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An investigation of the interaction between two excited hydrogen atoms yields the asymptotic 
forms of the doubly-excited states and terms of the H, molecule for large internuclear 
separations R .  The leading term in the interaction energy is proportional to R -' (dipole- 
dipole interaction). Because of the high degree of degeneracy of the unperturbed problem, the 
determination of the corresponding coefficients requires the solution of the secular problem. 
To lower the dimensionality of the latter problem and classify the states, specific symmetry 
properties of the system are analyzed. The interaction between the atoms in the lowest excited 
state is discussed in detail, and the energy terms -R  - 5  (quadrupole-quadrupole interaction) 
for these states are found. The autoionization decay widths ( - R  -6)  for the quasimolecule 
states are computed, and the cross section for the Penning process H* + H* -+H + H+ + e is 
estimated. 

$1. INTRODUCTION 

Systems with one and two electrons are being actively 
studied in atomic physics both because of their practical im- 
portance and as fundamental standard problems. Two-elec- 
tron systems, in particular, provide the simplest instance of 
the manifestation of an important effect: interelectron corre- 
lations. It is well known that, in the case of the helium atom, 
the correlations are strongest in the doubly excited states 
(see, for example, Refs. 1 and 2) .  The doubly excited states 
of the hydrogen molecule have received much less attention 
than those of the helium atom, although they have been the 
subject of a significant number of papers in the last few years 
(see, for example, Refs. 3 and 4). In particular, as far as we 
know, there has to date not been any investigation of the 
problem of the interaction of two excited hydrogen atoms, a 
problem which determines the behavior at large internuclear 
distances of the electronic terms of the hydrogen molecule 
that correspond to the doubly excited states. From the fun- 
damental standpoint that problem is interesting in that, be- 
cause of the additional degeneracy of the excited states of the 
hydrogen atom in the two-electron problem, the motions of 
the electrons are, generally speaking, strongly correlated 
even at large internuclear separations R. This is manifested 
in the form of the correct zeroth-order perturbation theory 
wave functions obtained through the diagonalization" of the 
interelectron interaction operator in the basis of the degener- 
ate states of the separated atoms ( $ 3 ) .  In the multipole ex- 
pansion of the latter operator for large R,  the leading term is 
the dipole-dipole term, which governs the behavior of the 
terms in this limit ( - R - 3 ) .  As is well known (see, for exam- 
ple, Ref. 5 ) ,  such a dependence is characteristic of the inter- 
action between identical atoms in different states with orbi- 
tal angular momenta differing by unity. Physically, it is due 
to the excitation exchange between such atoms. In the case of 
hydrogen atoms the terms again behave like R - 3  in the inter- 
action of atoms with the same excitation energy. This is due 
to the additional degeneracy of the hydrogen levels and the 

possible existence of nonrelativistic hydrogen atoms in states 
with nonzero dipole moments. 

The correlation of the electrons manifests itself also in 
the instability of the doubly excited states to autoionization. 
The asymptotic values of the autoionization widths are pro- 
portional to R -" and can also be computed ($4). The be- 
havior of the terms of the quasimolecule at large R directly 
determines the cross section for a process like the Penning 
ionization H* + H* -+ H + H+ + e,  as well as the cross sec- 
tions for (H* + H*)-collision induced changes in the atom- 
ic orbital angular momentum and its orientation. Of even 
greater importance, apparently, is the fact that the doubly 
excited states of the H, molecule are easily excited radiative- 
ly or in collisions with fast charged particles. The separation 
of the nuclei along the corresponding doubly-excited terms 
leads to the production of excited hydrogen (H*) atoms (if 
the autoionization-induced decay does not occur first) or 
H* ions (if the autoionization process occurs). Such pro- 
cesses have been observed in numerous experimental investi- 
g a t i o n ~ . ~  The published theoretical term calculations per- 
tain to the region of medium R values, and practically do not 
consider the passage to the limit of separated atoms. The 
results obtained in the present paper should be useful for the 
passage to this limit and the construction of the correlation 
diagrams for the doubly excited states. 

