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The susceptibilities y,, determining the energy of an atom in a constant magnetic (B)  and 
alternating electric ( F )  fields are computed with the aid of perturbation theory up to the sixth 
order for an arbitrary orientation of the vectors F and B. The susceptibilities at F-field 
frequencies w higher than the ionization threshold are complex, the imaginary part 
determining the magnetic-field-related correction to the photoionization cross section. The 
numerical values of the ground state susceptibilities for the hydrogen and alkali-metal atoms 
are computed in a broad range of frequencies w, and the effect of the magnetic field on the 
photoionization cross section is analyzed. 

1. INTRODUCTION 

The effects of the simultaneous action of an electric and 
a magnetic field on an atom have been investigated only in 
the simplest cases: in the lowest orders in the intensities of 
the electric (F)  and magnetic (B) fields and in parallel and 
mutually perpendicular static F and B fields in the case of 
the hydrogen-like atoms. The corrections of the order of FB 
and F 2 B  have been determined for the excited states of hy- 
d r o g e n ' ~ ~  and many-electron atoms3 Higher order correc- 
tions to the ground-state energy of hydrogen are found with 
the aid of algebraic procedures, various modifications of 
which are used in Refs. 4-6. But these methods, effective in 
the case when the vectors F and B are parallel, are complicat- 
ed in the case of arbitrary orientation of the vectors, and are 
also inapplicable in the case of alternating (monochromat- 
ic) fields F( t ) .  

In the general case the magnetoelectric susceptibilities 
y,, of an atomic level with energy E,, which are defined as 
the coefficients in the expansion of the energy (or quasi- 
energy in the case of variable fields) of an atom in a field in 
powers of F and B ": 

k,n 

can easily be analyzed within the framework of the standard 
schemes of perturbation theory. In the present paper we car- 
ry out such an analysis for terms with k + n ~ 6  in both con- 
stant and monochromatic F ( t )  fields. 

As follows from symmetry considerations, the y,, 
terms with odd k are nonzero only in the excited hydrogen 
states with a constant dipole moment; therefore, in the case 
of the S states only the effects of even order in the amplitude 
Fmake a contribution. The index n can be either even or odd, 
and in the latter case A8,,,,, + , # O  only in an alternating 
field F ( t )  with a nonzero degree of circular polarization. In 
this case the energy corrections of odd orders in B arise as a 
result of the interaction with the magnetic field of the con- 
stant magnetic moment induced in the atom by the rotating 
electric field. As shown in Sec. 3, the quantities y,,,, + , are 
uniquely connected with the corrections to the Verdet con- 

stant of a gas in strong light and magnetic fields. The suscep- 
tibilities y,,,,, and their connection with the Cotton-Mou- 
ton magnetic birefringence constant are discussed in Sec. 4. 
For the numerical calculations of the composite matrix ele- 
ments determining the y,, in hydrogen and the alkali-metal 
atoms, we use the analytic continuation of the Sturm expan- 
sion of the radial Green function of the optical electron in the 
atom,' a procedure which allows us in the case of an alternat- 
ing field F ( t )  to investigate the frequency (w) regions below 
and above the ionization potential lE,I. In the latter case the 
susceptibilities y,,, have imaginary parts, which give rise to 
corrections - (aB)"  to the normal photoionization cross 
section. These corrections, which determine the effect of a 
constant magnetic field on the photoionization of atoms, are 
discussed in Sec. 5. 

2. PERTURBATION THEORY FOR THE QUASI-ENERGY OF 
AN ATOM IN AN ALTERNATING ELECTRIC AND A 
CONSTANT MAGNETIC FIELD 

Let us consider an atom located in a constant magnetic 
field B and the field of a plane electromagnetic wave with 
frequency w and electric vector 

where Fand e are the amplitude and polarization vector and 
k = awn (In1 = 1) is the wave vector. We can adequately 
take the interaction with the light-wave field into account in 
the electric dipole approximation, neglecting the magnetic 
component H( r , t )  = [n.F(r,t) ] and the effects of the spa- 
tial inhomogeneity of the field. Since we are interested only 
in the "interference" terms y,, F ,B ", due to the joint action 
of the magnetic field B and the wave field, allowance for the 
magnetic component will give only small corrections -a2 to 
y,,, which, like the spatial field inhomogeneity effects 
( -a2w2 4 1 ), are negligible. 

