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A description is given of the narrow-gap intermediate-valence state within the framework of 
the Falicov-Kimball model including hybridization by treating the intermediate-valence state 
as a large-radius exciton condensate. The value of the energy gap is determined by both 
hybridization and correlation effects. We study the single-particle excitation spectrum, the 
temperature dependence of the energy gap, the electronic specific heat and the optical 
properties (including the Franz-Keldysh effect). The results obtained agree qualitatively with 
experimental data on the optical and thermodynamic properties of such compounds as SmB,, 
the "gold" phase of SmS, and YbB,,. 

INTRODUCTION 

At present, we can consider it firmly established that a 
number of intermediate-valence (I-V) compounds, e.g., 
SmB,,'*2 the "gold" phase of SmS,3 TmSe,4 and YbB,2,5 are 
actually not metals but rather narrow-gap semiconductors. 
This is confirmed both by investigations of their low-tem- 
perature kinetic and thermodynamic properties' and by di- 
rect optical  measurement^.^.^ Questions relating to the na- 
ture of the semiconducting state and the methods of 
describing it theoretically are rather complicated. In parti- 
cular, all is not yet clear regarding the relative importance of 
hybridization versus many-electron (excitonic) effects in 
the origin of the energy gap; also, there is no detailed expla- 
nation for the behavior of the optical properties of such sys- 
tems. The present work is devoted to consideration of these 
problems. 

Because the problem of providing a rigorous descrip- 
tion of the ground states of I-V compounds is still far from 
being solved, variational methods are often used in approxi- 
mate treatments of these As a rule, these meth- 
ods are based on the concept of a condensate of excitons, i.e., 
bound states of conduction electron with f-holes. Calcula- 
tions using some corresponding trial function usually are 
carried out within the framework of the periodic Anderson 
model, and come up against special difficulties connected 
with the single-electron wave functions, i.e., the "non-ortho- 
gonality problem." This forced the authors of Refs. 6-9 to 
restrict themselves to single-parameter trial functions, and 
also to resort to supplementary (and uncontrolled) approxi- 
mations in their calculations. In modelling the "gold" phase 
of SmS, Kikoin has proposed a description of the ground 
state of that system as an exciton c~ndensate .~ The nonorth- 
ogonality problem was solved in Refs. 6-9 with the help of 
the method of Levin and Carr.I0 However, the Levin-Carr 
method allows one to include in the ground-state description 
only exciton states with radii no larger than one coordina- 
tion sphere, whereas it is expected that excitons which are 
associated with a narrow-gap state should be large-radius 
excitons. 

In this work, we will set up the ground state within the 
framework of the Falicov-Kimball model with hybridiza- 

tion"; using the variational method, we will investigate the- 
oretically a wide range of properties of narrow-gap I-V semi- 
conductors. It is found that in this model, the 
nonorthogonality problem admits an exact solution for a 
very general class of trial functions. The total energy which 
corresponds to the multi-exciton wave function under inves- 
tigation is always bounded from below by the energy result- 
ing from the usual u-v Bogolyubov transformation; never- 
theless, in a number of cases (for example, in the 
interpretation of optical properties) the excitonic language 
is more convenient and physically transparent. Certain re- 
sults of the present work have previously been published in a 
short communication. l 2  Along with a more detailed account 
of these results, we here present calculations of the tempera- 
ture dependence of the energy gap (these calculations are 
timely in view of recent experimental work on SmB,I3 and 
YbB,,') and the specific heat; we also investigate the optical 
properties, including optical properties in a strong electric 
field. 