$2. THE EXACT AND APPROXIMATE SYMMETRY OF THE 
STATES 

The exact quantum numbers for a diatomic molecule in 
the fixed-nuclei approximation are well known: these are the 
component A of the total orbital angular momentum along 
the internuclear axis, the total spins, and also (for homonu- 
clear molecules) the electron-coordinate inversion symme- 
try, indicated by the indices g and u , ~  at the center of the 
molecule. Accordingly, the states and terms of the molecule 
are denoted by the symbols 2s+'A,,g. For the Z states we 
must also indicate the symmetry with respect to reflection in 
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the plane passing through the internuclear axis (the Z *  
states). Because of the high degree of degeneracy of the ener- 
gy levels of the excited hydrogen atom, there are, generally 
speaking, several terms of the same symmetry that go over, 
as R - W ,  into a given energy level of the separated atoms. 
Therefore, for a more detailed classification of the states, it is 
desirable to have additional (exact or approximate) quan- 
tum numbers. 

As the unperturbed Hamiltonian for two interacting 
hydrogen atoms, let us choose 

For neutral atoms the leading term in the interaction poten- 
tial for R - w is the dipole-dipole interaction: 

Here the vector R joins the atomic nuclei, rjo, ,,, is the radius 
vector of thejth electron with respect to the nucleus a (6) (in 
this paper we use the atomic system of units). Neither Ho, 
nor the perturbation possesses electron-interchange and in- 
version symmetries. Nonsymmetric perturbation theory is 
dealt with in sufficient detail in the literature (see, for exam- 
ple, Ref. 7) .  The present paper is devoted to the computation 
of the asymptotic power-law forms of the terms and their 
widths, quantities which can be calculated with the unsym- 
metrized-with respect to electron interchange-wave 
functions. After this, the eigenfunctions obtained can be 
symmetrized, and we can then assign them all the exact 
quantum numbers: in the process the terms acquire expon- 
entially small (in the large R )  corrections, which are not 
computed in the present paper. 

Let us choose the unperturbed basis wave functions in 
the form 

where the $,,, are the ordinary hydrogen-atom wave func- 
tions with spherical-harmonics quantum numbers I and m 
(as the axis ofquantization, we have chosen the internuclear 
axis n)  and principal quantum number n. The functions (3)  
correspond to A = m, + m,, do not (as discussed above) 
have definite spin and parity values, and correspond, as 
R-co,totheenergyEo= - (n;2+n;2)/2. 

The symmetrization or antisymmetrization of the basis 
states (3 ) with respect to electron interchange automatically 
yields the state with definite inversion symmetry (i.e., with a 
definite u or g symbol), specifically, the symmetrized states 
( 'A, A = m, + m,) upon inversion acquire the factor * ( - 1)" +I2, while the antisymmetrized states ('A) ac- 
quire the factor * ( - 1 ) " + I 2 +  '. 

The perturbation operator Vd -, (as well as the unper- 
turbed Hamiltonian) is invariant under the transformation 
rla -+ - r,,, rZb +rZb (which, for brevity, is denoted below 
by Po). This allows us to introduce an additional approxi- 
mate quantum number: Po parity, which is "good" in the 
approximation (2)  for the interaction. Notice that Po parity 

can be called an "inner parity" of the interacting atoms. the 
basis states (3)  possess definite Po parity, equal to 
( - 1 ) + lz. 

The operators H,  and Vd - are also symmetric under 
the transformation r,, -r,,, r,, -+r,,, and this allows us to 
introduce another quantum number, which we shall call So 
parity. The basis functions already possess definite So parity, 
which is equal to + 1, depending on the sign in (3).  

Another symmetry operation that is important for the 
analysis of the properties of the spectrum is the transforma- 
tion r,, -+r,,, r,, -r,,, which is denoted below by P I .  The 
operator PI commutes with the unperturbed Hamiltonian 
( 1 ), and anticommutes with the interaction operator (2)  : 

It therefore follows that, if in the dipole-dipole interaction 
approximation some state $, of the molecule corresponds to 
an energy shift E, # O  relative to the unperturbed (R -. w ) 
position, then the state PI$, is also an eigenstate, and corre- 
sponds to the energy shift - EI. The eigenstates for which 
the energy shift in the dipole-dipole approximation is equal 
to zero possess definite PI parity. 