The operator describing the interaction of the atom 
with the F and B fields is 

where 
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Va=F Re { (re) e-'"'), (23) 

r is the radius vector of the valence electron, 

I and S are the total angular momentum and spin of the 
electron, and 

is the diamagnetic interaction operator. 
The expansion ( 1 ) of the quasi-energy g of the atom in 

powers of F and B and the computational formulas for the 
susceptibilities y,, can be obtained, using the general pertur- 
bation-theory formalism for the quasi-energy 

where E, is the energy, 10)) is the ground-state vector of the 
unperturbed atom, 

is the wave function of the atom in the field, and @, is the 
quasienergy Green function for the unperturbed Schro- 
dinger equation. The double brackets denote integration 
over the space, and averaging over the time, variable. In or- 
der to obtain an explicit expression for the correction of the 
order F ,B " to E,, we must have an expression for the quasi- 
energy %' in the (k + n)th order in the interaction V. To 
obtain the latter expression, we must substitute into (3)  the 
(k + n - 1) th order expression for I*)), obtained by iter- 
ation of (4 ) .  Then expanding in a series in powers of V the 
parameter $ in the Green functions (3, , and grouping the 
resulting terms, we obtain the following expressions for the 
corrections A$'q' with 4 9 6  (cf. Ref. 9): 

Here 

T", nz ... n* = ((01 V @ ~ , ~ ~ V @ , , ~ ~ V  . . gECpV 10)) (6)  

is the composite matrix element of the ( p + 1 )st order in V, 
containing (n, + n, + . . . + n, ) unperturbed quasi-energy 
state (QES) Green functions By substituting into these 
formulas the explicit expressions for the perturbation opera- 
tor V, (2 ) ,  we can obtain the expansion of %' in powers of F 
and B right up to the terms with k + n = 6. 

3. THE SUSCEPTIBILITIES yZk,,,+, AND THE VERDET 
CONSTANT 

The general expression for the susceptibility y2, in a 
state with arbitrary angular momentum J is derived in Ref. 
3. For the state with J = 0 

where - 1 ( A (  1 is the degree of circular polarization of the 
wave [ A  = 1 ( - 1) for right-handed (left-handed) circular 
polarization and A = 0 for linearly polarized radiation], 0 is 
the angle between the vectors B and n, 

ntnzns nenrna ntnana 
61,rr ( ~ i o z ) = p l , r ,  ( w t o z ) - ~ ~ , ~ ~  ( - 0 1 - 0 2 )  

is the difference between radial composite matrix elements 
of the type 

where 

is the radial Green function for the valence electron.' Similar 
expressions can be obtained for y,, and y2,. Notice that these 
quantities are closely tied with the susceptibilities determin- 
ing the Faraday effect in an atomic gas, as well as with the 
corrections to the Faraday effect in strong electric and mag- 
netic  field^.'^." If we write the Verdet gas constant with 
allowance for the corrections -F2 and - B in the form" 

v(m)=nN"aZo {YO ( o )  +FYI ( a )  + ( ~ B ) ~ Y ,  (Q ) ) ,  

where No is the number of atoms in a unit volume of the gas, 
then the susceptibilities y,,,, + , can be expressed in terms of 
the coefficient Y as follows: 

The numerical computation and the characteristics of 
the frequency dependence of the quantities Y(w) for the 
atoms of hydrogen, the alkali metals, and the inert gases are 
discussed in Refs. 10 and 11. Here we only note that the 
parameters Y are determined by the differences between 
composite matrix elements of the type (8), differences 
which go to zero as w -0, with the result that in a constant 
electric field (i.e., for o = 0),  as in the case when F = 0, the 
corrections A$,, of odd order in B vanish. 

4. THE SUSCEPTIBILITIES y,,,, AND THE COTTON- 
MOUTON CONSTANT 

The corrections Ag,k,,, are different from zero at all 
frequencies and for all polarizations of the electric field F ( t ) ,  
and also for arbitrary orientation of the vectors e and B, 
irrespective of the quantum numbers of the atomic level. Of 
greatest interest here is the first nonvanishing correction 

which determines the change in the electric susceptibility in 
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a magnetic field and, conversely, the change in the diamag- 
netic susceptibility in an electric field. With the aid of the 
expressions for A g ' 3 '  (with the operator V, ), and A g ' 4 '  
(with the operator V,, ) we can, after integrating over the 
angle variable for the valence electron, and averaging over 
the time in (5 )  and (6), obtain 

bzz (0) ='/360~2u;;" (0o) +oil:' (om) -50::' (ooo) 1, (9) 

where 

+ pn'."n~+' (-a1. . . -op) 'I... Z p  

is the sum of the radial composite matrix elements of the 
( p  + ])st  order, (8) ,  8 is the angle between the vectors e 
and B, and P,(x) is the Legendre polynomial [the field F ( t )  
is assumed to be linearly polarized]. If the electric field is 
circularly polarized, then P2(cos 8 )  in (9)  should be re- 
placed by - P,(cosfl)/2. And if the field F is a constant 
field, then the right member of (9)  should be multiplied by 2. 