1. GROUND STATE TRIAL FUNCTION AND THE EQUATION 
FOR THE ENERGY GAP 

We will study the Falicov-Kimball model with hybridi- 
zation, whose Hamiltonian takes the form 

where c,+ f ,+ are creation operators for conduction elec- 
trons (c-electrons) and holes in the f subsystem, A is the 
energy difference between the f n  and f n  + ' configurations 
at a lattice site, t ,  is the single-electron spectrum 
(Z , t ,  = O), G is the Coulomb interaction parameter (for 
attraction between c-electrons and f-holes), and Vis the hy- 
bridization parameter, which for simplicity we take to be a 
contact interaction. This model is apparently the simplest 
nontrivial model of an I-V system, and is widely used for 
theoretical descriptions of such systems (see, e.g., Ref. 14). 
It allows us to take into account easily the strong Coulomb 
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repulsion of the )electrons without having recourse to 
many-electron operators; however, it does not allow us to 
investigate effects connected with the presence of conduc- 
tion electron spin and orbital degeneracy in the f-subsystem. 

In the model under discussion, the exciton state can be 
written as follows 

k 

where 10) is the "vacuum" state (all electrons are found on f 
levels). The multi-exciton wave function which describes 
the intrinsic I-V semiconductor (i.e., the total number of 
electrons equals the number of lattice sites N) can be written 
as a superposition of M-exciton states 

where now p ( k )  andil (M) are trial functions. The normali- 
zation factor for the function ( 1.3) equals 

The quantity (Q, I@,) can be evaluated in the thermody- 
namic limit M,N+m by introducing the appropriate gener- 
ating function and using methods from the theory of graph 
enumeration. l 5 3 l 6  

wherefi, is a multiplier which is a weak function ofM, and 
z (M)  is a saddle point which arises when we calculate the 
contour integral which determines the coefficient of the gen- 
erating function, for which we have the equation 

Replacing the sum in ( 1.4) by an integral, and evaluating it 
by the saddle-point method, we find 

where $(k )  = z l i 2 ( M , , ) ~ ( k )  and the saddle point M,, is de- 
termined by the equation 

(dh ( M )  /dM) M,M,=ln z (M,) . (1.8) 

A calculation of the average, which we need to find the total 
energy 

E=<H>=<@IHl@>/<@laP>, 

gives (see Refs. 12,15,16) 

d 
<ck+ck>=<fk+fk>=  *'(k) -ln<(D I (D>= vk2,  ( 1.9) 

a l p w  

(cr+f-k+f-k,ck.>= - * ( k ) $ ( k l )  d2(@l@> 
<@ I @> agyk) d v  (k') 

= UkVkUk'Uk', 

(1.10) 

<f-kck>= exp [ h(Mo+l)- h(M.1 
2 

where we introduce the notation 

u k 2  = 
1 

VkZ = 
q2 (k) 

1+*"k) ' 1+4' ( k )  ' 
and Eq. ( 1.8) is used along with the result ( 1.12). I t  is easy 
to see that the average we obtain coincides with the corre- 
sponding averages for BCS-type states" 

Thus, the calculation we have performed, which uses a 
multi-exciton wave function of the most general kind (if we 
only include excitons with the same momentum in our inves- 
tigation) corresponds in its results to the "optimum," i.e., 
Hartree-Fock, type of approximation. The approaches em- 
ployed earlier all reduce to simplified forms of this approxi- 
mation. Thus, in the work of Khomskii and Kocharian re- 
viewed in Ref. 11 ), a decoupling of the Green's function is 
used in which an anomalous average (cp f ,+ ) is introduced 
on one site, which is equivalent to replacing the function 
q~ ( k )  by a constant. The investigation in which the excitonic 
states whose radius was one coordination sphere were in- 
cluded9 is also not entirely justified, since in the narrow-gap 
state the binding energy is small; consequently, according to 
the uncertainty principle, the exciton radius must be large. A 
Green's function decoupling equivalent to the u-v transfor- 
mation was applied to the I-V problem in Ref. 18, whose 
author, however, did not analyze the equations he obtained, 
but limited himself to numerical calculations for determin- 
ing the parameter values. 

Substituting expressions ( 1.9)-( 1.12) in E and per- 
forming the variation, we obtain the system of equations 

where we have introduced the quantities 

E (k) = [X2+ (tk- Y)']lh (1.18) 

(it is easy to verify that choosing the other sign of the square 
root for determining ~ ( k )  leads to an energetically unfavor- 
able solution). In order to clarify the physical meaning of the 
quantity X, we calculate the energy of a state with only one 
electron and hole: 

I @?'>=ck+l @>, I a?' )=fk+I (D). 