For the Po-odd states, the basis function (3 )  contains 
PI-even and PI-odd terms. The operator PI transforms the 
functions (3)  with the indices + and - into each other. 
All the states form here pairs for which the level shifts in the 
dipole approximation differ in sign. The Po-even basis func- 
tions possess a definite PI parity as well. Let there be i such 
functions with the same PI parity and j functions with oppo- 
site P, parity (for a fixed index + or - in (3) and a given 
A), and let i > j. Then there are i-j states for which the shift in 
the dipole aproximation is equal to zero. The remaining 2j 
states form pairs, in each of which the level shifts in the 
dipole approximation differ in sign. 

Notice that, for the analysis of the properties of the op- 
erator Vd-  ,, the two-center character of the problem is 
practically unimportant, i.e., the vectors r,, and r,, can be 
considered to be measured from one and the same center. 
Thus, the problem coincides with the single-center problem 
(the helium atom), in which the electron-electron interac- 
tion has the form of the dipole-dipole interaction (and does 
not possess spherical symmetry). 

To conclude this section, let us point out that, in the 
subspace of the states with given principal-quantum-number 
values n, and n,, we can, in the case when n, = n,, write the 
dipole-dipole interaction operator in terms of the integrals of 
motion for free hydrogen atoms, i.e., the Runge-Lenz elec- 
tron operators A,, and A,, : 

[We have used here the identity 

rc---3ntAr/2Z,, 

which is valid in the subspace of the states with a given ni 
(Ref. 8) 1. Then it is natural to raise the question whether we 
cannot construct from the operators A, and Ii another oper- 
ator that commutes with (5)  (cf. the similarly formulated 
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problem in the search for the approximate integrals of mo- 
tion for the helium atom9). Such operators could not be 
found on the class of linear and bilinear combinations of the 
components of the vectors Ai and Ii . 

53. THE TERMS AND STATES OF THE QUASIMOLECULE 

The leading term in the asymptotic form of the terms of 
a quasimolecule composed of two excited hydrogen atoms is, 
in the general case, proportional to R -3 .  The determination 
of the corresponding coefficient requires the diagonalization 
of the perturbation operator (2 )  or (5  ) (for n , = n2 ) in the 
subspace of states with given n ,  and n,, it being possible to 
achieve a significant reduction in the dimension of the ma- 
trix by taking into account the symmetry properties dis- 
cussed in $2 above." We considered all the states with n , ,  
n,<3. The energy level shifts for the most important case 
( n , , n , )  = ( 2 , 2 )  are given in Table I, where besides the stan- 
dard designations of the states we also indicate their Po pari- 
ties. 

The role of the Po-parity classification is apparent even 

in this simplest case. Indeed, let us first consider the rI states. 
It can be seen that there are, for example, two essentially 
different In, states possessing different Po parities. The use 
of the last quantum number allows us to immediately write 
out the eignefunctions of the quasimolecule, and avoid the 
matrix-diagonalization procedure. A similar situation ob- 
tains for the other rI states. 

The number of Z states is the highest. In this case the Po- 
odd states can be immediately separated, but there are 
among the Po-even states triplets for which the other quan- 
tum numbers also coincide; here the perturbation matrix 
must be diagonalized. In this case, according to the general 
results that follow from the analysis of the PI-parity oper- 
ation, one energy level is unshifted, and the other two are 
located symmetrically with respect to it. The eigenfunctions 
of these states-two-electron orbitals (geminals) that take 
account of the correlation of the electrons-are superposi- 
tions of the basis functions, a fact which should be interpret- 
ed as the presence of strong interelectron correlations right 
up to extremely large internuclear distances. The nature of 
the indicated superpositions is such as to correspond to si- 

TABLE I. Eigenfunctions, energies (up to the terms - R  -'), and autoionization widths of 
doubly excited states of the H, molecule that give hydrogen atoms in the first excited state upon 
separation of the nuclei. 
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mulataneous changes in the orbital angular momentum and 
its component for each electron. 

