
The role of incoherent scattering in radiation processes at small angles 
of incidence of particles on crystallographic axes or planes 

V. G. Baryshevskii and V. V. Tikhomirov 

V .  I. Lenin Belorussian State University 
(Submitted 22 August 1985; resubmitted 28 January 1986) 
Zh. Eksp. Teor. Fiz. 90, 1908-1921 (June 1986) 

The intensity of multiple scattering of e * moving inside planes and tubes formed by atoms of 
a crystal is several orders of magnitude higher than in an amorphous material. It is shown that 
in spite of this, the Landau-Pomeranchuk effect (LPE) does not occur on incidence on 
crystallographic axes and planes at sufficiently small angles of high energy e * and y. An 
expression is obtained for the probability of radiation of a y ray by e * in a uniform field in the 
presence of uncorrelated multiple scattering of the e * . It generalizes the expression obtained 
by Migdal for description of the Landau-Pomeranchuk effect for the probability of emission of 
a y ray by e * moving in an amorphous beam, and the Klepikov-Nikishov-Ritus expression for 
the probability of emission of a y ray by e * moving in a uniform electromagnetic field. 

1. INTRODUCTION where Z is the atomic number, n is the density of atoms, 

It was established rather long ago'.2 that uncorrelated 
scattering of e * in the coherence length can substantially 
influence the processes of radiation and pair production in 
an amorphous medium. The most important result of this 
effect is the decrease of the probability of these radiation 
processes, the so-called Landau-Pomeranchuk effect 
(LPE) . In Ref. 3 Nasonov and Shul'ga showed that uncorre- 
lated scattering of e * increases appreciably when they are 
incident onto crystal axes, as a result of which the LPE will 
appear at lower energies than in an amorphous medium. Re- 
cently it has been shown theoretically4-lo and subsequently 
also e~perimentally"~'~ that on incidence of particles onto 
crystals at small angles with respect to planes (or axes) there 
is a new mechanism of radiation and pair production, which 
is accompanied by numerous polarization phen~mena.~,'.' 
In this case an appreciable fraction of the processes as a 
whole occurs inside atomic planes and tubes where the den- 
sity of scatterers is 10-lo3 times higher than their average 
density in the crystal. As a consequence it is natural to expect 
a still more distinct manifestation of the LPE and a substan- 
tial influence of coherent kattering of e * by inhomogene- 
ities of the crystal potential on the effects discussed in Refs. 
4-12. In the present work we have shown that the existence 
of a nonzero mean field of crystallographic axis and planes 
leads to absence of the LPE on incidence of e* and y at 
small angles to crystallographic axes and planes. The reason 
for this can be made clear if one considers the evolution of 
the relation between the angle of multiple scattering of e- in 
a coherence length lcoh and the characteristic radiation angle 
OChar. We recall that in an amorphous medium I,,, = EE'/ 

m2w and 8,,,, = 8, = m / ~  where w and E are the energies of 
the y and e-, E' = E - a ,  and m is the mass of the e-. We 
shall use the system of units in which fi  = c = 1. The mean 
square multiple scattering angle acquired by an e- in a 
length I is (see for example Section 5 of Ref. 13) 

a = 1/137, and amin =  RE), where R is the screening 
radius of the atom. Multiple scattering will substantially in- 
fluence the formation of the radiated y ray if 

Assuming that w -E'-E, we have i?5(lCoh ) a&-', and, 
since 0 a E-*, at sufficiently large E (in Pb at E = lo3 GeV; 
see Ref. 2) the inequality (2)  will be satisfied. A similar 
situation is realized in incidence of e-  on crystallographic 
axes at angles $ > $ = V,,, /m, where Vmax is the amplitude 
of variation of the averaged potential of the axes (or planes) 
of the crystal. For $ < $ the situation changes radically. As- 
sume for simplicity that $4 $. Then the formation of the y 
ray will occur at a definite distance from the axis or plane, 
i.e., with practically constant multiple scattering and elec- 
tric field. Radiation in the field E perpendicular to the mo- 
mentum of thee- is characterized by a parameterx = eE&/ 
m3 (see Refs. 13-17). For example, a t x  2 1 y rays with ener- 
gies w -xE/( 1 + X)  -E are radiated and the radiation pro- 
cess becomes substantially quantum. Forx, 1 there is a 
modification of the characteristic radiation angle 
= 8, a8,X1'3 and the coherence length I,,, = 1, a w /  

mX2I3 (we shall assume as before that w -E' -E). It is natu- 
ral to expect that multiple scattering will greatly change the 
pattern of formation of the y ray for 

