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A theory of hydratation interaction of lipid membranes in an aqueous solution is proposed and 
is based on the premise that water is a medium with large spatial dispersion of the static 
dielectric constant e ( q ) .  It is shown that the parameters of the function ~ ( q )  can be 
determined by a detailed measurement of the interaction between closely spaced membranes. 

1. INTRODUCTION 

The structure and properties of water have been attract- 
ing considerable interest recently. There are grounds for as- 
suming that water has a definite local structure whose char- 
acteristic dimension exceeds substantially the distance 
between the molecules (see the review by Stillinger'). This 
raises the question of the dielectric response of water to static 
electric fields having short spatial periods. Many data favor 
the assumption that the static response of water has an ap- 
preciable spatial dispersion if the characteristic lengths over 
which the electric field varies are small e n ~ u g h , ~ . ~  i.e., water 
is a nonlocally polarizable dielectric medium. 

We consider in this paper the effects of nonlocal polar- 
ization in a lamellar liquid-crystal structure made up of 
phospholipid molecules in water. We shall show that the 
interactions of polar surfaces (produced on the interface of 
phospholipid bilayers and water) at short distances are de- 
termined by the effects of spatial dispersion of the linear 
response of the water. Accordingly, a detailed experimental 
study of interactions of this type permits an investigation of 
the static dielectric properties of water in very small spatial 
scales ( - 10 A)  that are difficult to achieve by other meth- 
ods. Individual lamellas of phospholipid lamellar structures 
are similar to lipid bilayers of cellular and intracellular bio- 
 membrane^.^ A phospholipid molecule consists of a hydro- 
philic "head" and two hydrophobic "tails," each constitut- 
ing a small hydrocarbon chain (CH,), ( n  = 8-12). The 
"head" of the molecule consists of phosphate and nitrate 
groups joined by a short flexible hydrocarbon (CH,), chain 
(see Fig. 1 ) . The nitrate group is positively charged, and the 
phosphate negatively, i.e., the "head" of a phospholipid has 
an appreciable dipole moment, and it is this which makes it 
hydrophilic. "Heads" of certain phospholipids can disso- 
ciate into ions and acquire thereby, besides a dipole moment, 
also an electric charge (usually negative). 

Phospholipid molecules in the lamellar phase form ex- 
tended flat layers-lamellas-separated by water. Each 
such layer consists of molecules whose hydrophobic tails are 
turned to one another and hydrophilic heads are turned 
towards the water4 (see Fig. 2). A phospholipid bilayer is a 
splendid model object that permits investigation of impor- 
tant biological processes, especially the interaction and fu- 
sion of cellular membranes. Experimental investigations of 
multilamellar phospholipid systems have shown that the 

long-range interaction of bilayers is determined by electro- 
static and Van der Waals forces, and is described by the Der- 
yagin-Landau-Vervey-Overbeek t h e ~ r y . ~  Recent experi- 
ments"' have shown that at short distances (at water gap 
thicknesses h 5 30 A)  the interaction forces between phos- 
pholipid layers are quite considerable and have the following 
unusual properties. 

1. For h in the interval 5-25 a, the wedging action (i.e., 
the specific repulsion force between plane surfaces) P is 
quite appreciable and is approximated by the exponential 
relation 

with ho=: 3 b; and Po = 5- lo9-5. 10" dyn/cm2 (Refs. 6-8) .  
(This interval of Po is typical of various phospholipids.) 

Note that the usual electrostatic repulsion between 
maximally charged lipid bilayers is smaller by two decades 
than Po at h - h,. 

2. The parameters ho and Po are practically independent 
of the surface charge of the bilayer. 

3. Variation of the concentration of salts dissolved in 
water, in the range from distilled water to an electrolyte with 
a Debye screening length x- '  - 10 d;, affects the values of ho 
and Po little. 

The phenomenon considered was named hydratation6 
(or the structural component of wedging pressure). 
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FIG. 1.  Structure of phasphatidiquinoline molecule. 
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FIG. 2. Multilamellar structure of phospholipide dispersions. 

The first attempt to explain the hydratation forces was 
made by Marcelja and R a d i ~ , ~  who proposed that the hydro- 
philic surface of a lipid bilayer alters the structure of adja- 
cent water and leads to appearance of a certain local "order 
parameter" whose value decreases exponentially in the inte- 
rior of the liquid. It was subsequently proposed to identify 
this order parameter with the normal component P, of the 
polarization vector P (Refs. 3, 11-13). It seems to us that 
these theories are inadequate, since they do not explain the 
observed values of the parameters Po and h,, but merely ex- 
press them in terms of corresponding fit parameters of the 
theory. 