Notice that even the basis two-electron orbitals (3)  in- 
clude a certain amount of interelectron correlation, but this 
is of a more trivial kinematic n a t ~ r e . ~ '  A similar situation 
obtains in atomic theory, where the combination of the orbi- 
tal angular momenta of electrons into a total angular mo- 
mentum also implies the existence of some correlations. But 
normally the term correlations properly refers to the less 
trivial effects connected with the deviation from the Har- 
tree-Fock approximation. 

The calculations above show that there are a number of 
states for which the level shift in the dipole-dipole approxi- 
mation vanishes. In these cases there naturally arises the 
question of which interaction gives the leading term in the 
asymptotic form of the term. Here, as follows from Table I, 
because of the symmetry properties, we do not need to solve 
the secular problem in the case n, = n, = 2; we just have to 
compute with the known wave functions the mean value for 
the corresponding interaction operator. The dipole-quadru- 
pole interaction ( -R -4)  anticommutes with the operator 
Po, as a result of which all its diagonal matrix elements com- 
puted with functions of definite Po parity vanish. The next- 
in order of magnitude-interaction is the quadrupole-qua- 
drupoke interaction ( -R - 5 ) ,  the computations for which 
yield in a number of cases a nonzero shift4' (see Table I) .  The 
dipole-octupole interaction, which has the same order of 
smallness in the asymptotic expansion, does not contribute 
to the matrix elements in the n, = n, = 2 case. But there are 
also terms to which the quadrupole-quadrupole interaction 
makes no contribution. The leading term in the asymptotic 
expression is given here by the dipole-dipole interaction in 
second order perturbation theory ( - R -6; the van der 
Waals potential). The calculation of the corresponding coef- 
ficient is beyond the scope of the present paper. 

It can be seen from Table I that there are cases in which 
the asymptotic expressions for the term contains a nonzero 
term - R -3, as well as nonzero terms - R -'. The region of 
internuclear distances in which it is permissible to use the 
first term of the expansion can be estimated from the condi- 
tion for equality of the first and second terms in order of 
magnitude, which yields R k 5 . 5 ~ ~ .  

It can be seen from Table I that the term for the last of 
the considered states has a minimum at large internuclear 
separations. Using for the estimate the first two terms of the 
multipole expansion, we find that the minimum corresponds 
to the distance R z7ao,  and that it possesses quite a large 
depth (0.026 a.u.). Owing to the large value of R,, such a 
molecular state is highly stable against autoionization (the 
width, as estimated from the results obtained in $4, is equal 
to 4~ lop6 a.u., which is comparable to the radiative 
width). 

In the n, = n, = n case, the level shift for the state with 
the greatest possible value of A ( A  = 2n - 2) is equal to zero 
in the dipole-dipole approximation for the interaction. 

There are two states with A = 2n - 3; one of them is Po 
even, and for it the shift is also equal to zero on account of the 
selection rules. For the Po-odd state the shift can be comput- 
ed analytically: 

In then, = n, = 2 case the structure of the spectrum is 
fully explained by the symmetry properties discussed in $2. 
But in the other cases, as the numerical computation shows, 
the spectrum possesses additional characterisitics, such as 
for instance degeneracy of some levels. 

From the general point of view the subject of the present 
paper is the problem of the classification of the doubly excit- 
ed states of the hydrogen molecule, i.e., the search for the 
complete set of quantum numbers for them. As has been 
shown, in certain cases it is sufficient for this purpose to add 
the quantum number Po to the standard quantum numbers 
entering into the designation 2S+ 'A u.g of the state, and also 
to the principal quantum numbers n , and n, of the separated 
atoms. In the general case it is also necessary to indicate the 
eigenvalue of the dipole-dipole operator to which the term in 
question corresponds. 