where 9,, = l /(ue) , and u is the mean square amplitude of 
thermal vibrations of the nuclei of the crystal (the possibility 
of use of Eq. ( 1 ) in evaluation of the intensity of multiple 
scattering in crystals is discussed in the Appendix). Since 
x a E, we have 9 ;(IE ) a &-'I3, and 8 cc K4I3,  i.e., in con- 
trast to the case of an amorphous medium the left-hand side 
of the inequality (3) falls off with increase of& faster than the 
right side. Therefore with increase of E and w we should 
expect only a decrease of the influence of multiple scattering 
on the processes of radiation and pair production. 
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2. PROBABILITY OF EMISSION OF y RAYS BY AN 
ELECTRON MOVING IN A UNIFORM FIELD AND 
UNDERGOING UNCORRELATED MULTIPLE SCATTERING 

The theory describing radiation processes in amor- 
phous medium with inclusion of multiple scattering (the 
theory of the Landau-Pomeranchuk effect) was developed 
by Migdal.' An expression which describes radiation and 
pair production in a uniform external field was obtained by 
Klepikov14 and in final form by Nikishov and Ritus.l5,I6 The 
results of Refs. 14 and 16 can be reproduced most simply by 
means of the quasiclassical operator method developed by 
BaYer and K a t k o ~ . ' ~ * ' ~  Therefore in considering the radi- 
ation of an e- which undergoes simultaneously multiple 
scattering and the action of a uniform field, we also shall use 
the method of Ref. 13 and shall proceed from the expression 
for the probability of radiation of a y ray by an electron 
passing through an arbitrary point r,: 

where e' = E - W ,  0 is the solid angle indicating the direction 
of emission of the y ray, V ( T )  and r ( r )  are the velocity and 
radius vector of the e- at the moment of time T, and 
v(0) = v, and r (0)  = r,. Introducing by means of the rela- 
tion 

the small-angle approximation and integrating in (4) over 
the directions of emission of the y ray, we obtain 

dW iea (e2+ef2)  
2 8' ( r )  ] exp ( - i o ~ )  

do 2n-- 4eef 

Note that, generally speaking, change of the order of integra- 
tion in (4) over T and 0 is not allowed, as a result of which it 
is necessary to carry out a subtraction procedure in Eq. (6) 
(see below). 

To find the probability of radiation in the presence of 
multiple scattering it is necessary to average (6) over all 
possible trajectories of the e-. The transverse displacement 
of the e-- in the process of formation of a y ray is of the order 
of the electron Compton wavelength A, = N 
mc = 3.862. lo-" cm. It is small in comparison with the 
characteristic scale Ap - u of variation of the field of the axis 
(or plane) and the density of nuclei in the direction of the 
normal to it. Therefore on incidence on the axis (or plane) at 
angles $4 $, an e -  undergoes in the course of formation of 
they ray (in the coherence length) the action of a practically 
constant electric field and uncorrelated multiple scattering 
which is constant in intensity at the deviations of the poten- 
tial from the averaged potential, i.e., at the nuclei and elec- 

trons of the atoms forming the axis or plane. The effective 
(averaged) field of the axis or plane arises as the result of 
correlated peripheral (with impact parametersp 2 u )  colli- 
sions of the e- with nuclei and electrons which are located 
asymmetrically with respect to thee- trajectory. This asym- 
metry obviously leads also to an asymmetry of the multiple 
scattering of the e- in the xy plane perpendicular to the e- 
velocity. Since it follows from symmetry considerations that 
the intensity of multiple scattering is extremal in the direc- 
tions of the axes x  and y  perpendicular and parallel to the 
intensity of the mean field, we shall characterize it by the 
mean squares of the angles of deviation, from the direction of 
motion of thee- in the average potential, acquired by the e- 
per unit length u, = d 9 :, ( z )  /dz, i = x,  y .  We note that, 
generally speaking, the asymmetry of the multiple scattering 
is small: lux - a, (/(ox + a,) 5 1&20% (compare with 
Ref. 18). In a length Az the uniform field deflects the e- by 
an angle hax = wAz, where w = eE /E is the transverse ac- 
celleration of the e-. Therefore in the small-angle approxi- 
mation the distribution of e- moving at the point z = 0 in the 
direction ofa vector6, = (9 ,, , 9  ,, ), will be determined at a 
point z > 0 by the relation 