Introducing the chemical potential p, we find 
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(0) (e.h) (8.h) 
s k  = < @ k  I H - ~ I V I  0rSh' )I<@:.'~) I Qk ) 

- ( H - p i V ) = ' / t [ ~  (k)* ( t k - A - G - 2 p )  1. 
Thus 

1 X 1 = min {E:) +'sf') } 
k 

coincides with the (direct) single-particle energy gap. It is 
necessary to emphasize that the equation for X always has a 
nontrivial solution (whereas in the one-exciton problem, a 
bound state exists only if G exceeds a certain critical value 
G, ). This difference arises from the fact that in the case we 
are investigating the origin of the bound state is the finite 
occupation of the conduction band; as a consequence of this, 
there is a solution for arbitrarily small interactions which is 
similar to a Cooper pair in the theory of superconductivity 
(see also the situation in the Hubbard model'". In addition, 
hybridization plays an essential role in this model, so that 
even for G = 0 we obtain a solution IX I = 21 V I correspond- 
ing to the simple hybridization model. 

The quantity Y determines the average concentration of 
holes in the f-level, and consequently the valence: 

We limit ourselves to investigting the case when the hybridi- 
zation parameter is small compared to the half-width W of 
the conduction band, which corresponds to real I-V com- 
pounds, and we seek a narrow-gap solution with IX I ( W. 
Then from (1.16), (1.20) we find 

Thus, Y is approximately equal to the Fermi energy EF, i.e., 
the chemical potential in the conduction band in the absence 
of hybridization and interaction. The intermediate valence 
arises when Y lies close to the conduction band center. In the 
case IX I 4 W, Eq. ( 1.15 ) can be used in the form 

where a - 1 and g ( E )  is the "bare" c-electron density. of 
states. The solution to Eq. ( 1.21 ) 

describes states with a hybridization gap, renormalized by 
correlation effects. We emphasize that the latter lead to a 
significant decrease in the direct gap /X I compared to its one- 
electron value 2 1 V I .  From the structure of ( 1.2 1 ), it is clear 
that the approach we are using corresponds to the summa- 
tion of direct parquet diagrams. As is well known, in the case 
of a single impurity (equivalent to the Kondo p r~b le rn '~ )  
this approximation gives results which are not entirely satis- 
factory for the description of the ground state. However, in 
the situation under discussion here it seems to be more re- 
warding, since in the semiconducting phase all the "Kondo" 
divergences are cut off at an energy on the order of the width 
of the gap (i.e., of order of the "Kondo temperature"), so 

that the system does not fall within the strong-coupling re- 
gime. In Ref. 20 a renormalization of the form of the effec- 
tive hybridization parameter is also obtained within the for- 
malism of the renormalization group; in this work, however, 
the corresponding quantity is not interpreted as the width of 
an energy gap. We note also that not long ago a full calcula- 
tion of the band structure of SmS in its "gold" phase demon- 
strated the appearance of an energy gap at EF (which obvi- 
ously is in origin a purely single-electron gap). In this case, 
the magnitude of the calculated gap differed essentially from 
the one observed experimentally, which attests to the impor- 
tance of including many-electron effects. The temperature 
dependence of the energy gap observed in SmB," and 
YbB,,' provides direct confirmation of the essential role 
played by these latter effects. 

For A 2  1, expression ( 1.22 ) gives a unique narrow-gap 
solution to Eq. ( 1.2 1 ) . In this case, there are also two wide- 
gap solutions, which (neglecting V) are approximately de- 
termined from the equation 

which describes the "exciton" state; these solutions are simi- 
lar to those investigated in Ref. 15 within the framework of 
the Hubbard model. If the solution X, to Eq. ( 1.23) is much 
larger than I V I, Eq. ( 1.2 1 ) has solutions 

In the case A (  1, Eq. ( 1.21 ) has additonal narrow-gap solu- 
tions if the inequality 

is fulfilled. For ( V I (V,, the two additional solutions have 
the form 

which describe states with an excitonic gap. It can be shown 
that the total energy corresponding to them is lower than for 
the state with hybridization gap X,. Thus, in the model un- 
der investigation here, for a given valence there are metasta- 
ble insulator states (corresponding to only local extrema of 
the total energy). 

