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A theory is developed for the shape of homogeneous optical bands of impurity centers in 
amorphous and crystalline media. The theory generalizes the traditional approach to the 
problem of the optical-band shape to include the case when the impurity centers and the atoms 
can have two-well adiabatic potentials. The interaction of the optical electrons of the impurity 
with the tunnel degrees of freedom adds terms to the expressions for the shift and width of the 
no-phonon line (NPL) as well as for the phonon wing. The temperature dependence of the 
additional term in the expression for the NPL half-width agrees with recently observed 
anomalous laws of broadening of NPL of impurity centers in amorphous media. A connection 
is established between the NPL of the absorption spectrum and fluorescence. The theory yields 
new experimentally verifiable predictions. 

1. INTRODUCTION 

The theory of the impurity-center homogeneous band 
seemed well enough developed until recently,I4 since it 
could account quantitatively for the experimental  fact^.^.^ 
Low-temperature experimental research, however, underta- 
ken during the last two-three years, into no-phonon lines 
(NPL) of impurity centers in amorphous media (glasses, 
polymers), raised new questions that the theory of Refs. 1-4 
was unable to answer. It has become obvious that the theory 
does not take into account important factors peculiar to 
amorphous media. 

Amorphous media are characterized by the presence of 
known two-level systems (TLS).5 The premise that the the- 
ory of the band shape must take TLS into account was appar- 
ently first stated in Refs. 6 and 7, in view of observation of a 
T2-law broadening of the NPL in the wide temperature in- 
terval 8 < T <  300 K for impurity ions in inorganic 
It was shown shortly thereafterss9 that the "old" NPL broad- 
ening theory can explain even quantitatively the results of 
Refs. 6 and 7 as due to the interaction of an impurity center 
with low-frequency quasilocal vibrations. Nonetheless, the 
very idea of taking TLS into account in the theory of the 
optical-band form continues to attract considerable interest. 
This is prompted by at least two circumstances. First, many 
investigations have shown convincingly that TLS determine 
the low-temperature behavior of the heat capacity, thermal 
conductivity, ultrasound absorption, etc. (see the re- 
v i e w ~ ~ . ' ~ ) .  Second, as already mentioned, unusual experi- 
mental facts were obtained a few years ago concerning the 
homogeneous halfwidth y( T) of NPL of impurity centers in 
amorphous media, and were at variance with the "old" the- 
ory. Some of these facts were: 1. The NPL homogeneous 
halfwidth y(T) varied like T "  , with 1 (n(2 (Refs. 11-19). 
A broadening was observed, for example, in the range 
0.3<3<20 K in organic amorphous medial5-l7 and at 
0.1 < T< 1 K in inorganic ones. I n  2. A single change, l 7  and 
quiterecently a double change,I9 was observed in the slope of 

the y( T) curve as the temperature was varied; a section of 
the curve obtained in the second of these references had an 
exponent n < 1. 3. A discrepancy was observed between the 
residual halfwidth y(0)  and the reciprocal fluorescence- 
damping time.12,'4,1n 

Several theoretical models that account for the influ- 
ence of TLS on the halfwidth of an optical NPL have by now 
been proposed. 12*20-26 The earlier ones were proposed to ex- 
plain either the quadratic or the linear law.12 
These models could not explain the later observations, e.g., 
the broadening. To explain the latter, three different 
theories were proposed later,23-26 but two of them disagree 
with experiment in certain respects. Thus, the Krigovlaz 
theory23 based on averaging various homogeneous spectral 
distributions predicts actually a non-Lorentzian NPL con- 
tour, contrary to the experimental data.15*19 The theory of 
Lyo and ~ r b a c h , ~ ~  who modified their earlier approach2' by 
replacing the phonons by the so-called "fractons," will be 
shown in Sec. 9 to disagree with the experimental data of 
Ref. 19. 