If in addition we take the fine structure of the energy 
levels of the hydrogen atom into accout, then we can distin- 
guish two asymptotic regions of internuclear separations ac- 
cording to the relation between the level splitting in the di- 
pole-dipole approximation and the magnitude of the fine 
splitting; in the intermediate region there occurs a recon- 
struction of the states of the quasimolecule. 

54. THE AUTOIONIZATION WIDTHS AND THE PENNING 
PROCESS 

As has already been indicated in the Introduction, a 
quasimolecule in the states under consideration is unstable 
against autoionization. The autoionization width in the sim- 
plest approximation is given by the well known perturbation 
theory formula: 

where li) is the initial state (see $4 2 and 3) and If) is the 
final state in which one of the electrons is in the continuum 
and the other is in the hydrogen-atom state with the princi- 
pal quantum number nf. If n,, n2>3, then autoionization 
decay, the atom produced from which can either be in the 
ground state or in any of the excited (nf > 1 ) states, is possi- 
ble. The dominant contribution ( -R -6) to the width at 
large internuclear separations is made by the dipole-dipole 
term in the interaction V. 

For the final state If) the basis wave functions can be 
chosen in a form similar to (2):  

where $,,,,,,,, is the continuum Coulomb wave function nor- 
malized to the 6 function of the electron energy. The quanti- 
ty E, can be found from the energy conservation law. In the 
general case the final states ( f) should be constructed from 
the basis functions (9) in the same way as is done in $9 2 and 
3 for the initial states. But if we are interested not in the 
partial autoionization widths, but in the total width for the 
decay into a state with a given nf, then we can use the for- 
mula 
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taking into account the fact that the matrix element 

is nonzero only in the case when I ,  - lf = & 1 and 
I ,  - I ,  = 1. Notice that the exact quantum numbers dis- 
cussed in 9 2 are conserved in autoionization. 

Proceeding to the specific case of the states with 
n ,  = n, = 2, let us note that here the only decay scheme pos- 
sible is the one in which the hydrogen atom produced is in 
the ground state (nf = 1). For the 'Z; and 3X; states the 
autoionization decay is strictly forbidden, since they are the 
lowest energy states with the appropriate symmetry. The 
results of the width calculations for the remaining states are 
given in Table I. 

The results obtained can be directly used to estimate the 
cross section for the Penning process. In the case of suffi- 
ciently fast collisions we can consider the trajectories of the 
atomic particles to be rectilinear, and, ignoring the transi- 
tions between the the adiabatic states, estimate the cross sec- 
tion in the approximation first considered by Smirnov and 
Firsovlo (see also Ref. 11 ). For slow collisions the curvature 
of the trajectories is important. In the simplest approxima- 
tion the cross section for the Penning process can be assumed 
to be equal1' to the orbit-formation cross section, which, for 
the interaction potential V(R) = - a/R ', has the form 
a = 3 n ( a / p ~ ~ ) ~ / * ,  wherep is the reduced mass and v is the 
collision velocity. To estimate the cross section, let us again 
ignore the transitions between the adiabatic states, and take 
into consideration the terms corresponding to attraction 

(both the R - 3  and R - 5  terms). For the cross section, aver- 
aged over the initial states, we obtain u = 1300~: for 
v = (3kT/2p) ' I 2 ,  T = 300 K. 

The authors are grateful to Yu. N. Demkov and A. K. 
Kazanski'i for a discussion of the paper. 

"To reduce the order of the matrix to be diagonalized, we must analyze 
the symmetry of the problem ( 8  2).  

2'Let us note that, in the case of the interaction between hydrogenlike 
ions, the degeneracy of the unperturbed states is partially lifted by the 
charge-dipole interaction ( -R  -*I. 

"The electron motions are least correlated in the wave functions used in 
the method of molecular orbitals, but, as is well known, this method is 
often inapplicable at large internuclear distances. 

4'Thissame interaction is responsible for the next (after R - 3 )  term in the 
asymptotic expression for the remaining terms. This term is given in 
Table I. 
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