Since the distance between successive scatterings of the e * 
are equal to d-the interatomic distance in an axis or 
plane- and since at the energies of interest to us E > 10 
( 100) GeV the relation d 4 lCoh is satisfied, in averag- 
ing of the expression (6)  over various trajectories of the e- it 
is possible to use the path integral approximation (see Ref. 
19). For this purpose we shall break up an arbitrary interval 
z into N equal segments of length A = z/N and shall assume 
that the e- undergo scattering at points z, = nA, n = 1, 
. . . , N, being deflected here by angles 6, = 6(2, ). From 
Eq. (8) it is easy to conclude that the probability density that 
these angles fall in intervals ( a , ,  6, + d 6, ), is given by the 
expression 

d@i . . . d i 3 N  
d Z 9 N  = 

-...-[ 20,A 20,A 

In order to average the probability (6)  over all possible e- 
trajectories it is necessary to multiply it by the probability 
density (9)  and to integrate it over the scattering angles a,, 
n = 1,. . . ., N. It would follow from physical considerations 
that we should set A = d .  However, in the limit 
d = A (z-I,,, the result obtained will not depend on the 
value of A, which permits us to go over to the path-integral 
approximation N-+ CU, A-0. Then (compare with Ref. 19) 
the expression for the average probability is written in the 
form of a functional integral over a Wiener measure d k 9 :  

m 
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where d W{6 (z) )/dw is a functional of the scattering angles 
6 ( z )  and is determined by Eq. (6).  Taking into account that 
the integration over the components t?,,, and 6, is carried 
out independently, we rewrite ( 10) in the form 

where 
z 

The integrals Qi , i = x ,  y, are Gaussian, which makes it pos- 
sible to calculate them exactly. In the case E = 0 this was 
done in Ref. 19. In the case E # O  the calculations are some- 
what more cumbersome. They lead to 

where 

is the acceleration of the e- . From Eqs. ( 13) and ( 14) we 
easily obtain 

After substitution of ( 15 ) into ( 1 1 ), we have 
m 

Going over in ( 16) to the limit of absence of uncorrelated 
multiple scattering (oi -O), it appears that we should ob- 
tain an expression for the probability of radiation of a y ray 
in a uniform field. However, as can easily be seen, in taking 
the limit in it of absence of an external field (E-0), we will 
not obtain a zero result for the probability of radiation in 
vacuum. The reason for this, as we have already mentioned, 
is the unjustified change of the order of integration in (4).  
Frequently (see for example Section 20 of Ref. 13) this defi- 
ciency is corrected by introduction of a small shift of the 
integration contour in the variable T.  We, however, shall use 
a more lucid equivalent procedure of subtraction from ( 16) 
of this same expression taken in the limit of free motion 
(E-0, ui -+ 0) (see for example Section 12 of Ref. 13). This 
procedure is chosen because it leads to expressions which are 
more convenient from the point of view of calculations by 
computer. 

To simplify the expression obtained from ( 16) by the 
subtraction mentioned above, we shall introduce in accor- 
dance with the expressions 

a new integration variable t, a parameterp which character- 
izes the asymmetry of multiple scattering of the e-, param- 
eters x and x which are usually used in the theory of radi- 
ation in a uniform electromagnetic field (see Refs. 13-17 ), 
and a parameter Y which characterizes the influence of mul- 
tiple scattering of the e- on the process of formation of the y 
ray. Note that in the case of symmetric multiple scattering 
( p = 1 ) we have Y = 4s, where s is a parameter introduced 
for the same purpose by Migdal (Ref. 2 and Section 20 of 
Ref. 13). At zero angle of incidence onto crystallographic 
axes and planes I p - 1 1 5 0.2 (compare with Ref. 18). After 
carrying out the changes which are customary in such cases 
of the integration path in the complex plane of the variable t 
(see Refs. 2, 3, and 13) we obtain a final expression for the 
probability of radiation of a y ray by an electron or positron 
moving in a uniform field and undergoing multiple scatter- 
ing 

where L (a, 1 = irm2/e2~20x is a quantity equal to the radi- 
ation length in the limits of an amorphous medium. The 
functions F,, k = 1,2, 3 are defined by the expressions 
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- 3 1 2 ~  l th( t )  +P th(pt) I f  (p,  t ) e x p [ - v t + ~ ( z ,  V, t )  ] 
* 

n  
Xoos[ vt+q(z ,  v ,  t )  - -1 dt, 

4 (19) 

xcos [vt+cp (x,  V, t )  ]at, 

2 ~ 3  
f ( P ,  t)-[p/sh (2t) ah ( 4 t )  I"', q ~  (x, v ,  tS- ;; [th ( t )  - t ] .  