The theory described below expands the theoretical ap- 
proach of Refs. 25 and 26, which agrees so far with all the 
facts on the homogeneous halfwidth of the NPL of an impu- 
rity in an amorphous medium. This theory, which general- 
izes the traditional approach to the problem of the optical- 
band shape to include the case of two-well adiabatic 
potentials, pertains not only to NPL but to the entire optical 
band. It leads to new theoretical predictions for experiment 
(see Sec. 9).  

2. MODEL OF IMPURITY CENTER IN AN AMORPHOUS 
MEDIUM 

Amorphous media have degrees of freedom corre- 
sponding to tunneling of atoms or their groups from one 
potential well to another. This ability of the atom to be in two 
quantum states is accounted for by the TLS model. The 
model vibrational Hamiltonian of an impurity center in an 
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amorphous medium is therefore best chosen in the form 

J 

where 

The subscripts s = 1,2 number the lowest levels in the deep 
and shallow well, respectively, and j numbers the well pairs, 
i.e., the TLS. The phonon Hamiltonian takes into account 
the phonon equilibrium positions as the atom goes from one 
well to the other. The third term in ( 1) describes the tunn~l-  
ing. By using the canonical transformation exp X, c+cj2 $j, 
where 

n 

we can "remove" from the phonon Hamiltonian the shift of 
the equilibrium positions, and reduce ( 1 ) to the form 

where 

p j c p j g (  R -z kecj2+cj2) exp%j. 
J 

The optical-band shape of an impurity center in a crys- 
tal is known to be expressed in terms of causal phonon 
Green's functions 

where the density matrix and the time dependence of the 
operators are determined by the Hamiltonian H:,.  In the 
case of amorphous media, an important role is assumed also 
by the causal Fermi Green's functions 

j G,.* (t, ~ ) = - i ( ~ ~ j ~ ( t ) c ~ ~ ( O )  )g, (4) 

where the Hamiltonian Hp is given by (2).  It is known (see, 
e.g., Ref. 27) that the Fourier components of the causal 
functions D and G are generally related to the Fourier com- 
ponents of the corresponding retarded functions: 

DnmR=-i(R, (t) R, ( 0 )  -R,(O) R, ( t )  ( t )  , 
( 5 )  

GZ- =-i(cj .  ( t )  c;, ( 0 )  +c:, ( 0 )  cjl ( t )  ( t )  . 
For the Fermi functions, for example, this relation takes the 
form 

G,:, ( a ,  T )  = ~e G:,: (a ,  T )  + i  t h ( a / 2 ~ )  lm G:, (a,  T ) .  (6) 

We can calculate the retarded functions by using the small- 
ness of the tunneling when uncoupling the resultant equa- 
tion chains. Taking into consideration the spectral represen- 
tation 

and introducing the more convenient notation E/g, = - q, 
E 5  = E?, we obtain, omitting the indices g and j, the follow- 
ing expression for the function G fS, : 

m 

where 
OD 

dv Z(v T) a rZ2 ( a ,  T )  =p21(o+e,  T )  [ ( o-e-p2f  --\ 
- m 

n o+e-v 

An expression for I?,, (w,T) is obtained from (9) by revers- 
ing the sign of E.  The functions that are not diagonal ins and 
s' are expressed in terms of G,, and G, ,: 

Using now the relation (6),  we readily obtain an expression 
for the causal Fermi function: 

m 

Here Tss, = - Im Gf5, and f ( v )  = [exp(v/T) + 11 -'. Us- 
ing a procedure similar to that described above, we can cal- 
culate also the causal phonon functions. 

The interaction of the TLS with the phonons "dresses" 
the TLS and distorts the phonons. For brevity, we refer to 
the excitation quanta of the "dressed" TLS as "tunnelons," 
while the distorted phonons will be called phonons as before. 
This terminology is particularly convenient for the discus- 
sion of the shape of the broad spectral distribution that ac- 
companies the NPL (see Sec. 6).  The function rsr, (v, T) and 
the analogous function r;h, (v,T) obtained by allowing for 
the influence of the TLS on the phonons, reflect the "dress- 
ing" of the TLS and the distortion of the phonons. 