Notice that the correction A  g2, can also be expressed 
in terms of the atom's magnetoelectric susceptibility 
T,,~, ( - w;wOO), which governs the Cotton-Mouton effect in 
an atomic gas": 

Evaluating here the sum with allowance for the symmetry 
properties of the tensor vijk,, we obtain for the case of the 
nondegenerate states of the atom the expression 

1 
7 2 2  (ol 0) = - - [2q*x*z+q,zz,+2 (qzzzl-qx~z~) P2 (cos 0) I. 

24a2 
(10) 

The higher-order susceptibilities y,,,,, determine both 
the corrections to the energy and the higher-order correc- 
tions to the susceptibility vijkl. In particular, the dependence 
of the components of the tensor r],,,, on the intensities Fand 
B can be represented in the form 

+(aB)2y21((~). O ) ] .  (11) 

This same expression with 8 = 0 replaced by 8 = n-/2 gives 
the component v,,, . 

As in (9) ,  the dependence of y,,,,, (w,8) on 8 has the 
form 

yza.zn(@, 0 ) = a z , . z n ( ~ ) - b z k . 2 n ( ~ ) P 2 ( ~ ~ ~ e ) ,  (12) 

with P, (cos 8) replaced by - P, (cos fl)/2 in a field with 
circular polarization." Similarly to (9) ,  the quantities 
a,,,, ( a )  and b, , , ,  ( w )  can be represented in the form of 

linear combinations of the composite matrix elements D of 
(higher) orders right up to the (2k + 2n)th. 

Notice that the operator V,, makes a contribution to 
y2,,,, (w,8) only when 8 f 0, and this gives rise to a signifi- 
cant difference in the frequency dependences of y,,,,, (w,O) 
and y,,,,, (w,z-/2). Thus, for example, y,,(w,O) has second- 
order resonance poles at the frequencies for the transitions 
into the P states, remaining sign-constant and nonzero 
everywhere, whereas y2,(w,a/2) has third-order poles at 
these same frequencies and changes sign on going through a 
resonance, going to zero within each interresonance inter- 
val. In view of this characteristic of the dispersion depen- 
dence of the y,,,,, tensor components, it is convenient to 
consider not the quantities a,,,,, (w) and b,,,,, ( a ) ,  which 
are the irreducible parts of the y,,,,, tensor, but their linear 
combinations. 

As an example, in Table I we depict the dispersion de- 
pendence of the quantities y!, (w) and y;, (w) for the hydro- 
gen atom in the ground state. In the region w > I E,I = 3 these 
quantities are complex, a situation which corresponds to the 
possibility of ionization of the atom; therefore, in the table 
we give both Re y and Im y for w > i. It should be noted that 
y!, (a) is of constant sign, but that y;, (w) changes sign in 
each interresonance interval. This behavior of y,,(w ) is uni- 
versal for the s states of atoms. Figure 1 shows plots of the 
functions y!, (w) and d, (w) for cesium in the 6s ground 
state. As can be seen from the figure, the y tensor for this 
state has the same structure and frequency dependence as 
the corresponding tensor for the hydrogen atom. As has al- 
ready been noted above, the change in sign of y;, is caused by 
the contribution of the dipole interaction V,, , which, for 
8 #O, leads to the Zeeman splitting of the virtual p states 
with angular momentum components m = t 1. The contri- 
bution of this splitting in second order in B is given by the 
matrix element D::' in (9) ,  which can also be written in 
terms of the second frequency derivative of the normal dy- 
namical polarizability a ( w )  of the atom. The difference in 
the dispersion formulas for y l i  and y1 leads to a situation in 
which longitudinal and transverse magnetic fields have in 
the region w < lE,( qualitatively different effects on the elec- 
tric dipole polarizability a ( w ) ,  which, with allowance for 
the terms -B 2, has the form 

a(@, B) =a (o) -4 (aB)'yZ2 (o, 0 ) .  (13)  

In particular, in the region O(w <w, (w, is the ground 
state-first excited p state transition frequency) yll only 
makes the polarizability a (w,B) smaller than a ( a ) ,  while y1 
changes the sign in this w range and substantially increases 
a(w,B) as w approaches 0,. 