The exciton gap can be small enough to explain the val- 
ue of the indirect gap X ,/4 W observed in SmB,, which 
amounts to 30-60" K, if we use Az0.2. Apparently, 
I V I - V, , so that the magnitude of the gap is determined by a 
combination of hybridization and excitonic effects. 

2. TEMPERATURE DEPENDENCE OF THE ENERGY GAP 
AND THERMODYNAMIC PROPERTIES 

We now investigate the equation which determines the 
energy gap at finite temperatures. As in the theory of super- 
conductivity, the easiest way to obtain it is to transform the 
Hamiltonian ( 1.1 ) by means of the u-v Bogolyubov trans- 
formation to new creation and annihilation operators for ek- 
mentary excitation (however, it is also possible to derive 
these equations using the "exciton" language, starting from 
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the trial function ( 1.3); see Ref. 16). Then in place of 
(1.15)-(1.17) we have 

heat C. As in the theory of superconductivity," we have 

In the special case under consideration here, (2.10) takes the 
form 

where f F' ,  f Lh) are Fermi distribution functions of the ener- 
gies E F ) , E ~ ~ )  [see ( 1.19) 1. Speaking in general, equations 
(2.1 )-(2.3) require numerical solution. In order to deter- 
mine the general form of the temperature dependence X( T) ,  
we investigate the analytically simplest case, where the con- 
duction band is symmetric and A=O, so that 
( f +A ) = 112, while the chemical potential p = Y - G / 
2 = - G /2 does not change as the temperature varies. Then 
(2.1 ) takes the form 

For the condition IX 1 ( W, we find 

where we introduce the value of the indirect energy gap 
S = X 2/4 W. In the high temperature case T>S we obtain 

where y = expCz 1.13, and Cis Euler's constant. Thus, the 
energy gap decreases as the temperature rises and very slow- 
ly (logarithmically) falls to zero: 

T* - i  

~ ( ~ ) = 2 ~ ( h l n ~ )  , T>6, T*, 

This behavior agrees qualitatively with the experimental 
data on SmB,. l 3  In the low-temperature case TgS we have 

where X(0) is determined by the equation [see ( 1.21) ] 

X(O)=2V[2hln(2W/IX(O) 1)-I]-'. (2.9) 

For not-too-large values of A, the energy gap IX(T) I de- 
creases monotonically with increasing temperature. 

Let us turn to a calculation of the electronic specific 

In the high-temperature limit T>S, taking into account 
(2.7) we find that 

The first term in (2.12) dominates the linear contribution 
foraratherwide temperatureinterval64 T 5  IX ( (for T> IX I 
the usual lattice contribution dominates). For low tempera- 
tures, expression (2.11 ) gives an exponentially small specif- 
ic heat, as in BCS theory: 

We point out that in the high temperature region our ap- 
proach is apparently quite reliable, since it realistically cor- 
responds to inclusion of the leading "Kondo" corrections. 
On the other hand, an investigation of the specific heat for 
low temperatures many require a more rigorous analysis, in 
particular an account of contribution from collective excita- 
tions. 

On the whole, the behavior obtained for the specific 
heat is similar to the behavior of the Schottky contribution, 
as was remarked in Ref. 2 in a discussion of the experimental 
data for SmB,. However, the finiteness of the bandwidth 
gives rise to essential differences, in particular to a 1/T de- 
pendence instead of 1/T2 at high temperatures. 