The exponential falloff of the integrands at large t and their 
not very rapid oscillations permit easy calculation of the 
function F, by computer (see Figs. l a  and b). Note that in 
the case of the fields of crystallographic axes or planes the 
functions F, , or more precisely all three of their parameters 
x, Y, and p, are functions only of the distance to the axis or 
plane. 

The expressions (18)-(20) generalize the expression 
for the probability of radiation of a y ray by an electron in an 
amorphous medium obtained by Migdal (Ref. 2 and Section 
20 of Ref. 13) and the expression for the probability of radi- 
ation in a uniform field obtained by KlepikovI4 and in final 
form by Nikishov and Ritu~.' ' . '~ Indeed, in the limit of 
dominance of a uniform field and symmetric multiple scat- 
tering 1 >x(v or 1 < x ( Y ~ ' ~ , P  = 1: 

OD 

~ , ( l ~ x , v ) + r ~ i ( y ) d y ,  F a ( i , ~ , v ) + A i ' ( ~ ) ,  
C 

F2 (1, x. v ) I L ( ~ ~ ) - x l v ~ + O ,  (21 

where 
OD 

Ai (x) = oos (xt+t3/3) dt/nph 
0 

is the Airy function. Here. Eq. ( 18) goes over to the expres- 
sion for the probability of radiation of a y ray by an e- mov- 

FIG. 1. (a) Dependence of the function F,(1, x, v) on the pa- 
rameter x for fixed values of the parameter v. For l k x < v we 
have Fl ( 1, x, v) -I," Ai( y )dy. (b) Dependence of the function 
F, ( 1, x, V )  on the parameter v for fixed values of the parameter 
x. For 12 v.<x we have F l ( l ,  x, v) -G(v/4) /3~"~$.  

ing in a uniform field (see Eq. (90.23) in Ref. 15): .. 

In the limit of dominance of symmetric multiple scattering 
1 > Y < X  or 1 < v g ~ ~ ' ~ , p  = 1, we have 

where s = v/4, G(s )  and @ (s) are the parameter and func- 
tions introduced by Migdal.2 As a result Eq. ( 18) goes over 
into the expression obtained by him for the probability of 
radiation of a y ray by an e- or e+ moving in an amorphous 
medium (compare with Eq. (54) in Ref. 2): 

dW. e'm' -- [ G ( s )  oa+20 ( 8 )  (ea+e") I .  
do 96ne3e's2 

(24) 

Analysis of Eqs. ( 18)-(20) shows that the nature of radi- 
ation and pair production is determined completely by the 
relation of the parameters Y and x. Its evolution also deter- 
mines the fate of the Landau-Pomeranchuk effect. Analysis 
of these equations shows that for 1 > x  < Y, or 1 < X  < g I 3  

together with a decrease of the parameter x the processes of 
radiation and pair production rapidly acquire the features of 
the analogous processes in a uniform field. For example, the 
coherence length of the process, which is determined by the 
region of formation of the principal contribution to the inte- 
grals in ( 19), becomes 

where 1, = &&'/m2w. The characteristic angle of the radi- 
ation, which is equal to the angle of deflection of thee- in I, ,  
is given here by the expression 

where 13, = m / ~ .  For 1 > v < x or 1 < v < x3I2 in addition to a 
decrease of the parameter Y the features of radiation and 
production in an amorphous medium begin to dominate 
and, if Y 5 1, the Landau-Pomeranchuk effect appears. In 
this case 
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(see Section 20 of Ref. 13). In determining the characteristic 
angle (28) we neglected the insignificant asymmetry of the 
uncorrelated multiple scattering and assumed that 
u = u, + u,, . In regard to the change of the nature of radi- 
ation processes at x --,v 5 1, this is illustrated by the plots of 
the function Fl ( 1, x, v) shown in Figs. l a  and b. Just this 
change leads also to the absence of the Landau-Pomeran- 
chuk effect, since both for w -E'-E and for a fixed ratio of w 
to& we h a v e v - ~ - ~ / ~  andx-&-*I3, from whichx /v -~ - ] /~  
and x/v2l3 -&-'I3. The falloff of these ratios with increase of 
E ( w ) ,  as was mentioned above, leads to dominance in radi- 
ation and pair-production processes of the features of the 
analogous processes in a uniform field over the features of 
these processes which appear in an amorphous medium. In 
particular, the probability of the radiation of pair-produc- 
tion process for 1 > x < v  will fall off as ~ - ' / ~ ( w - ' / ~ ) ,  and 
not as ~ - ' / ~ ( o - " ~ )  with a Landau-Pomeranchuk effect 
which appears at 1 > v <x. 

