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An explicit formula is obtained for the conformal-block four-point functions which arise in the 
theory of Virasoro algebras with central charge C = 1, when all four operators are assumed to 
have the same dimension S = 1/16. Using a particular block, we construct a one-parameter 
family of four-point correlation functions which satisfy crossing-symmetry relations. It is 
proposed that these functions describe critical correlations between four spins in the Ashkin- 
Teller model along the phase-transition line. 

1. INTRODUCTION 

The spatial symmetries of a two-dimensional confor- 
mally-invariant field theory are described by a Virasoro al- 
gebra (actually by the direct product of two such algebras- 
one "right-handed" and one "left-handed").'.2 The state 
space can be classified according to representations of the 
Virasoro algebra with central charge C, which is a parameter 
of the theory. In Ref. 3, a way was suggested to construct a 
solution to the conformally-invariant field theory problem 
by combining the conformal invariance condition with the 
requirement that the operator algebra be associative (which 
is equivalent to crossing-symmetry conditions on the vacu- 
um Green's functions). In order to carry out this "confor- 
mal bootstrap" program, four-point vacuum expectation 
values can be constructed out of "conformal blocks" (which 
represent the contribution of all states from a specific con- 
formal class to one of the Green's function channels), com- 
bined in such a way as to satisfy the crossing symmetry of 
this function. This program can be explicitly carried out for 
the so-called "minimal models," ' where the conformal 
blocks are solutions to linear differential equations and ad- 
mit closed-form integral representations4 while the set of 
conformal-invariant operators which enter into the algebra 
is finite. 

In section 2 of this paper, we obtain explicit expressions 
for the conformal block function when the conformal theory 
has C = 1 and an "external" operator dimension of 6 = 1/ 16 
for any value of the "intermediate" dimension A. It turns out 
that in the crossed channels this block does not exhibit a 
simple power-law asymptotic dependence, as is the case for 
minimal models, but also contains a logarithm which corre- 
sponds to a continuous spectrum of cross-dimensionality. 
Thus, the crossing-symmetric four-point Green's function 
cannot be built out of a finite number of such blocks; this 
implies that the algebra must contain an infinite set of invar- 
iant operators which combine in such a way that power-law 
asymptotic behavior in the crossed channels can be recov- 
ered after infinite summations. 

In section 3, we derive a single-parameter family of such 
- Green's functions constructed out of these blocks and satis- 

mediate states, these functions include a combination of an 
arbitrary number of conformal-invariant fermions from the 
massless Thirring model, so that the family can be parame- 
trized by the coupling constant of this model. It is interesting 
that for irrational values of the coupling constant the "inter- 
mediate" dimensionality spectrum A (x) for each of the two 
Virasoro algebras consists of the everywhere dense interval 
(0, m ), while the spectrum of scaling dimensionality is dis- 
crete; in addition, there appear in the operator decomposi- 
tion invariant fields with arbitrary integral (or half-inte- 
gral) spin. For rational g, the spectra A and are discrete, 
and the Green's functions can be constructed from a finite 
set of blocks corresponding to contributions from operators 
with nonintegral dimensions. We note that the latter dimen- 
sions do not coincide with the conformal ones, and are ap- 
parently associated with the presence of higher symmetries 
of some sort in the rational-g theories. For example, the 
g = 1/5 case corresponds5 to the 2,-symmetric self-dual 
theory described in Ref. 5, where a symmetry generated by 
parafermion currents is present, while the case g = - 1/3 
corresponds to the conformal theory of the algebra investi- 
gated by Kac and Moody, which is invariant under SU(2). 

In the isotropic Ashkin-Teller model,6 a phase transi- 
tion line appears, along which the critical index varies con- 
t i n u o u ~ l y . ~ ~ ~  In this model one can introduce fermion vari- 
ables whose critical correlations along the phase transition 
line are described by the massless Thirring modeL9 Appar- 
ently, the four-point functions obtained in section 3 describe 
correlations of four spin variables a, or a, (along with the 
corresponding dual variables p ,  and p,) on this line. This 
hypothesis is confirmed by comparing with certain points 
along this line at which these correlation functions are well- 
known. 