We propose here a phenomenological theory of hydra- 
tation forces, based on consideration of water as a nonlocally 
polarizable medium. We shall show that the spatial disper- 
sion of the static dielectric constant ~ ( q )  of water leads to a 
strong interaction between the surface dipoles of the surface 
bilayers that face one another. 

Note that if effects of nonlocal polarizability of the me- 
dium are neglected, neutral surfaces do not interact at all 
with dipole moments. A singular property of lipid bilayers is 
precisely the presence of large dipole moments while the to- 
tal charge is usually small (or even nonexistent). Allowance 
for nonlocal-polarizability effects is therefore of fundamen- 
tal importance here. 

Under the simplest assumptions concerning the form of 
E (q) , the interaction of the bilayers takes the form ( 1 ). Set- 
ting the experimental value at h , ~  3 A, the factor that pre- 
cedes the exponential agrees qualitatively with experiment. 
The proposed approach will be used also to analyze the inter- 
action of charged membranes in an aqueous electrolyte. The 
obtained dependences of the interaction parameters on the 
electrolyte concentration can be used for a quantitative 
check on the theory. We show also that nonlocal-polarizabil- 
ity effects should increase the observable screening length in 
the electrolyte compared with its Debye value. This increase 
should be quite appreciable ( - 50% ) at an electrolyte con- 
centration corresponding to biological conditions. 

2. NONLOCAL ELECTROSTATIC OF WATER 

We discuss briefly the physical causes of the substantial 
nonlocality of the dielectric response of water in the scales of 
interest to us (see also Ref. 2). It is known that the high 
value of the static dielectric constant, ~ ~ ~ 8 0 ,  is due to the 
fact that water is a highly polar liquid and has therefore a 
soft orientational degree of freedom (rotation of the molecu- 
lar dipoles), which is indeed the one that makes the main 
contribution to E ~ .  Measurements of the frequency disper- 
sion E ( W )  at radio frequenciesi4 point to a Debye character 
of the relaxation: 

with a characteristic time T = lo-" s. At or% 1 we have 
E (w) -+el z 5. It is natural to assume that the value E ,  is due 
to the faster (vibrational and electronic) modes, while the 
orientational mode is "frozen." It is quite probable that just 
such a "freezing" of the orientational mode should take 
place also for static fields that change abruptly in space, with 
the corresponding length scale go at least not smaller than 
the size of the water molecule ( - 3 A) .  The upper bound on 
6, follows (indirectly) from experiments on hypersound dis- 
persion in water.'' The absence of such a dispersion (accu- 
rate to about 1% ) for hypersound wave vectors q 5 lo6 
cm-' shows apparently that go 5 10 A. Note that the ratio 
E ~ / E ,  =: 16 is quite large, so that noticeable deviation of the 
static dielectric response ~ ( q )  from E,  should be observed 
over spatial scales q-' substantially larger than 6,. For the 
vibrational modes, the corresponding scale c, should be no- 
ticeably smaller, as should also be the change of the dielec- 
tric susceptibility E when these modes are frozen: E,/E* 

~ 2 . 5  (E(w) = E, = 2 corresponds to the optical band). 
There exists therefore a certain wave-vector region 5 ; ' 
%q%g, ' in which ~ ( q )  ZE,. The foregoing arguments al- 
low us to express 1 / ~ ( q )  in the form 

wherea(q) = ~ ; ~ - ~ g ~ a t g ; ' ~ q % < ; ' ; a ( q ) - - c o n s t a s  
9-0. 

The Green's function corresponding to (3) takes at 
r%co the asymptotic form 

The second term of (4) describes nonlocal-polarizabili- 
ty effects. Assuming that the function a ( q )  has no scales 
other than {; ' (in the region q 5c; I ) ,  we have 

i.e., the second term of ( 3 )  can be neglected only if 
r%60 In 

Note that the electric field of a point dipole p, deter- 
mined from (4)  at rsg,, is 

The second term of (61, in contrast to the first, does not 
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vanish after averaging over the directions of the vector 
n = r/r, and this leads (as we shall show below) to the exis- 
tence of an electric field near a homogeneous dipole layer. 

The simplest interpolation of the function E (q) between 
E~ (for q = 0) and E ,  (for q) l ;  l)  is similar in form to the 
real part of Eq. (2)  : 

and corresponds to a ( q )  = const = E; ' - E; I .  