We recall that the expression for the probability, differ- 
ential in the energy of thee+ ore-, of pair production by a y 
ray can be obtained from Eq. ( 18) by the substitution 
w+ - o ,  E +  - E + ,  E'+E- and by multiplication by the ra- 
tio of the statistical weights E: d~ * /w2dw (E , are the en- 
ergies of the e * ). The total probability of pair production 
WE,, is then obtained by integration over the energy of the 
e+ (e- ) between limits E * = 0 and E * = w. In order to il- 
lustrate the statements made above in analysis of Eqs. ( 18)- 
(201, we have shown in Fig. 2 energy dependences of the 
probabilities EE,, calculated for the cases of pair production 
at distancesp = 0 andp, = 0.02 A from the (1 11) axis of a 
tungsten crystal, taken at T = 293 K ( u  = 0.0495 A)  and 
the probability WE for pair production in a uniform field 
E(p,)=2.3.1O1' V/cm. Here n(pI)=2.17.1Oz5 

"70 loZ lo3 10' a. GeV 

FIG. 2. Pair-production probability obtained after transition to the cross 
channel and integration over the energy of thee+ (e - )  in the expressions 
(18),  (22), and (33). The approach of the probability W( p,)  to the 
probability WE ( p, ) (and not to the probability W, ( n  ( p,))  = W, ( n  (0) ) 
(see Eq. (24) ) illustrates the absence of the Landua-Pomeranchuk effect. 

cm-3 = 343n0 and n(0) = 2.35. cmP3 = 372n,. In per- 
forming the numerical calculations illustrating the general 
properties of the probabilities Wand WE, we neglected the 
insignificant asymmetry of multiple scattering of the e- 
( p = l ) and assumed 

where 9- f ( z )  was calculated according to Eq. ( 1 ) with 

6,tn=1/(ue)and6,,,2=@.2 (Ig, ,) . 
We emphasize that in a detailed description of the processes, 
the values of ui must be calculated by more accurate meth- 
ods. Since at the center of an axis E( p = 0) = 0, the prob- 
ability WE,, ( p = 0) coincides with the probability 
Ws (n (0) ) obtained from Eq. (24). The substantial drop of 
this probability is due to the Landau-Pomeranchuk effect. 
Since n ( p,) = n (0) , the LPE could appear at p = p ,  at the 
same energies as at p = 0 (these energies are two orders of 
magnitude lower than in the case of an amorphous materi- 
al). With increase ofw the probability WE,, ( p1 ) would then 
approach the probability W, (n (0)  ). However, (see Fig. 2), 
this does not occur. The probability WE, ( pl)  approaches 
the probability WE ( p , )  for pair production in a uniform 
field of strength E( p,), illustrating thereby the conclusion 
that there is suppression of the Landau-Pomeranchuk effect 
in an external field and that the theory of radiation and pair 
production in a uniform field13-I' is applicable for descrip- 
tion of analogous processes in the fields of crystal axes and 
planes. 

3. CONTRIBUTION OF LARGE ELECTRON-SCATTERING 
ANGLES TO THE PROBABILITY OF ELECTROMAGNETIC 
PROCESSES 

In the previous section, as in Refs. 2 and 3, we averaged 
the probability of radiation of a y ray along various trajector- 
ies of radiating electrons undergoing multiple scattering. It 
is important to understand that both the expression (18) 
obtained by us and the expression (24) obtained by Migdal 
do not always describe the total probability of radiation (or 
of pair production-after transition in them to the cross 
channel). Indeed, let us return to analysis of Eq. (24), which 
was obtained in Ref. 2 for the case of radiation in an amor- 
phous medium. It is easy to show that for v = 4s> 1, i.e., in 
the limit of weak multiple scattering, Eq. (24) goes over to 