3. INFLUENCE OF TLS ON THE SHAPE OF THE OPTICAL 
ABSORPTION BAND (GENERAL FORMULA) 

Obviously, electronic excitation of the impurity center 
alters the vibrational Hamiltonian: 

where 

j j 

We disregard on purpose the phonon-subsystem changes, so 
as to investigate in pure form the influence of the TLS on the 
optical band. The role of the phonons will be considered 
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below (Sec. 8).  
The sought-for shape of the homogeneous optical ab- 

sorption band is defined by the expression 
m 

1 J ( w ) =  - 1 dt e a p [ i ( a - E ) t ] ( e x p  iHgt erp - i w t ) ,  ( 1 4 )  
-m 

where E is the energy of the electronic excitation of the im- 
purity center. Calculation of the mean value in ( 1 4 )  gives 
rise to causal Fermi Green's functions. If the tunneling is 
weak, their Fourier components are described by ( 1 1  ). The 
technique of calculating ( 14) with the electron-tunnelon in- 
teraction ( 13) is quite similar to the technique used to calcu- 
late the electron-phonon band.3*4 The result is 

OD 

1 
J ( ~ ) = ~ J  d t e x p [ i ( o - ~ ) t + c p ( t )  I .  ( 1 5 )  

- m 

The cumulant function p ( t )  = 2, fi ( t )  satisfies the condi- 
tion e,( - t )  = e, * ( t )  and constitutes an infinite series: 

Here A and G ( t )  are matrices whose diagonals are the 2  X 2  
matrices 

4. NPL BROADENING AND SHIFT IN ABSORPTION 
SPECTRUM 

The long-time asymptotic behavior of the cumulant 
function is known to determine the shape and position of the 
NPL. Using ( 16) we obtain as t+ + cs, 

m 

where the infinite series is expressed in terms of the solution 
of the integral equation 

ea 

S(x)=AG(x)+JdyAG(x-I/)S(y), X Z O .  ( 1 9 )  
0 

On the basis of ( 19),  we can represent the series ( 18) in the 
form 

c p ,  ( t )  =-t  Sp {AG ( -0 )  -AG ( + O )  +S (+O)  }. ( 2 0 )  

It is easy to obtain for the Fourier component of the matrix 
S ( x )  the equation 

where 

S+ (a )  = J dx eiaxS ( x )  , G+ (a)  = dx eimxG (z) ( 2 2 )  
0 0 

are functions analytic in the upper complex w  plane. Solving 
( 2  1 )  by iteration, we substitute the resultant infinite series in 
the equation 

m 

Using the analytic properties of the terms of this series, we 
can simplify each term, after which the series is easily 
summed 

c p .  ( t )  =- t  (i6 ( T ) , + ~  ( T ) / 2 )  =- t  S ~ { A G  ( - 0 )  -AG (+o) 
0 

- J * ~ ~ ( I - A G ( ~ ,  2n T I )  }. ( 2 4 )  
- m 

Obviously, S ( T )  and y ( T )  describe the shift and halfwidth 
of a Lorentzian NPL. Using the explicit form of the function 
G(w,T)  we can transform ( 2 4 )  into 

7 (TI 
i6 (T) + 

" 

We have again labeled the Green's functions by the indexg of 
the electronic ground state, to prevent confusion in the 
forthcoming comparison with NPL of the fluorescence spec- 
trum. 

5. FLUORESCENCE NPL AND ITS CONNECTION WITH 
ABSORPTION NPL 

If the impurity center has a one-well adiabatic poten- 
tial, the fluorescence band is calculated in analogy with the 
absorption band, by replacing w  and E with - w  and - E 
and interchanging the Hamiltonian Hp and He. As a result 
of the last interchange we get in place of the Green's function 
G:s, of the electronic ground state the Green's functions of 
the excited state, viz., 

G:;, (t ,  T )  =-i( T cj. ( t )  c:~ ( 0 )  ).. ( 2 6 )  

The expression for the shift 6 P  and halfwidth y  of the 
fluorescence NPL spectrum takes then the form 