Let us point out the weakening effect of a magnetic field 
on the static polarizability of atoms (in the case of the hydro- 
gen atom this fact has been noted before by Turbiner'). In 
this case the effect of a longitudinal magnetic field is weaker 
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TABLE I. Magnetoelectric susceptibilities of the hydrogen atom in the ground state ( n )  = 10". 

than that of a transverse field (Y!, ( 0 )  < A2 ( 0 )  1. To cor- For y!, ( 0 )  and y), ( 0 )  these numbers give the same result as 
roborate this fact, let us give the numerical values of y2,(0) Ref. 6; the y2,(0) also coincide with the data reported in Ref. 
for a number of atoms: 4, in which the susceptibilities y4, are not computed. The 

ATOM: H Na Cs numerical values obtained in Ref. 5 for y2,(0) coincide 

T Z Z ~ ~ :  159132 1048 1627 neither with the data presented for the FI(B case, nor with 
~ 2 2 ~ :  797196 1445 4779 those presented for the FIB case, and are incorrect. 

The results for the hydrogen atom coincide with the data 
reported in Ref. 4, while the y!, values coincide with the 
data reported in Refs. 5 and 6 .  The value y',, = 73 1/96, ob- 
tained in Ref. 5, is incorrect (only the case of parallel fields is 
considered in Ref. 6 ) .  

Let us note that, for the hydrogen atom in static F and B 
fields, the computation of the composite matrix elements 
(8)  is trivial when use is made of the Sturm expansion of the 
reduced Coulomb Green function8 and the orthogonality 
properties of the Laguerre polynomials. Below we present 
the thus computed values of the coefficients ( 0 )  and 
b,,,, ( 0 )  in ( 12) for higher-order susceptibilities of hydro- 
gen in the ground state. 

a*,=-25661 915184, bZi=-724687141472; 

ai2=559889314tj08, bi2=826073/1152. 

5. CORRECTIONS TO THE PHOTOlONlZATlON CROSS 
SECTION IN A MAGNETIC FIELD , rl 

The question of the change in the photoionization of 
atoms under the action of a constant magnetic field is impor- 
tant from both theoretical and practical standpoints. On the 
one hand, this question is, from the methodological stand- 
point, interesting in respect of the elucidation of the general 
laws governing the effect of a magnetic field on the quantum 
transition probabilities, and, on the other, it provides infor- 
mation for the quantitative description of the elementary 
photoprocesses that occur in gases in the presence of mag- 
netic fields. 

Within the framework of the standard perturbation- 
theory scheme allowance for the effect of a weak magnetic 
field on photoionization would require the consideration of 

FIG. 1. The real parts of the longitudinal (y ! ,  ( w ) ,  dashed 
curves) and transverse (A, ( w ) ,  continuous curves) compo- 
nents of the magnetoelectric susceptibility of cesium atoms. 
The resonances on the 6p, 7p, and 8p states and the behavior 
in the region above the photoionization threshold are shown. 
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the effect of the B field up to second order in the energies and 
wave functions of the discrete and continuous spectra of the 
atoniic electron, a procedure which, in the latter case, is 
quite difficult because of the singularities that arise in the 
computation of the corrections to the continuum wave func- 
tions. But in the magnetoelectric-susceptibility formalism 
the effect of a magnetic field on the photoionization cross 
section comes out naturally in the consideration of the fre- 
quency region w > IE,J, where JE,I is the binding energy of 
the valence electron. For such frequencies the susceptibili- 
ties y,,, (w,0) are complex, and the imaginary parts of 
y,,, (w,0) determine the corrections -B " to the photoioni- 
zation cross section, in accord with the general ideology of 
the complex-quasi-energy formali~m.~ 

Taking account of the effects of only the first two non- 
vanishing orders in B, we can represent the total cross sec- 
tion for photoionization of the s state in the form 

Here a,(w) is the cross section for photoionization of the 
atom for B = 0, 

aI ( o )  =16nao Im y,, ( o ,  B )  

is the coefficient determining the correction of first order in 
B, a quantity which is nonzero only when the degree of circu- 
lar polarization is nonzero and the direction of propagation 
of the field F(t)  makes an angle B #n-/2 with the vector B 
[see (7)  1. The second-order correction, determined by the 
coefficient 

0, ( a )  =l6nao) Im y,, ( o ,  0) ,  (15) 

is nonzero for any polarization of the alternating field and 
any mutual orientation of the vectors e and B. 