The dielectric-response function (7) had previously 
been used in connection with electrochemistry  problem^.^ 

3. ELECTRIC FIELD OF A LIPID BILAYER MEMBRANE IN AN 
AQUEOUS SOLUTION 

The electric-field sources of lipid membranes are the 
charges and dipole moments of the hydrophilic heads of the 
lipid molecules. The distance lo between the molecules in the 
bilayer plane is about 6-7 A. This allows us to regard the 
field sources as continuously spread out in the plane, since 
the difference between a field obtained in this manner and a 
true exponential field decreases with increasing distance 
from the membrane, with a characteristic length I J 2 r z  1 
A (h,. Thus, we must determine the one-dimensional distri- 
bution of the field Ex (x)  -E(x)  produced by a plane with a 
surface charge density o and a dipole moment M ( M  > 0 and 
is perpendicular to the plane) near the boundary of the phos- 
phide membrane and the aqueous electrolyte. The water 
molecules adhere quite tightly to the phospholipid heads.I6 
We shall therefore assume that a plane with field sources is 
located in the water at a distance I from the interface with the 
membrane. The quantity I is a phenomenological parameter 
that describes the degree of penetration of the water into the 
region of the polar heads of the phospholipids. To determine 
this parameter consistently we must determine accurately 
the field distribution for the real geometry of the membrane- 
water interface. It appears that I can vary in the interval 0.5- 
3 A, depending on the density of the bilayer (if the lateral 
density is increased, the water is expelled from the region of 
the polar heads and I decreases). In a number of cases we 
shall simplify the equations by writing them in the limit as 
I- + 0. (Note that the solution is not analytic in 1 at 1 = 0, 
since the membrane is approximated by a continuous medi- 
um.) The membrane can be regarded as infinitely thick, in 
view of its thickness S -- 50 A) h,. The coordinate x will be 
measured from the membrane boundary, and the region oc- 
cupied by the electrolyte corresponds to x > 0. 

We begin with the case of an uncharged membrane in 
pure water. In multilamellar structures"' the field E(x)  in- 
side each membrane is zero by virtue of symmetry (in the 
case of interaction of two separate bilayers this field differs 
from zero, but is small in terms of the parameter ho/6). We 
must thus solve the equation 

&- 

d 
- [I K (r-x') E (x') ax'] = 4np., (x) =-4nM8' (x-1) (8)  

" 

with the boundary condition E ( x  <O) = 0. In Eq. (8), the 
function K(x)  is the one-dimensional Fourier original of the 

dielectric susceptibility ~ ( q )  given by (3  ) . Generally speak- 
ing, near the membrane-water interface the properties of the 
dielectric response of water differ from the bulk properties, 
but we shall neglect this possible difference (i.e., we use the 
so-called dielectric app ro~ ima t ion~~) .  Equation (8)  can be 
integrated once with respect tox (with zero integration con- 
stant), after which this equation takes the standard Wiener- 
Hopf form and can be solved by known methods" for any 
function ~ ( q ) .  It is useful to note, however, that the asymp- 
totic form of E (x )  of interest to us is determined at x)g0 by 
the position and residue of the pole of the function l / ~ ( q )  
[just as the asymptotic Green's function G(r)  in (4)  1.  We 
can therefore use, in place of the true (and unknown) E (q),  
the interpolation (5), substituting&, -.El = E , / c ,  [see (5)].  
The regular part of the field E ( x )  is then found to be a sum of 
terms of form exp( - x/lo),  with coefficients that are deter- 
mined by direct substitution. As a result we get ( x  > I) 

4nM 
E (x) = - exp (-~/Eo), 

F i t 0  

where 

'The total value of the dipole moment of the phospholipid 
molecule is d = 30-40 D, depending on the type of lipid.18 
The exact value of the dipole-moment component dl is un- 
known, but the estimate d, - 10-1 SD, seems reasonable and 
leads to M = d,/S0-2-10-3 CGS (So = 50-70 A2 is the 
area per molecule in the bilayer). It is useful to compare (9) 
with the equation for the electric field of a charged mem- 
brane in an ordinary Debye electrolyte with a screening 
length x-': 

Using the value go = ho-,2.5-3 A (the basis for this will be 
made clear presently) we obtain a ratio on the order of 10 for 
the factors preceding the exponentials, even for the lipids 
with the highest charges. The nonlocality of the polarizabili- 
ty of water leads thus to the presence of a very strong electric 
field even near a neutral phospholipid membrane. 