7" (TI 
isfi (T) + - 

2  

where G (w ,T)  is the Fourier component of the function 
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(26) and is defined as 

@ ( a ,  T )  E G * ~ ( ~ ,  T )  +i2f (o) I" ( o ,  T )  

From a comparison of (25) and (27) it might seem at first 
glance that the NPL of the absorption and fluorescence spec- 
tra are not resonant and have different halfwidths. It can be 
shown, however, that to the extent that the relation 

between the retarded functions is valid, both NPL are reso- 
nant and are equally broadened.'' Indeed, by using this con- 
nection we can transform the second terms in the integrands 
of (25) and (27) into 

In det (1-AG8) =In det (1-AG") 
+In det[~-2fAr 'AI '~- i2 f  ( I + A ~ ' ) A r 8 I l  (30) 

In det (Z+AG') =In det (1+AGeR) 
+ln det [Z-2fAI'*AI'8+i2fAI'* (1-AB8) 1, (31) 

where R = Re GR and r = - Im GR . In view of (29), we 
obtain also 

m - 
I $- ln det (1+AGen) -- - 
- 01 - m 

According to (32), the first terms in (30) and (3 1) are can- 
celed after integration by the first terms of (25) and (27). In 
view of (33) we obtain therefore 

6 ( T )  =-6"(T), 7  ( T )  =7f1(T) .  (34) 

These relations are evidence that the absorption and fluores- 
cence NPL are at resonance and are equally broadened. It 
was shown earlier2ss29 that these NPL properties are pre- 
served also when interaction with phonons is taken into ac- 
count. 

6. OPTICAL ABSORPTION BAND SHAPE 

We shall calculate the entire absorption band on the 
basis of (15) and (16) and by taking into account only part 
of the electron-tunnelon interaction, viz. the frequency shift 
A, in the TLS. The cumulant function ( 16) can be represent- 
ed in this particular case as 

=-is ( T )  t-7 ( T )  I t  ( / 2 + 0 ~ r  ( t ) .  (35) 

We shall see presently that the function pTK is responsible 
for phototransitions accompanied by tunnelon creation and 
annihilation. In the calculation of pTK we can neglect the 
tunneling, putting r/,, (v)  = d ( v  - ej ). We obtain then 
for pTK the rather simple expression 

rn ( t )  =x In[ l-fi+fj exp (-iAjt) 1, (36) 
j 

where fi = [ e x p ( ~ ~ / T )  + 1 ] - '. Tunneling cannot be ne- 
glected in the calculation of the expression for the NPL half- 
width and shift. The result is therefore 

y ( T )  iG ( T )  + - 
2  

We introduce the TLS distribution function in the split- 
tings 2E and in the shifts A: 

N ( E , A ) = ~ ~ ( ~ - E J ~ ( A - A ~ ) .  (38) 
j 

Obviously, the function N(E,A) is contained in all the terms 
of (35). Wesubstitute (35) in (15) andexpandexpp, ( t )  
in terms of exp( - iAj t). Integrating the terms of the resul- 
tant series with respect to t, we obtain the following expres- 
sion for the spectral distribution that describes the absorp- 
tion band: rn 

J(o)= ~ x P [ - M ( T )  I (~(o)+x ~ ~ ( a u ) )  , (39) 
m-0 

where 

j d e j  de' d~  dA' N ( e ,  A )  [ N ( e f 1  A') Y ' ( O ) = ~  

According to (39), the narrow Lorentzian peak L (a) is ac- 
companied by a broader distribution corresponding to pho- 
totransition with creation and annihilation of one, two, etc. 
tunnelons. The tunnelon wing is the analog of the phonon 
wing produced when an impurity center interacts with 
phonons. If electronic excitation of the impurity center 
causes a shift A in only one TLS, i.e., 
N(E,A) = S(E - eo)6(A - Ao), we obtain with the aid of 
(39) 

where fo = [exp(&,/T) + I]-'. In this case the absorption 
spectrum consists of a doublet of lines. The temperature 
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function M( T) is the analog of the Pekar-Huang factor. This 
factor contains the distribution function N(E) in the 2.5 split- 
tings of all the TLS that "feel" the electronic excitation of 
the impurity. Obviously, L(w) describes a "no-tunnelon" 
line, which we shall designate by NPL as before. 