where Smi, = 8 , ~ ' / ~ / 1 9 0 ,  9-f (I) = 9-f(1) [see Eq. ( I ) ] ,  
I, = E E ' / ~ ~ W ,  and 8, = m / ~ .  Since in this limit 
as (1, ) < 6, ,  the probability (29) turns out to be less than 
the Bethe-Heitler probability d WBH /dw and therefore the 
probability (24) does not go over into d WE, /dw (see Fig. 2, 
where we have shown the energy dependence of the integrat- 
ed probability for pair production W, ( p = 0) calculated for 
the density of nuclei n (0)  = 372n0 achieved at the center of 
the (1 11) Waxis at T = 293 K).  In Ref. 2 this deficiency was 
overcome by intoduction of a numerical factor in Eq. (24) 
[see Eq. (64) in Ref. 21. We, however, cannot do without 
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understanding the reason for this discrepancy. We recall 
that the averaging of the probability of radiation, both in the 
present work and in Ref. 2, was carried out with use of distri- 
bution functions of the e -  over the directions of motion ob- 
tained in solution of the Fokker-Planck equation. Distribu- 
tion functions of this type, strictly speaking, are applicable 
only for description of the motion of e -  which experience at 
individual scatterers (nuclei) deviations by angles 
99as (1). It is true that in the logarithmic approximation it 
becomes sufficient to satisfy the condition 9 < a s  (I). In the 
limit of weak multiple scattering Y = 4s> 1 we have 
9, (I, ) < 8,, while the important contribution to the prob- 
ability of radiation is from angles of scattering of the e -  by 
nuclei 9 < 6,. As a result, in averaging over a distribution 
function satisfying the Fokker-Planck equation, scattering 
of e -  by individual nuclei at angles 9s (I, ) < 9 < 8, drop out 
of the discussion. Such scattering events occur rather rarely. 
It is easy to show that in the logarithmic approximation it is 
possible to neglect the probability of a second scattering of 
e -  within I, by an angle 9 2 9, (I, ). In addition, in the loga- 
rithmic approximation one can neglect also the multiple 
scattering of e -  leading to a total deflection of the e-  by 
angles 9 5 9, (I, ) . Therefore in calculation of the probabil- 
ity of radiation of a y ray by an electron which has undergone 
scattering by a nucleus at an angle 9 > a s  (I, 1, in the loga- 
rithmic aproximation one can assume that the scattering oc- 
curred at an isolated nucleus. The probability of radiation in 
scattering by angles 9, (I, ) < 9 < 8, turns out then to be 

and in sum with the probability (24) [see Eq. (29)] gives 
the probability d W,, /dm. In the case of strong multiple 
scattering ( Y  = 4 s <  1) wehave9 , (1 , )~8 ,  = O , Y - ~ / ~  [see 
Eqs. (27) and (28) ] and all scatterings by individual nuclei 
at angles 9 < 9, (I, ) which give an important contribution to 
the probability of radiation of a y ray are taken into account 
in averaging over a distribution function which satisfies the 
Fokker-Planck equation. Therefore for Y = 4s < 1 the prob- 
ability (24) completely describes the radiation process (and 
after transition to the cross channel also the pair-production 
process) in an amorphous medium. 

The presence of an external field changes the situation 
somewhat. As before, the dominant role continues to be 
played by the relation between the characteristic radiation 
angleO,,, given by Eqs. (26) and (28) and thecharacteristic 
angle of uncorrelated scattering 9, (I,,, ) = (ol,, ) ' I 2  in the 
coherence length I,, [see Eqs. (25) and (27) 1 .  

As in the case of an amorphous medium the averaged 
probability ( 18) describes the radiation of a y ray by elec- 
trons which are scattered by individual nuclei only at angles 
9 < 9, (I,,, ). In contrast to the case of an amorphous medi- 
um in the presence of an external field (and multiple scatter- 
ing), the characteristic radiation angle 8,, can exceed the 
multiple scattering angle 9, (I,, ) at arbitrarily high ener- 
gies. In fact, for x < Y, x < 1 we have 

6. (ZE, 8 )  =fi, (lE (x) ) 9 0E, a=eE  (x) 

while if, (l,)/O, =x /v<  1 [see Eqs. (25)-(28)]. In the 

case in which this condition is satisfied, scatterings of e-  by 
individual nuclei at angles 

make an important contribution to the probability of radi- 
ation of a y ray but drop out of the discussion on averaging 
the radiation probability over the distribution function (9) 
which satisfies the Fokker-Planck equation. As in the case of 
an amorphous medium, in calculation in the logarithmic ap- 
proximation of the probability of radiation of a y ray in such 
scattering events it is possible to neglect all other uncorrelat- 
ed scattering events of e -  in the process of formation of 
the radiated y ray. In other words, one can assume that the 
radiation of a y ray by an electron scattered at an angle 
9 > 9, (IE,, ) occurs with the same probability as the radi- 
ation in scattering of an e-  by an individual nucleus located 
in a uniform external field. This probability was calculated 
by Z h u k ~ v s k i i . ~ ~  In carrying out the calculations by the 
simpler method given in the book by BaTer et al. (Section 9 of 
Ref. 13), in the limit I,S,E % 1 we obtained a somewhat dif- 
ferent result for the cross section of the process: 