We proceed now to investigate the general case of a 
charged membrane in an aqueous electrolyte, confining our- 
selves to not excessively high ion densities, wtih a Debye 
radius x -  ' 2 c$ 'I2. In this case we can neglect the influence 
of the ions on the nonlocal-polarizability mechanisms, so 
that their role reduces to replacing the electric response E ( q )  
by E(q) = ~ ( q )  + E ~ ~ / ~ ~  (see also Ref. 2). In lieu of (8)  we 
have now an equation for the potential p: 

Using, as above, the approximation (7)  we obtain for the 
electric field (in the limit as I-+ + 0)  

where 
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2 q.'+BxX [ ( q O 2 ~ x 2 ) '  'I? E ( X I  =Et(exp [ -q tx]  -exp [ -q t  (h-x)  I ) 
Q l . 2  = - * 

2 +Ez (esp [-q2x] -esp [-q,  ( h - x ) ]  ) . (21) 
(13) 

where E ,, are determines by equations similar to (14)- 
El = 4s[ J.i' - 

E t Q  
(I4)  (16): 

The electric field of the membrane is thus a sum of two 
terms that decrease exponentially with lengthsl, = q; ' < {,, 
(polarization term) and {, = q; ' > x- ' (Debye term). For 
x(q&-'I2 we have{,-.go and 52-.~-1. For x-q&-'I2 
Eq. ( 13) is by way of an interpolation, since the influence of 
the ions can no longer be described by a simple replacement 
of E (q) by Z(q). The second term in the square brackets of 
(14) is always small compared with the first, so that the 
"polarization" contribution to the electric field is deter- 
mined just by the density (more accurately, by the normal 
component) of the dipole moment M. Both terms in ( 15) 
can be of the same order. Note that E,/E2 - q:/q: kfl, 
therefore the polarization contribution exceeds the Debye 
contribution right up to 

2 qi X-xm=-In- W qt-'. 
91-qa 4 9  

Great interest attaches to the case o = 0, when the polariza- 
tion and Debye contributions have opposite signs, so that 
E(x)  is zero at x z x ,  . At large distances x s x ,  such a 

' I 1  Q ( h )  = - a1 qtz  - -2 a2 (122. 

Here 

a ,= l - exp [ -q ih ] ,  

Substituting (2 1 )-(24) in ( 19) (at 1 = 0) we obtain the free 
energy F in the form 

We shall not write down for P( h ) the cumbersome general 
equation that corresponds to (25), but analyze various 
limiting cases. 

For neutral membranes ( a  = 0) in pure water: 
membrane appears charged with a charge density (deter- 
mined by comparison with Eq. ( 10) ) 

8 d z q  exp[-hlg,]  
p ( h ) = k 1 i 2 ( [ l + q  e ~ p [ - h / E ~ ] ) ~ '  

( I7)  where $ = ( f l U 2  - I ) / (  PU2 + 1)z0 .6 .  For h%<,,, Eq. 
(26) reduces to ( 1 ) with 

4. INTERACTION OF MEMBRANES. HYDRATATION FORCES ho=Eo, P0=8nM2ql~,f,2. 

The specific force of interaction between membranes 
separated by a distance h is P(h ) = - dF/dh, where Fis the We present the asymptotic expression for P ( h )  at h >>go 

for neutral membranes in an electrolyte; we confine ouselves free energy of the system with given field sources, and is 
equal to furthermore to first order in the parameter q:/q: < x21: 

h 50.1: 

F ==LJ [E (x )D(x )+eoxZq2(x )  ]dx, (18) 8 d Z  , [ pV'9i-qo e x p  i - p t h l  
8n  0 

P ( h ) =  - q1 
Et B"q,+qo 

where D(x)  and q (x)  are the induction and the field poten- 
+ Q P ( ( B " % ~ - Q O ) ~  1 

tial. qtL(qi2-pqZ2) *----I 4 sh (qzh/2>! ' (27) 
Expression ( 18) for a system of two identical mem- 

branes can be reduced (accurate to terms independent of h )  For charged membranes in a weak electrolyte (P 'I2x <qo) 
to the following simple form: we get 

F=-ME(l)+ocp(l). (19) ~ ( h ) = ~  8 -+- M 2 0 ) e x p (  -- ) +- 2 n d  sh-'-. xh (28) 
t lgo  io p'" eo 2 

To calculate E(I)  and p ( l )  we must solve an eauation that 
generalizes ( 11 ) to thecase of two membranes:' Note that the last term of (28) diverges formally as x+O. 

h 

d d q  (x ' )  The reason for this divergence is that the membranes are 
- -( K(x - r ' )  - d d  ) + eox2q 

dx 
assumed to be infinitely thick, an assumption valid, as fol- 

& O  lows from the results of Ref. 19, only if x ) 2 ( ~ , / ~ ~ h 6 ) ' / ~  
=4no[6 (x-1) +6 (x-h+l) ] (here 8% 50 is the membrane thickness and E, = 2 is its 

-4nMl6 (x-1) -6 (x-h+l) 1. (20) dielectric constant). This condition is actually not too re- 
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strictive, in view of the large E J / E ,  ~ 2 0 0 0  A. At sufficient- 
ly large h, the main contribution to (28) is made by the 
second term that accords with the usual double-layer theory. 