The NPL halfwidth described by the real part of (37) 
can be transformed into 

A T 2  ( a )  ch-a ( a / 2 T )  ISr [ - ( i - A n  (a )  ) *+AZI" (a)  - 0 

where - r and fl are the imaginary and real parts of the 
function G & (w,T) . In the low-temperature region of inter- 
est to us, the argument of the logarithm differs little from 
unity, and we can rewrite (42) in the form 

s 

7 ( T )  - j dm F ( a )  ch-'(a/2T). (43) 
-OD 

It is shown in Refs. 25 and 26 that this equation yields readi- 
ly a nearly linear broadening if the function F(w) differs 
from zero in a sufficiently large spectral range. For example, 
if F(w) is approximated by a Gaussian or by a polynomial, 
we get a law. Obviously, the wide-band character of the 
function F(w) can be due either to the "phonon jacket" of 
the tunnelon, or to the distribution N(E,A) over the split- 
tings &. The latest experimental data,j9 will be shown in Sec. 
9 to favor the first variant. 

7. NONRESONANT FLUORESCENCE 

The foregoing absorption-band-shape theory is valid 
also if the adiabatic potential of the impurity molecule itself 
or of the atom has two wells (Fig. 1 ). Obviously, nonreson- 
ant fluorescence can set in at A < 0, since the impurity center 
can dump part of its energy by tunneling during its excita- 
tion time. Denoting by ni (v,,v2) the probability density of 
observing an impurity center with no-phonon transitions of 
frequency v, and v2 to the ith quantum state, we can obtain 
the equilibrium populations from the following system of 
balance equations: 

Here k = k& (v, - v, ) determines the pumping of the ex- 
cited state. The meaning of the remaining constants is clear 
from Fig. 1. Obviously, the luminescence intensity is deter- 
mined by the populations n, and n,. At relatively weak 
pumping, when the probability of the stimulated transition 
is less than that of the spontaneous one, i.e., k /r< 1, we have 

~(VI ,VJ-  znt(vi,v.). (45) 
< 

Denoting by L (v  - v,) the fluorescence NPL correspond- 

ing to transitions from levels 3 and 4, we obtain for the flu- 
orescence of frequency v, produced by excitation at the fre- 
quency v, , the following spectral function: 

The first term in the square brackets describes the resonantly 
excited structural fluorescence. The second represents the 
nonresonant fluorescence, which can also be wide-band if 
the impurity centers in the solution have a broad distribution 
in the shifts A, i.e., in the frequencies v, = v, + A. 

8. INFLUENCE OF PHONONS ON THE OPTICAL-BAND 
SHAPE 

We have taken into account so far the influence of the 
phonons on the shape of the optical band only indirectly, via 
"dressing" the excitations in the TLS. The direct influence 
of the phonons on the shape of the optical band has by now 
been thoroughly investigated. It can be taken into account 
by adding to the operator of the electron-tunnelon interac- 
tion (13) the operator of the Franck-Condon electron- 
phonon interaction 

In this case the cumulant function is a sump = p TLS + pph , 
where pTL, is defined in Eq. ( 16) and p,, is defined by Eq. 
(2) of Ref. 30. The interaction (47) leads to additional 
broadening and shift of the NPL and to the appearance of a 
phonon wing. Obviously, these effects combine with the 
analogous effects due to the electron-tunnelon interaction. 
The following formula was obtained earlier3 for the phonon 
contribution to the absorption NPL half-width and shift: 

FIG. 1 .  Adiabatic potentials of impurity center at A < O .  The transitions 
l t 3  and 2 4  correspond to resonant and nonresonant fluorescence, re- 
spectively. 
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YTLS I MHz 
loJ- loY - / 

b / ' FIG. 2. Comparison of the homogeneous NPL halfwidth 
OEP- PS measured in Refs. 17 and 19 with the one calculated from 