It is clear that, for y,, #0, the dominant contribution to 
the constant-magnetic-field induced change in the cross sec- 
tion for ionization of an atom is made by the term linear in B, 
which is easily computed from (7 ) :  

Next, using a,(@) and Imp::' explicitly expressed in terms 
of the radial matrix element p, ,,,, for the bound-free dipole 
transition into the state with energy E and electron orbital 
angular momentum I = 1, we obtain 

00 ( a )  = 4 1 3 ~ ~ b  1 ~ 1 3 1 ,  as 1,. (16) 

In particular, for the Is state of hydrogen this expression 
assumes the form 

where 

4n2ao 256 exp (-4k-' arctg k) 
0'. (0)  = 70' l-e-z"/k 

and k ,/2 = E = w - 1/2 is the kinetic energy of the photo- 
electron. Thus, depending on the sign of the product 
A cosp, a circularly polarized field can intensify or abate 
photoionization. And if for hydrogen the derivative 
(a /aE) IpE I,ns l 2  is negative for all E > 0, for many-electron 
atoms this quantity can change sign, going to zero at some E 
values. The meaning of the result ( 16) becomes quite clear if 
we take into account the fact that, in the linear approxima- 
tion, the effect of a magnetic field manifests itself only in the 
splitting of the levels by an amount AE,, = fm,crB (the 
Zeeman effect). Therefore, the photoelectron energy 
E = E, + w in the case of ionization from thes state in a field 
B is changed to E, + w + AE,,, m, = + 1, and (16) givzs 
the first two terms of the expansion of the cross section a, for 
ionization ( E  = E, + w f JaB)  into states with m, = & 1 
in a series in powers of B. It is clear that the linear (in B) 
terms can enter into the cross section only in the form of a 
true scalar, which in our problem is the quantity [ee*].B. 
This explains the presence of the factor A cos f i  in (7)  and 
(16) and the vanishing of the effect in the case of linear 
polarization of the field F ( t )  and when k lB  in the case of 
elliptic polarization. Notice that the quadratic terms that 
arise from further expansion of a,(E, + w + AE,,) in pow- 
ers of B are nonzero in these cases as well (see below). 

A similar calculation can be carried out for the second- 
order (in B)  correction determined by the imaginary part of 
the susceptibility y,,(w) in (15). The results obtained in 
Sec. 4 show that, for hydrogen, Im y,, < 0 at all electric-field 
frequencies and for all values of the angle 0, i.e., the cross 
section for photoionization by linearly polarized radiation is 
always greater in a B field. In this case, as follows from Table 
I, limy:, I > / Imyi, I (by almost an order of magnitude at the 
ionization threshold), i.e., a transverse B field more effec- 
tively promotes ionization than a longitudinal field. It 
should also be noted that, in the frequency region (w > 1 E,,I ) 
in question, the real part of y,, is positive, and this leads to an 
increase (in absolute value) in the real part of the polariza- 
bility ( 13) ( a (w)  < 0 for o > IE,l), and, consequently, in 
the ground-state quasi-energy shift in the resultant field; in 
this case Re y;, > Re y!, . This result does not depend on the 
field frequency in the region w > I E,I, since all the suscepti- 
bilities monotonically decrease in absolute value as w in- 
creases. 

Thus, the nature of the effect of a magnetic field on the 
dynamical polarizability a(#) of hydrogen in the frequency 
region w > IEol is the direct opposite of what obtains in the 
static case. As is well known, in static F and B fields the 
magnetic field has a stabilizing effect on the bound state, 
decreasing both the electric-field induced energy shift and 
the probability for tunneling ionization in the F field. I"' The 
situation is different in a high-frequency electric field, as can 
easily be seen in the case of the level shift from the different 
characters of the effects that a static and a linearly polarized 
high-frequency field F ( t )  have on an atom in the absence of a 
magnetic field. Whereas in a constant (or low-frequency ) F 
field the level E, is lowered, in fields with w > I E, I it is shifted 
upwards (by an amount equal to the mean vibrational ener- 
gy of the electron in the wave field in the case when w S lE,l 1. 
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TABLE 11. 