2. THE CONFORMAL BLOCK WITH C= 1 AND S=1/16 

The conformal block F ( A,Si ,C,x) is the contribution of 
all states which belong to a particular continuous represen- 
tation of the Virasoro algebra 

fying the crossing-symmetry relations. When acting as inter- with principal weight A, to the intermediate channels of the 
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vacuum expectation value ( V,, ( oo 1 V,, ( 1 ) V8* (x) V,, (0) ) 
of four invariant operators possessing the following transfor- 
mation properties relative to the generators (2.1 ): 

[L,, va ( z ) ]  =zn+'dVa (z ) /dz+6 (n-t-1) znVa(z) . (2.2) 

By convention, this conformal block is represented by the 
diagram 

The representation of the algebra (2.1 ) with principal 
weight A can be constructed out of differential operators in 
the space of functions of an infinite number of variables 
Y ( y,,  y ,,... ) in the following fashion: 

The parameters A andp are connected with Cand A by 
the relations: 

The basis for this space which consists of finite mono- 
mial functions Ynltn2... = ylnl  yZn2 ..gl "is the so called "oscil- 
lator" basis. A scalar product in this space is determined by 
the following functional integral: 

Relation (2.2) leads to the following system of equa- 
tions for the wave function of the state 
VS2 (XI  V6, (0)IO) = (P( Y ] ,  y2 ,... 1x1: 

(Out of this system, only the k = 1 and k = 2 equations are 
independent; the rest follow from them by virtue of (2.1 ) .) 
The first equation implies that (P actually is a function of the 
variables q, = x1y1 : 

The system of equations (2.6) for the wave function @ with 
the representation of the operators L, in the form (2.4) was 
first given and discussed by A. M. Polyakov. 

Let us seek a solution to (2.6) in the form 

for some A and B. Then (2.6) leads to a set of constraints on 
A and B: 

As shown by A. B. Zamolodchikov, this system has a 
solution only if p = 0, which corresponds to C = 1 and 
S, = S2 = 1/16. In this case the solution takes the form 

Here we introduce the generating functions 
OD OD 

Taking (2.5) into account, we can write the conformal block 
F(A,1/16,l,x) in the form 

1 
F (A, x, 4 , ~ )  = x ~ - ' ~ d e t - ' ~  (I-4,) exp ( h  (1-2,) -I,), 

(2.11 ) 
where 

Using (2.9), it is not difficult to show that the operator 
GI,,. has a spectrum which coincides with that of the follow- 
ing eigenvalue problem with spectral parameter R ': 

xt d u  W ( u )  
n f w ( t ) =  - 

2(1-xt1ifa f 2inu[ ( I -xt) lh+ ( I - I / U ) ~ ~ ~  

(2.12) 

where the contour C encloses the points 0 and 1, and 

while Q ( t )  satisfies the inhomogeneous equation 

In these equations, it is convenient to make the elliptic-func- 
tion substitution 

t 

with modulus k = x'j2. Then 
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x sn2 E 
A'W (I) = - 5 cn rl dn rlW(q)dq 

dn 5 , 2in sn q[dn E - dn(q+iK1) ] ' 

where K '(x) = K (  1 - x )  , while K (x) is the complete ellip- 
tic integral of the first kind: 

i 

From equation (2.16), it is clear that W(f) is periodic with 
period 2K, while under a shift of 2iK' W(f) satisfies the 
relation 