Eq. (43) with the function 

F(o)= A [ ~ ( ~ - E O ) -  8(a-~1)] 
lo2 - 

a - E l  
+ a m p  [-(T)'] e ( a - ~ ~ ) ,  

where B ( x )  is the Heaviside step function. The values of 
the parameters in cm-' (A and a are nondimensional) 
are: A =to = e l  = 0,  B = 22, c2 = 25, a = 1.3 . lo-' 

10 - (curve 1 ,  H2P in polyethylene); A = E,  = E ,  = 0, B = 22, 
= 35, a = 1.5 . (curve 2, H2P in diglycerole 

A=0.1 ,  a=0.025, B = 5 ,  &,=0.065, ~ , = 0 . 0 8 5 ,  
E, = 10 (H2-octaethylporphine in an amorphous poly- 
mer-polystyrene (OEP-PS). The slopes of the dashed 
lines were obtained in Ref. 19 by least squares. 

where the elements D :, of the matrix are the Fourier com- planation are produced in glasses as a result of distortion of 
ponents of the causal phonon Green's functions: the phonons by the TLS.3' The phonon mechanism of NPL 

broadening causes a rapid decrease of the half-width in the 
D,,e(t, T) =-i(PR,(t)R,(O) )#. (49) low-temperature region, either like T or in accordance with 

The phonons will be distorted by the interaction with the 
TLS. This distortion can be obtained by the scheme used in 
Sec. 2 to find the "dressing" of the TLS by phonons. After 
establishing the connection between P and the phonon 
function De of the excited electronic state, we can prove that 

i.e., that the interaction with the phonons does not upset the 
resonance of the NPL and leads to equal broadening of the 
absorption and fluorescence NPL. 

9. COMPARISON WITH EXPERIMENT 

The only available experimental facts are, unfortunate- 
ly, on the temperature dependences of the halfwidth and 
shape of the absorption-spectrum NPL."-l9 The theory set 
forth above agrees with all these facts, since it  yield^'^.'^.'^ a 
Lorentzian NPL with homogeneous halfwidth 

The first term is here the sum of the tunnel widths of the 
levels that combine in the optical transition, the second term 
yTLs is described by the real part of the function (25), and 
the third by the real part of the function (48). It was men- 
tioned at the end of Sec. 6 that the term yTLs yields both a 
linear and a near-linear T dependence in the required tem- 
perature interval. The difference between the NPL residual 
halfwidth y(0) and the reciprocal fluorescent lifetime is ap- 
parently governed by the tunnel width y,,, (0)  and attests to 
the two-well character of the impurity-center adiabatic po- 
tential. The quadratic broadening of homogeneous NPL in 
glasses, observed in Refs. 6, 7, and 14, can be quantitatively 
accounted for by the "old" term yph (Refs. 8 and 9).  The 
low-frequency quasilocal vibrations needed for such an ex- 

the exp( - YJT) law, where Y, is the quasilocal-vibration 
frequency. The tunnelon mechanism described by the term 
yTLs does not result in such rapid decreases of the half-width 
if the function F ( w )  has no dip in the low-frequency region. 
One can therefore trace the following picture of the tempera- 
ture dependence of the total NPL halfwidth. 

At T = 0 we have y(0) = y,,, (0). At sufficiently low 
temperature, y=  y,,, + yTLs . With further rise of tempera- 
ture, the NPL half-width is determined primarily by the 
phonon mechanism, yzz yph . As the temperature is raised, a 
transition from a near-linear broadening law to a T law be- 
comes therefore possible in accordance with the results of 
Ref. 18. The temperature at which the transition takes place 
depends on the ratio of the electron-tunnelon and electron- 
phonon interactions. 