The application of a magnetic field leads, as a result of the 
localizing effect on the bound states, to a decrease in the 
deformability of the electron shell by the electric field, i.e., it 
makes a negative contribution to the polarizability (y,,(O) 
and Re y,, (w > I E,I ) are positive). But if in a constant field 
this leads to a decrease in the total level shift ( a ( 0 )  > 0 ) ,  in 
fields with w > lEoI, in which Re a ( w )  < 0, the level shift 
only increases. 

The effect of a magnetic field on the ionization is also 
not the same for static and alternating F ( t )  fields. In an 
alternating field the corrections -B to the photoeffect 
cross section arise as a result of the B-field induced changes 
in the ground-state and continuum energies and wave func- 
tions of the atom. The contributions of each channel can be 
analyzed by investigating the imaginary parts of the individ- 
ual matrix elements o entering into y,, in (9 ) .  The term 
taking account of the change in the ground-state energy is 
given by the imaginary part of o;:' (w,w), and can, similarly 
to (16), be represented in the form of a product of the dy- 
namical shift AE, = ( 1/12) (r  ') (aB)' and the derivative 
doo/dE. This effect makes o(w,B) smaller than u,(w), since 
do,,/dE < 0 (in hydrogen o,,(w) decreases monotonically 
with increasing w). In contrast, Irno;?' can be expressed in 
terms of d 'o0/dE * > 0, and increases the cross section as a 
result of the above-discussed Zeeman splitting of the contin- 
uum states (this effect vanishes in the case F ( t )  llB, when the 
component of the orbital angular momentum of the photo- 
electron in the direction of B is equal to zero). The imagi- 
nary parts of d;' and 4;' arise from the "diamagnetic" cor- 
rections, -B  ,, to the ground-state wave function, and lead 
to an increase in the photoeffect cross section. This corre- 
sponds to the fact that the effective localization of the bound 
state by the magnetic field leads to an increase in the overlap 
integral involving the oscillating continuum wave function. 
Finally, Im a;:' makes to the cross section a contribution 
that arises from the effect of the B field on the continuum 
wave function. Here we cannot draw an unequivocal conclu- 
sion about the sign of the effect, since the result depends on 
the energy of the photoelectron. The numerical calculations 
fully corroborate the foregoing, and show that only 
Im a;:' ( w , ~ )  behaves nonmonotonically, changing sign in 
the frequency range from w = 0.6 tow = 0.65. For compari- 
son of the contributions of the various effects, in Table I1 we 
present the values of the imaginary parts of the individual 
matrix elements in (9 )  for w = 0.6 and 1 .O. Numerically, the 
contributions of Im u;yl and Im o!:' to Im y,, are insignifi- 
cant. Thus, the monotonic character of the frequency depen- 
dence of the correction, -B ', to the cross section for the 
photoeffect in hydrogen is largely accidental, and is due to 
the fairly smooth frequency dependence of the composite 

matrix elements for the transitions into the continuum in the 
case of the purely Coulomb potential. 

For many-electron atoms the frequency dependence of 
Im y,, is more complicated, and does not allow us to draw a 
general conclusion about the nature of the effect of a magnet- 
ic field on photoionization in the entire frequency region 
w > 1 EoI. Thus, for example, in the case of the alkali metals 
there exist characteristic frequencies at which the ionization 
cross section uo is close to zero (the so-called Cooper mini- 
ma).  The imaginary parts of the susceptibilities y,, vanish or 
also attain their minimum values roughly at these same fre- 
quencies. As an example, in Fig. 2 we show plots of the func- 
tions uo(w) and u;I1(w) for the ground state of the sodium 
atom, as computed with the use of the technique of reexpan- 
sion of the Sturm series for the optical-electron Green func- 
tion' in the approximation of the model-potential m e t h ~ d . ~  
As can be seen from the figure, a, has a characteristic mini- 
mum at a frequency w = 1.5 1 EoI, while a! changes sign in 
this frequency region. Such oscillations of the imaginary 
part of the susceptibility yZ2(w,B) are clearly a result of the 
electron-core interaction, which essentially depends on the 
photo-electron energy. A similar type of interaction is also 
responsible for a number of other effects in the photoioniza- 
tion of the alkali-metal atoms: a change in the direction of 
polarization of the photoelectrons (see, for example, Ref. 
14), a change in the direction of the drag current,15 etc. 