+ ( ~ ~ + e ' ~ )  [x3+2xy (x) -xPy (x) -10x2f (s) I ) ,  (31) 

where 
rn 

here 8, and 9, are respectively the upper and lower limits of 
the region of angles of e -  scattering by the nucleus, and 
9,s 8, (x), while the contribution of scattering angles 
9 > 19, (x) can be neglected in the logarithmic approxima- 
tion. We note that the expression obtained in Ref. 20 can be 
reduced to the form of a linear combination of the same pow- 
ers of the parameter x and their products with an epsilon 
function or its derivative, but with different coefficients. In 
spite of this, both of the expressions mentioned have the cor- 
rect Bethe-Heitler limit in the absence of a fixed (for x )  1). 
We associate this discrepancy with the inclusion in Ref. 20 of 
the contribution of the so-called correction to the probabil- 
ity of single-photon pair production, arising as the result of 
use of the pseudophoton method for its calculation (in re- 
placement of the field of the nucleus by an incoherent super- 
position of plane waves one loses information on its longitu- 
dinal localization, which is not important in discussion of 
the interaction of e -  with a nucleus only in the first order of 
perturbation theory). Returning to the problem of descrip- 
tion of the process of radiation of a y ray by an electron 
moving in an atomic tube or plane, we set 9, = O,,,, 
9, = 9, (I,, ) (or with allowance for the scattering asymme- 
try 6, = [9s, ( I , ,  ) + 9;,, (I,,, )]/a) ,  after which, neglect- 
ing the dependence of the density of nuclei on the transverse 
coordinate, we obtain for the differential probability of radi- 
ation 
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X {oz[~S-7~"'  (2) -x4y (x) ] 

+ (ea+e'" [xa+ 2xy ( x )  -x4y (x) -lOxzy' (x) I), (32) 

where n is the local concentation and no the average concen- 
tration of nuclei and L = L (no) is the radiation length. Note 
that in the limit X )  1 the expressions (31 ) and (32) go over 
respectively to the Bethe-Heitler expressions for the cross 
section and the probability of radiation of a y ray by an elec- 
tron in its scattering by a nucleus at the same angles. 

Now we can write out the complete expression for the 
probability of radiation of a y ray by an electron moving 
perpendicular to a uniform electric field and undergoing in 
addition uncorrelated scattering: 

where 8, (I,,, ) is the mean square angle of uncorrelated 
multiple scattering of the e- in a coherence length I,,, [see 
Eqs. (25) and (27)] and 8,. is the characteristic angle of 
radiation given by Eqs. (26) and (28); the probabilities 
d WE,, /dw and d W,, , /dw are given by the expressions ( 18) 
and (32). Without going into detail, we recall that these 
probabilities, and with them also the total probability (33), 
go over in limiting cases to all of the known results with the 
exception of the result of Ref. 20. In Fig. 2 we have shown a 
plot of the energy dependence obtained from Eq. (33) by 
transition to the cross channel and integration over the ener- 
gy of thee+ (e- ) of the total probability for production of an 
e+e- pair by a y ray. It is easy to see that the contribution of 
the second term in (33), although it does not disappear with 
increase of the y-ray energy, nevertheless falls off for x (  1 
rather rapidly; this can be seen also from Eq. (32) if one 
takes into account that for x 4 1 y (x) ,  y' (x) - 1. Therefore 
taking into account the second term in (33) did not influ- 
ence the conclusion that there is no Landau-Pomeranchuk 
effect at small angles of incidence of e * and y on crystal 
axes. 

The absence of the LPE considerably simplifies the 
quantitative description of radiation processes in the case of 
zero angle of incidence of high-energy particles onto crystal 
axes or planes. As a result of this, over almost the entire 
crystal (but see below) the probabilities ( 18) and (22) will 
differ only in the corrections, the derivation of which we will 
postpone to subsequent papers. Here incoherent scattering 
processes will appear most clearly as a result of the contribu- 
tion (32) from individual nuclei. It is important that, in con- 
trast to the region of applicability of the theory of Ref. 23, 
incoherent radiation processes are substantially modified by 
the presence of coherent scattering of e * . In fact, neglecting 
this factor and following the theory of Ref. 23 outside the 
region of its applicability, the authors of Refs. 21 and 22 
approximated the total probability for production of a pair 
by a y ray incident at a small angle onto crystal axes by the 
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sum of the probability for pair production in a uniform field, 
averaged over the crystal cross section, and the amorphous 
part of the pair-production probability calculated on the ba- 
sis of the theory of coherent pair production.23 In the case of 
a tungsten crystal at T = 293 K we have Warn = 0.88 W,,. 
Without performing an average of the expression (33) over 
the cross section of the crystal, let us compare the "local" 
probability of pair production at a distancep, = 0.02 A from 
the (1 11) axis with the sum of the probability for pair pro- 
duction in a uniform field of strength E = E( p , )  and the 
Bethe-Heitler probability, multiplied by 0.88, calculated for 
a concentration of nuclei n = n ( p,  ) . Since all of the proba- 
bilities given in Fig. 2 have been normalized to the corre- 
sponding "local" Bethe-Heitler probability, it is easy to see 
that at w = 100 GeV we have 