In addition, W(f) has a double zero for 6 = 0, simple zeroes 
for 6 = ink ' (n an integer) and poles at f = K + inK' 
(n #O) . Then we can write 

snb nnb 
sin - Wn (E)= , I dn K 9 n=l,2, ..., (2.20) 

and it follows from (2.19) that 

A,'=-112 cos nnz, z=iKf/K, (2.21) 

so that 
0 

The quantity q = ei"' is connected with x by the rela- 
tion 

Here we use the familiar 8-series - OD 

An analogous investigation of equation (2.27) leads to the 
solution 

Q(B)=snEZ(E)lcnEdn 8, (2.25) 

where Z is the Jacobi zeta-function: 

9'"-' sin (nE/K) . (2.26) 
n- i 1-29'"-' cos (nF;IK) +q4"-" 

Evaluating the integral (2.13) gives 

so that finally 

We should note the following features of the conformal 
block function so obtained: 

a )  The simple exponential dependence on the "interme- 
diate" dimension A: 

It is well-known that in the general case the conformal block 
function has a pole in A at points corresponding to degener- 
acy of the conformal model. These values are determined by 
the Kac formula,1° and for C = 1 they are given by the for- 
mula A, = n2/4; n = 0,1,2 ,... . However, for 
S, = S2 = 8, = 8, = 1/16 the residues at all these poles re- 
duce to zero (the formula for these residues is given in Ref. 
11) and the conformal block is an entire function of h."' We 
note that in this case the exponential dependence on A is 
dictated by the existence of the quasiclassical limit (see Ref. 
I ) ,  while a basis for this can be calculated in the following 
way: in the quasiclassical limit, when the parameters C, A, 
and Si simultaneously go to infinity in such a way that their 
ratios are fixed, the conformal block function has an expo- 
nential asymptotic limit 

while S,, is connected with properties of the monodromic 
differential equation of the second kind: 

1 
01'(3=Tf(3$(z), 

- Ahg-hi2-A;-Asz + x (4-X) 9 (3) 

z(1-2) z(z-x) (1-2) ' 

where Si = (C/24)(1 --ili2), A = (C/24)(1 - A2), and 
the depende'nce of the accessory coefficient on x is selected in 
such a way that the monodromic substitutional invariant 
corresponding to a circuit around the points 0 and x is con- 
stant and equals 2 cos 2n-A. In this case, 

9 (x) =as,, (x) Ids. (2.32) 

Let A) C, S. Then A$ 1 and the accessory coefficient 
must be large compared with unity. In equation (2.31 ), we 
can use the short-wavelength approximation 

1 

which at once leads to the asymptotic estimate (for A) 1): 

b) Modular transformations of the variable r corre- 
spond to various anharmonic-group substitutions in the 
variable x. In particular, the transition to the crossed chan- 
nel x- 1 - x corresponds to the substitution 
T-+rl = - T-I. It is not hard to see that 

Fo (z) = (-id)-"Fo (z') , (2.35) 

i.e., for x -  1, 

so that near the singular points corresponding to 1 and CG, 
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and also near zeroes on other sheets of the Riemann surface 
of the function F(x) ,  the asymptotic limits contain loga- 
rithms. 

3. CROSSING-SYMMETRIC GREEN'S FUNCTIONS 

Let the operator expansion of the two fields of dimen- 
sion 1/16, which we will denote by a(x,Z) and assume are 
scalars, take the form 

where A, and Ki correspond to the right- and left-dimen- 
sions of the invariant operator Vi while the symbol [ Vi ] 
denotes the contribution of the conformal class1 correspond- 
ing to K. (because the spin of this operator is local, A, - & 
must be an integer or half-integer). Then the simple expo- 
nential dependence (2.29) of the conformal block on the 
parameter A implies that the four-point Green's function 
can be written in the form 

- 
where A, = 16A '+Ai~ :  are certain coefficients. 