FIG. 2. Photoionization cross section u , , (o )  (dashed curve) and the sec- 
ond-order corrections in a longitudinal and a transverse magnetic field 
(u! (01, d, ( w ) ,  continuous curves) for sodium atoms. The abscissas are 
the values of the ratio of the photon energy to the ionization potential. 
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6. LIMITS OF APPLICABILITY OF THE PERTURBATION 
THEORY AND THE POSSIBILITY OF EXPERIMENTAL 
OBSERVATION OF THE MAGNETOELECTRIC EFFECTS 

The above-performed analysis of the tensor structure 
and dispersion properties of the magnetoelectric susceptibi- 
lities y,, allows us to obtain new information about atomic 
spectra in variable electric and static magnetic fields. Al- 
though all the quantitative data were obtained for only the 
ground states of hydrogen and the alkali-metal atoms, it is 
clear that we can easily carry out in similar fashion calcula- 
tions for the excited states of nonhydrogenic atoms. In parti- 
cular, numerical data for the susceptibilities y,, of the excit- 
ed nP, states of a number of atoms are obtained in Ref. 3. For 
the excited states of hydrogen the situation is complicated by 
the accidental Coulomb degeneracy. In static F and B fields 
it is possible in a number of cases to obtain an analytic solu- 
tion to the problem of the hydrogen spectrum on the basis of 
a group-theoretical analysis'.2 or special modifications of the 
semiclassical perturbation theory.'"." But for optical F ( t )  
fields, it is doubtful whether the indicated approaches can be 
effective, and quantitative results can, apparently, be ob- 
tained only through a numerical diagonalization of the ma- 
trices formed by the composite matrix elements for the de- 
generate states of the nth shell. 

The extension of the calculations to the case of arbitrar- 
ily polarized and oriented variable electric fields, and also to 
the case of the easily polarizable alkali-metal atoms makes it 
possible for the theory to be quantitatively verified in experi- 
ments with metallic vapor located in a magnet$ field and 
irradiated by intense light radiation. There arises here the 
question of the field intensity ( F  and B)  regions where we 
can limit ourselves to terms - F 'B and F 'B in the expres- 
sion ( 1 ) for AF?. Since the expansion ( 1 ) is a perturbation 
theory series, it is clear that Fand B a  should, in any case, be 
small compared to the characteristic "intra-atomic" fields 
Fo and B,, (E, = 5 . 1 4 ~  lo9 V/cm and B, = 1.71 x 107G for 
the ground state of hydrogen). But the specific estimates 
F,,, and B,,, for the intensities of the fields in which the 
terms - F 'B and F 4 B  are still insignificant depend on the 
magnitudes of the corresponding susceptibilities, and are 
different for different atoms. Furthermore, the situation is 
not the same for constant and variable F fields, since the 
series ( 1 ) is asymptotic in the first case, but has a finite radi- 
us of convergence with respect to F i n  the second.'' 

Let us first consider the case of a static electric field or a 
linearly polarized F ( t )  field. The results of Sec. 4, as well as 
the results of numerous susceptibility calculations carried 
out for purely electric and magnetic fields (see, for example, 
Ref. 6)  allow us to write down the following expansion of 
A g  for the 1s state of hydrogen right up to terms of sixth 
order: 

regarded as the magnetic-field related corrections to the 
electric polarizability a ( F ) ,  or, conversely, as the correc- 
tions to the magnetic susceptibility x ( B )  in the F field. As 
can be seen, the electric-field induced corrections increase 
significantly faster than the magnetic-field induced correc- 
tions (y, + ,,, / y , ,  ) y , ,  +, / y , ,  ), so that the perturbation 
theory in terms of the electric field is the first to break down 
as F and B increase. As to the critical field intensities F,,, 
and B,,, up to which we can use the results of the first non- 
vanishing order in B and F, they turn out, as can be seen from 
( 17a)-( 17c), to be quite high, and in laboratory experi- 
ments, in which the fields F and a B  are several orders of 
magnitude smaller than F, and B,, we can, with a high de- 
gree of accuracy, set y(B,F) zy,,(w = 0,e) .  In a linearly 
polarized alternating F ( t )  field the expansion of the quasi- 
energy AZ9 ,, again has the form ( 17), with the only differ- 
ence that a ( F )  and y(B,F) are now frequency dependent. 
The known values of the dynamical polarizabilities and hy- 
perpolarizabilities of hydrogen,' as well as the y,,(w) and 
y4,(w) estimates show that in this case also the quantities 
F,,, and B,,, do not differ essentially from the estimates 
obtained in the case of static fields (the case of resonance 
F ( t )  fields, which requires a separate analysis, being the only 
exception). A similar investigation can be carried out for the 
ground states of the alkali-metal atoms. The critical fields in 
this case turn out to be lower than the corresponding fields 
for hydrogen. Nevertheless the approximation y(B,F) 
~ y , , ( w , 8 )  is fairly good in light-wave fields with F 5  10" V/ 
cm and magnetic fields with intensities right up to 10" G. 