W(P~)--~E(~I)+~.~~WBH(P~), 

( P ~ ) = ~ E  ( ~ i ) + ~ , ~ ~ ~ ~ ~ ( ~ i )  7 

and at w = lo3 GeV- 

W(~~)~W~(PI)+O~O~~WB,(P~)~ 

which indicates the limited applicability of the approxima- 
tion of the probability W by the sum WE + Warn and con- 
firms the necessity of a systematic approach to description of 
radiation and pair production in the fields of crystal axes and 
planes, which led us to the expressions ( 18 ) and (33 ) . 

The efficiency of suppression of the Landau-Pomeran- 
chuk effect by the action of a coherent (averaged) potential 
is weakened with decrease of the intensity of the averaged 
field on approach to a line (or plane) on which the averaged 
potential of the axis or plane reaches a ma?imum. For exam- 
ple, in tubes (planes) of width 50.01 A surrounding the 
maxima of the potentials of the axes or planes of W, with 
increase of the energies of the e * or y in the region of hun- 
dreds or thousands of GeV there will be a gradual suppres- 
sion of the LPE which is described by Eqs. ( 18) and ( 19). 
Observation of this new phenomenon is considerably facili- 
tated in the case of radiation, since near a maximum of the 
averaged potential the deviation of the direction of motion 
(and consequently of the emission of y rays) reaches a maxi- 
mum (or minimum) for e-  (or e+ ), as a consequence of 
which the y rays radiated near a maximum of the potential 
can be distinguished from the entire mass of radiated y rays. 

APPENDIX 

Let us consider in more detail the motion of e * at a 
small angle to an axis or plane. It is well known that the 
potential of interaction of e * with a crystal can be repre- 
sented in the form of the sum of a coherent part (averaged 
over the ground state of the crystal) and an incoherent part. 
Scattering in a coherent potential (see for example Ref. 24) 
is well described by the model of an averaged potential of the 
axes (planes) [i.e., by a coherent potential which is further 
averaged along the axes (planes) 1, since the contribution of 
the oscillating components of the coherent potential can be 

In addition to the averaged potential, the mo- 
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tion of e * inside nuclear tubes and planes is greatly affected 
also by incoherent scattering of the e * by nuclei (see for 
example Refs. 18,24, and 26). In fact, in scattering of e * at 
angles 6 2 l/us a momentump, > l/u is transferred to 
the nucleus, which leads, for example, to the excitation of 
phonons. In other words, scattering processes of this type 
are incoherent and can be described only by the incoherent 
component of the crystal potential. At the same time,for ra- 
diation and pair production, deflection of e * at angles right 
up to 8-m/e) l / u ~  is important. Therefore in description 
of these radiation processes it is necessary to take into ac- 
count the contribution of incoherent scattering of e * by 
nuclei. At transverse distances which are important for scat- 
tering at angles B-rn/~) I/ue, Ap ( u ,  the density of the 
transverse distributions of nuclei of the axes and planes is 
practically constant. Therefore correlations in the locations 
of nuclei having such close transverse displacements disap- 
pear, and scattering of e * at angles 6 - m / ~ )  l/us will be 
uncorrelated (random) and essentially will not differ at all 
from scattering at the same angles in an amorphous medium 
of the same density, which is described by Eq. (1)  with 
if,, = I/#&. Since the density of nuclei in crystal planes and 
tubes is tens of hundreds of times greater than their density 
in an amorphous material, the question arises of whether this 
scattering, like in the case of an amorphous medium,' in- 
fluences the radiation and pair production in that region of 
energies and angles of incidence of e * and y in which they 
are described by the electrodynamics of phenomena in an 
intense uniform field.''-" We note that already in construc- 
tion of a theory of radiation and pair production in crystals 
on the basis of the Born approximation2' it was discovered 
that a single coherent potential for interaction of e * with 
crystals cannot satisfactorily describe these processes. 
Transfers to individual nuclei of transverse momenta 1/ 
u Sp, 5 m, which are extremely important for the occur- 
rence of radiation processes, are described in the theory of 
Ref. 23 by the incoherent component of the crystal potential 
and lead to appearance of a significant "amorphous" com- 
ponent in the cross sections for radiation processes. 
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