore, the relations that 
follow below must be regarded as estimates, and an exact calculation can 
be carried out only on the basis of a complete solution of the original 
system of equations ( 1 )-(3), which, we repeat, is possible only by nu- 
merical methods. 

ID. V. Osborne, Proc. Phys. Soc. London Sec. A 64, 114 ( 195 1 ). 
ZM. 0. Lutset, S. K. Nemirovskii, and A. N. Tsoi, Zh. Eksp. Teor. Fiz. 81, 
249 (1981) [Sov. Phys. JETP 54, 127 (1981)l. 

3A. Yu. Iznankin and L. P. Mezhov-Deglin, Pis'ma Zh. Eksp. Teor. Fiz. 
29,755 (1979) [JETP Lett. 29,693 (1979)l. 

4S. K. Nemirovskii and A. N. Tsoi, Pis'ma Zh. Eksp. Teor. Fiz. 35,229 
( 1982) [JETP Lett. 35,286 (1982)l. 

5J. R. Torczynski, Phys. Fluids 27,2636 (1984). 
6A. Yu. Iznankin and L. P. Mezhov-Deglin, Zh. Eksp. Teor. Fiz. 84,1378 
(1983) [Sov. Phys. JETP 57, 801 (1983)l. 

'T. N. Turner, Phys. Fluids 26,3227 (1983). 
C. Cummings, D. W. Schmidt, and W. J. Wagner, Phys. Fluids21,713 

(1978). 
9A. N. Tsoi and M. 0. Lutset, 1nzh.-Fiz. Zh. 51, 5 (1986). 
"A. Yu. Iznankin and L. P. Mezhov-Deglin, in: Proceedings of the Inter- 

national Conference LT-18, Vol. 1, Elsevier Scientific Publishers 
(1984), p. 71. 

"I. M. Khalatnikov, Teoriya sverkhtekuchesti (Theory of Superfluidi- 
ty), Nauka, Moscow (1971) [English translation (Introduction to the 
Theory of Superfluidity ) published by Benjamin, New York ( 1965) 1. 

'2G. Krafft, J.  Low Temp. Phys. 31,441 (1978). 
"S. W. Van Sciver, Cryogenics 19,385 ( 1979). 
14R. P. Feynman, Prog. Low Temp. Phys. 1, 17 (1957). 
I5S. K. Nemirovskil and V. V. Lebedev, Zh. Eksp. Teor. Fiz. 84, 1729 

(1983) [Sov. Phys. JETP 57, 1009 (1983)l. 
I6W. E. Vinen, Prog. Low Temp. Phys. 3, 1 (1961). 
"K. W. Schwarz, Phys. Rev. B 18,245 (1978). 
I8S. K. Nemirovskii, Preprint No. 08-76, Institute of Theoretical Physics, 

Novosibirsk ( 1976). 
19B. L. Rozhdestvenskii and N. N. Yanenko, Sistemy kvasilineinykh 

uravnenii (System of Quasilinear Equations), Nauka, Moscow ( 1968). 
"1. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 23,253 (1952). 
"V. I. Karpman, Nelineiyne volny v dispergiruyushchikh sredakh (Non- 

linear Waves in Dispersive Media), Nauka, Moscow ( 1973). 
"A. N. Tsoi, Kvantovannye vikhri v slede udarnoi volny vtorogo zvuka 

(Quantized Vortices in the Wake of a Second-Sound Shock Wave), in 
the book: Gidrodinamika odno- i dvukhfaznykh sistem (Hydrodyna- 
mics of One- and Two-Phase Systems), Novosibirsk, (1982). 

"V. P. Peshkov and V. K. Tkachenko, Zh. Eksp. Teor. Fiz. 41, 1427 
( 1961) [Sov. Phys. JETP 14,1019 ( 1962) 1. 

24S. M. Bhagat, P. R. Critchlow, and K. Mendelssohn, Cryogenics 4, 166 
(1964). 

"S. J. Putterman, Superfluid Hydrodynamics, North Holland, Amster- 
dam ( 1974) [Russ. trans]., Mir, Moscow ( 1978) 1, Sec. 28. 

Translated by P. J. Shepherd 

81 0 Sov. Phys. JETP 64 (4), October 1986 S. K. Nemirovskil 810 