According to the conformal bootstrap program, we 
must select the dimensions ( A,, xi ) and constants Ai in such 
a way that they guarantee the necessary properties of cross- 
ing symmetry of the Green's function (3.2). In trying to 
obtain such a Green's function, we will rely on the properties 
of the four-spin correlation function for the isotropic Ash- 
kin-Teller model along its second-order phase transition line 
(see Refs. 7, 8 and the Appendix). Therefore, in construct- 
ing the intermediate states in the Green's function, we are 
naturally led to the space of states of the massless Thirring 
model (see Ref. 9 and citations there). This model describes 
an interacting conformal-invariant two-component Fermi 
field $(z,Z) = ($,,$,) which satisfies the equations of mo- 
tion 

where z = x, + ix,, 2 = x l  - ix, are coordinates in the two- 
dimensional space, and the symbol : : denotes normal order- 
ing of products of fields taken at the same point. The fermion 
field in this model can be represented in the following way: 

Qi(z, Z) =:exp [-2ia$ (2)-2ib?5 (Z) I:, 
$2 (z, Z) =:exp [2i$@ (z) +2ia+ (4) ] :, 

(3.4) 
Qi+(z, f )  =:exp[2ia@ (z) +2ib3 (f)]  :, 

$,+(z, 4) =:exp [-2ip$ ( 2 )  -2ia3 (4) I:, 
where p(z,Z) = 4 (z) + $ (2 )  is a free massless Bose field 
normalized so that 

<$ (z) $ (z ' ) )=-~/~ In (2-2') , 
(3.5) 

while a and /3 are parameters which satisfy the relation 

and are connected with the coupling constant g of the Thir- 

ring model: 

Taking all this into account, let us write down the fol- 
lowing expression: 

(z, ,.-I -FoFo x q~a~+v)zq~. l+~~;  (3.8) 
),I 

where the pair of numbers k and 1 take on all integer values 
of the same parity (the latter condition corresponds to even 
numbers of fermions in the intermediate state). Using the 
parameter 

we can write 

c (., 5) xq(B+m+Ln)*-(B+m-Ln)¶, 4 (3.10) 
m.n 

where m and n now run over all integers. If we introduce the 
following function of two variables, 0, 

where M = (m,,m,) is an integer-valued c o l u ~ n  vector, 
v = ( v , , ~ , ) ~  are argument column vectors and t is a 2x2 
matrix with positive definite imaginary part, then the func- 
tion (3.10) can be expressed in the form 

Using the Poisson sum formula 

B(vlP)=det'" (-it1) exp (fnvTt'v)B(F'vlF'), (3.14) 

where; ' = - i - I ,  we can show that G(x,f ) is fully crossing- 
symmetric. 

It is natural to assume that this Green's function corre- 
sponds to the correlation function of four spins a, (or a,) in 
the Ashkin-Teller model (see Appendix): 

(Henceforth we will omit the operator arguments in the four- 
point functions and simply write (a,a,o,a,), having in 
mind the same sequence of arguments as (3.15) .) 

Analogously we can show that the set of functions 

satisfies the relations of crossing symmetry: 

x 5 x 5 (3.17) 
Ri(-7)=~3(x ,z) ,  X-I X-1 R~(-,-=-)=R~(~,Z). X-I X-I 
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This allows us to make the following correspondences: 

It is also possible to write out the functions with an odd 
number of fermions in the direct channel: 

Here, 

where 

m,n 

These functions can be related to correlations which 
include the dual variables: 

r3 ( x ,  I) = ( ~ ~ ~ , p ~ p , ) .  
We note that the correlation functions R, and R, in 

formulae (3.16) correspond to the appearance in the opera- 
tor expansion of o, (x,X)u2 (0,O) of a leading-term scalar op- 
erator with dimension Q-'/4 = ( 1 - g)/8 ( 1 + g);  this op- 
erator corresponds to "paired spin" correlations oIo2. If we 
make the assumption that the duality relation applied to one 
of the variables u,,, becomes an exact symmetry on the criti- 
cal line, then we can suppose that the operator o,p2 has 
dimension /3+'/4 = (1  +g)/8(1 - g) and thus write an- 
other set of relations 

for the correlation function 
H~ (x, 5) =(oly,pzal>, HZ (x, 5 )  =(~IO~I .LZPZ) ,  (3.24) 