Of interest, finally, is the dependence of P(h)  on the 
parameter I that determines the location of the dipole layer 
relative to the membrane-electrolyte interface (see the dis- 
cussion at the beginning of Sec. 3). To find this dependence 
we must obtain a solution similar to (21 ) at arbitrary I. As a 
result we get P(  h ) in the form (we confine ourselves here to a 
neutral membrane in pure water) : 

8nJ12 q exp [ -h/go 1 
P(h)=- 

F , ~ ~ ~ ( I + ~  exp[-h/Eol) 2 71 

P= (ch aZ+B-" sh ~ 1 ) ' .  (30) 

As I varies from 0 to lo the parameter i changes from 1 to 3.6. 

5. DISCUSSION OF RESULTS 

We have shown that the interaction of polar planes in 
water is exponentially decreasing repulsion [see (26) and 
(29) ] if account is taken of the effects of nonlocal polariza- 
bility of the water. The parameter lo that determines the 
dispersion of the dielectric constant ~ ( q )  is unknown at pres- 
ent. By comparing the derived expression (26) with the ex- 
perimental relation ( 1 ), however, we obtain the estimate 
.go = ho = 3 A. 

The factor preceding the exponentials in (26) 

is estimated at 1010-10" dyn/cm2 [an estimate ofMis given 
in the text following Eq. (9)  1, which exceeds on the average 
by half a decade the experimental range of Po. It is reasonable 
to assume that this overestimate of Po is due to our present 
use of an approximation linear in the electric field. In the 
immediate vicinity of the membrane there should actually 
exist substantial nonlinear effects that lower the electric field 
of the membrane and with it Po. Note that when these effects 
are taken into account P(h)  becomes exponential at h &lo .  

The theory proposed explains some unusual properties 
of hydratation forces, particularly the decrease of these 
forces on transition of the bilayer from the "liquid" to the 
"solid" phaseR (the ensuing increase of the dipole surface 
density notwithstanding). 

In the course of this transition, the water is crowded out 
of the region of the polar heads, meaning a decrease of the 
parameter I and hence of the factor ? that enters in Po [see 
(29) 1. Effects due to fluctuation of the bilayer surface may 
also be important here-see Ref. 20). The lowering of the 
hydratation forces with decrease of area per phospholipid 
molecule can be similarly explained." 

Our analysis allow us therefore to attribute the hydrata- 
tion  force^^-^ to dipole-dipole interaction of polar surfaces 
in nonlocally polarizable water. Nonetheless, one cannot ex- 
clude as yet the possibility of another (non-electrostatic) 
origin of the hydratation forces. For example, the order pa- 
rameter of a liquid, introduced in Ref. 9, may turn out to be 
connected with the orientational order parameter intro- 
duced in a number of papers (see, e.g., Refs. 22 and 23) in 
connection with the description of the melting phase transi- 

tion. Unfortunately, no estimates whatever are available for 
the interaction forces in the latter mechanism. 

An indirect check on the hydratation-forces theory pro- 
posed by us would be a correct experimental determination 
of the dependence of the "hydratation" radius q; ' on the 
electrolyte density, and also measurement of the deviation, 
due to spatial dispersion, of the electrolyte screening length 

q; ' from the Debye value x -  ' (see ( 13 ), and also Ref. 24) 
This deviation should be quite noticeable ( - 50%) at an 
electrolyte concentration corresponding to biological condi- 
tions ( x -  ' =. 10 A). If the mechanism proposed by us for the 
onset of hydratation forces is confirmed, the two parameters 
E l  and lo of the dielectric response of water can be deter- 
mined by comparing the experimental values of Po and the 
lengths 9,' and q;' with Eqs. (25) and (13). 

Note also the unusual behavior of the field of a neutral 
membrane in an electrolite [see ( 12), ( 14), and ( 15) 1, viz., 
E (x )  vanishes at 

2 qt - ln-; 
! 7 1 - q 2  q 2  

whereas at x&x, the membrane seems to be negatively 
charged (see also Ref. 3 ) . 

After completing this work, we learned of a paper by 
C e ~ s , ' ~  in which nonlocal electrostatics is used to analyze 
hydradation forces and solvation phenomena in pure water. 
Cevs's approach differs only in that different sources are 
chosen for the membrane field. 
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