In the case of circularly polarized F ( t )  fields the terms 
with odd powers of B in the expansion of the type ( 17) are 
also nonzero. The expression for AZ? up to the fifth-order 
term is, when only the cross terms are taken into account, 
given by (for the meanings of the symbols, see Sec. 3 ) 

where /3 is the angle between B and the wave vector of the 
light field and A = f 1. As an example, let us give the nu- 
merical values of the coefficients in ( 18) for hydrogen at the 
frequency w = 0.2 a.u. (the values of Yo,,,, were taken from 
Refs. 10 and 11; those of a,, = f (yl + 2y1) and b,, = 4 
(YL - yll), from Table I ) :  Y, = 19.7; Y, = 1 . 8 ~  10,; Y, 
= 3 x 10'; a,, = 4.4; b,, = - 0.59. It can be seen from this 

that the higher-order corrections to Y, are important only in 
fields of intensities close to F,,BO. In the alkali-metal atoms 
the higher-order susceptibilities y,, increase more rapidly 
with increasing k and n. For example, for cesium at the neo- 

A~,,=-'/2a(F)FZ-f/2X (B) (aB) Z + y  (B, F )  p2 (&) 2, ( 17) dymium laser = 0.043 a.u. we have YO = 9.7 
x lo4; Y, = - 7.5 x lo9, Y2 = 2 . 6 4 ~  lo', a,, = - 6X lo4, a ( F )  =4,5+111,1F2+981GF"+. . . , 
and b,, = - 8X lo4, so that aB,,, is two orders of magni- 

x(B)=-0'5+0'55(aB)'-21422(aB)'f . ( 17b) tude smaller than B,. The critical frequency dependence of 
( B ,  F )  = (8,302-3,333 cos2 0) + (1574-1076 COS' 8)F2 the higher-order susceptibilities, which is typical of atomic 

- (58,24-26,21 cos2 0)  ( U B ) ~ + .  . . , ( 1 7 ~ )  susceptibilities in the optical-frequency region,' should be 
0 being the angle between F and B. Here y(B,F) can be noted. Thus, at the rubidium lase; radiation frequency (w, 

242 Sov. Phys. JETP 64 (2), August 1986 Manakov et aL 242 



= 0.0656 a.u. ) we have in the case of cesium Yo = 7.2 X lo4, 
Y, = 2 . 6 ~  lo1', Y2 = 9 . 7 ~  lo7, = 7 x lo4, and 
b,, = 6 x lo4. It can be seen that Y, (GI, ) and Y, (GI, ) have 
different signs, but that both are large in absolute value. Al- 
though because of the large Y, value the corrections -1:' in 
( 18) are comparable to Yo even in fields with intensities 
F? 10-3F0, for the alkali-metal atoms such optical fields are 
extremely strong, and lead to the breakdown of the gas as a 
result of many-photon ionization."herefore, sources with 
F <  10-3F0 should be used in experiments on the magneto- 
electric effects; in that case the higher-order (in F) effects in 
( 18 ) are unimportant. 

The corrections in ( 14) to the photoionization cross 
section in the lowest orders in B are determined by the imagi- 
nary parts of y,, and y,,. Analysis ofthe higher-order contri- 
butions leads to the same qualitative results obtained for the 
real parts of the susceptibilities. Thus, we can, in investiga- 
tions of the effects of the joint action on an atom of electric 
and magnetic fields that are weak compared to the intrato- 
mic fields, limit ourselves to the consideration of only the 
first nonvanishing orders of the perturbation theory. The 
most promising experiments are then those with circularly 
polarized radiation, when the cross terms are linear in B, and 
can be appreciable. 

"Below we use the atomic system of units; a = e2/lic is the fine structure 
constant. 

*)Strictly speaking, the expression ( 12) is valid for arbitrary k and n only 
in a static (i.e., w = 0) field. In a variable ( o # O )  field it is valid only for 
k = 1. As k increases, the structure of the tensor y,,,,, becomes more 

and more complicated (it is sufficient to note that y,,(o) 
- - y,,,, ( - w;w, - o,w), the dynamical dipole hyperpolarizability, 

while not dependent on 8, already has two linearly independent compo- 
nents'). 
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