It remains to confirm the following properties of these 
infinite sums (3.8), (3.16), (3.19) and (3.23). 

a) For irrational values of the ratioQ+/Q- (which cor- 
respond to irrational values of g )  the spectra of right- and 
left-handed dimensions are everywhere dense on the interval 
(0, UJ ). At the same time, the scaling dimension spectrum is 

discrete, e.g., in the case of the functions G, R,, r, and H,, 

b) For rational values of the ratio Q+//?- the infinite 
sums can be expressed by using a finite number of blocks, 
corresponding to a summation of contributions whose di- 
mensionality is nonintegral. For example, in the simplest 
case Q+ =Q- = 2-'I2 (which corresponds to the case 
g = 0) we can write 

= [ x z  ( 4 - x )  ( 4 - 5 )  -"a 

which is in fact the four-spin correlation function of the Ising 
model. 

The author would like to express his thanks to A. B. 
Zamolodchikov and V. A. Fateev for their stimulating dis- 
cussions and comments. 

APPENDIX 

Here we describe briefly the isotropic Ashkin-Teller 
model (see Ref. 7) ,  in order to fix notation and confirm 
certain duality properties of this model. 

The Ashkin-Teller model describes the interaction of 
two spin variables, o, = + 1 and u2 = f 1, on a planar lat- 
tice (which we here assume to be square) with an interaction 
energy 

i j  

where the sum goes over all pairs of nearest neighbors. 
The Boltzmann weights corresponding to each bond of 

the lattice can be conveniently parametrized in the following 
way: 

where a and a' are spins on neighboring sites, while y, and y2 
are parameters. Performing the standard duality transform 
on both spin variables (corresponding to the dual variables 
which we callpcl, andp,), we can verify that the model is self- 
dual along the line 

As is well-known (see Refs. 7, 8),  the part of this line 
between (y,, y2) = (1/3,1/3) and (y , ,  y2) = (1/2,0) cor- 
responds to a line of second-order phase transitions, while 
along this line the critical index varies continuously. Thus, 
the dimensionality of the fields n, and o2 (and also that of 
the dual fields y, and y,) are constant and equal to ( 1/ 16, 
1/16), while correlations of the spinor fields a, p, and a, p2 
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are described by the massless Thirring model. 
The duality transformation on one of the variables a ,  

for example a , ,  leads to the following mapping of the line 
(A3): 

onto itself. Such a symmetry corresponds to the substitution 
p2cfa2 in the correlation functions. Thus, at the same time 
that the variables u, and a, in the original model ( A l )  are 
distributed on the exact same lattice sites, a, andp, occupy 
sites of the various mutually-dual lattices and the interaction 
between pairs of nearest neighbors o,u; and p,p; takes 
place at the intersecting edges of these lattices. One can, 
however, advance the supposition that at the critical point 
this difference in the details of the microscopic model no 
longer exists, so that the symmetry (A4) is an exact symme- 
try of the correlation function. Apparently, this symmetry 
corresponds to the exchange g- - g for the corresponding 
Thirring model. We note that the fixed point of the transfor- 
mation (A4), i.e., (y,,y,) = (2'12 - 1,3 - 2312), corre- 
sponds to the breakup of the Askhin-Teller model into two 
noninteracting Ising models. Thus, the Thirring coupling 
constant reduces to zero. We will assume the correctness of 
the symmetry (A4). 

"'There is yet another case in which all the poles have zero residues: 
C = 25 and 6 = 15/16. In this case, the conformal block function has a 
form related to (2.28): 

F(A,15/16,25,~) = (169) [ ~ ( l  - x )  ] -71883-3(q).  
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