We examine now the extent to which the term y,,, in 
the "fracton" (Ref. 24) and in the "tunnelon" (Refs. 25 and 
26) theories agrees with the results of studies in which the 
slope of the y,,, curve was observed to change once17 or 
twice19 (Figs. 2a and 2b). In the "fracton" theory the NPL 
broadening law depends on the rate at which the deforma- 
tion potential falls off in space and varies like T, T ~ ' ~ ,  or 
T ~ ~ ' ~ ~  for dipole-dipole, dipole-quadrupole, and quadru- 
pole-quadrupole interactions. The transition from to 
linear broadening at T <  1 K is attributed in Ref. 24 to a 
change in the multipolarity of the interaction with decrease 
of temperature. The two changes of the slope of the yTLs 
curve (Fig. 2b) must apparently therefore be attributed to 
two changes of the multipolarity. However, even if this rath- 
er strange assumption is made, the growth of yTLs ( T) in the 
0.08-0.4 K region, which is slower than linear, is not compa- 
tible with the "fracton" theory. 

The "tunnelon" theory attributes the fractional powers 
in the NPL broadening law to presence of a "phonon jacket" 
of the tunnelon or to a broad distribution N ( E , A )  of the TLS 
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FIG. 3. The function F ( o )  used to obtain Eq. (52). 

in the splittings k. If the impurity center interacts with only 
one TLS, the principal role is assumed by the "phonon jack- 
et." In this case the function F(w) in (43) should have a 
resonant part and a broad distribution. Taking the simplest 
variant of the function F ( o )  in the form of two rectangles 
(Fig. 3), we can calculate analytically the integral in (43): 

Obviously, if A,a there exist the following three tempera- 
ture regions with different broadening laws: 

4AT exp (-eplT), Tee ,  
rTLs(T)= A ( ~ ~ - & ~ ) + 2 a T ,  E ~ < T < E ~ ( A / ~ ~ )  (53) 1 2aT, el (A/2a) <T<e2. 

Even the simple equations (52) and (53) describe quantita- 
tively the experimental results of Fig. 2b in the region T < 0.4 
K. They fail to describe the and laws only at higher 
temperature. If, however, the lower rectangle with ampli- 
tudeo in Fig. 3 is replaced by a Gaussian, we obtain quantita- 
tive agreement between the "tunnelon" theory and the ex- 
perimental data of Refs. 17 and 19 in the entire temperature 
range-Figs. 2a and 2b. 

It must be emphasized that even though a TLS distribu- 
tion function enters in it, this theory pertains to a single im- 
purity center, i.e., actually to a homogeneous band. Since the 
physical parameters that govern the shape function of the 
optical band undoubtedly vary from center to center under 
the conditions of an amorphous medium, the shape function 
must be averaged over these parameters, as was done already 
in Refs. 8 and 23. Two possibilities are encountered here. If 
all the parameters obey a single broadening law in the range 
of their scatter,' the broadening law is likewise not altered by 
such an averaging. In the opposite case, this averaging alters 
the broadening law of the resultant spectral distribution." 
Obviously, if the formula for the homogeneous halfwidth 
were not to yield the experimentally observed temperature 
dependences, this would be a weighty argument in favor of 
the fundamental importance of such an averaging. We see, 
however, that the equations obtained for the homogeneous 
halfwidth to not provide as yet such an argument. At the 
same time, averaging of the spectral distribution, carried 
out, e.g., in Ref. 23, leads in an actual case to a non-Lorent- 
zian NPL, which does not agree with experiment.'" 

The earlier theories of NPL broadening in amorphous 

media did not offer, unfortunately, new predictions that 
would provide a check on their basic premises in indepen- 
dent experiments. What new predictions are made by our 
present theory? 1. Nonresonance fluorescence can appear. 
This fact should offer evidence that the adiabatic potential of 
the impurity center has two wells, and should therefore cor- 
relate with the presence of a residual NPL halfwidth. 2. If 
the impurity center in the crystal has a two-well adiabatic 
potential with noticeable tunneling, anomalous broadening 
of NPL can occur also in crystalline matrices. In this case, 
obviously, we come up against the situation considered 
above, in which only one TLS "feels" the electronic excita- 
tion of the impurity center. 

The author thanks A. A. Shtygashev for performing the 
numerical calculations. 
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