In connection with the large linear term observed in the 
specific heat of the "gold" phase of SmS for low tempera- 
t u r e ~ , ~ ~  it is interesting to investigate the case of a heavily- 
doped semiconductor, in which the chemical potential is 
near the top of the hole band. We show that for the model we 
are investigating here there is a large enhancement in the 
effective mass m*/m. The density of states corresponding to 
the spectrum 

E (k) ='I2 [ (tkZ-kX2) "'-tk ] , 

takes the form 

Near the upper edge of the band we have 

From (2.14) and (2.15) we obtain 

634 Sov. Phys. JETP 63 (3), March 1966 V. Yu. lrkhin and M. I. Katsnel'son 634 



Taking into account the renormalized chemical potential 
(measured from the top of the band), for a specific concen- 
tration of current carriers we find that 

The result (2.17) allows us to obtain an enhancement of the 
linear term in the electronic specific heat on the order of 40 
to 50. The experimentally observed enhancement is on the 
order of hundreds; the fact that our coefficient is too small 
can be related to our neglect of the effective electron-phonon 
interaction, many-valley effects (see the qualitative discus- 
sion in Ref. 9) and also to the increase in the correlation- 
induced renormalization of the electronic specific heat men- 
tioned in Ref. 23 in the case when the Fermi level is close to 
peaks in the density of states. 

3. OPTICAL PROPERTIES OF THE NARROW-GAP STATE 

Let us investigate the effect of a time-varying electric 
field F( t )  on the structure of the narrow-gap state. To do 
this, we write down the time-dependent Schroedinger equa- 
tion 

(ialdt-H+eF (t) x) I @ (t) > =0, (3.1) 

where x is the coordinate operator and e the electron charge. 
Equation (3.1 ) is equivalent to a corresponding variational 
principle, for which I @ ( t )  ) again can be taken in the form 
(1.3) with a function p(k, t )  which depends on time. In the 
absence of the field, we have 

For finite F we seek a solution in the form 

Performing the variation of the functional 

( Y  is a Lagrange multiplier, introduced because of the condi- 
tion ( f i+J; ) = M,,; it is easy to convince oneself that Y = E / 
M, - Y). Using a linear approximation in $ we obtain the 
equation 

The high-frequency dielectric susceptibility 
au (w) (i, j = x,y,z) in a weak electric field 

F (t) =F cos (a t )  exp (q t )  , q++O, 

is determined from the expression 

~ (X~)= ' /~NQ.  [afj(o)exp(-imt+qt) 
I 

+aij(-a) exp (iotf qt) ] F,, 

where S1, is the volume of a unit cell. Taking (3.4) into ac- 
count by linearizing, i.e., to first order in F, we obtain (note 
the analogous calculation in the framework of the Hubbard 
modelI5) 

e2X2 at, at, d ( k )  
a u ( a )  = -z -- 

2NQo , akd akj sz(k) - (o f iq ) '  ' 
(3.5) 

For the imaginary part of the dielectric susceptibility, which 
determines the optical absorption spectrum, we find 

The absorption edge corresponding to direct optical transi- 
tions equals w,, = IX I; near it ImaU (w) has a rather sharp 
maximum due to the factor of wP4. (As the experimental 
data on SmB: and SmS3 show, the important contribution 
to the optical absorption is given by the indirect transition, 
whose gap equals 8 ) .  For the static dielectric permeability in 
the case of small IX I we obtain 

where (. . . ) denotes an average over the surface 
t ,  = Y-EF. In the case of cubic symmetry, for large w we 
obtain 

where the square of the plasma frequency equals 

Thus, w, is determined by the same expression as in the case 
of free electrons, and the presence of a narrow energy gap 
does not change its value. This is true for all the high-fre- 
quency properties, including the metallic lustre of SmS ( a  
discussion of this question is given in Ref. 9).  Taking (3.9) 
into account, expression (3.7) takes the form 

According to the experimental data on SmB,2, w, -- 1.75 eV, 
and if we take for IX I a value on the order of 0.1 eV, which 
corresponds to the peak in the direct optical ab~orption,~ 
then for the static dielectric permeability we obtain 
~ ( 0 )  -200. In reality, ~ ( o )  for low frequencies is a strong 
function of frequency and temperature (probably because of 
the contribution from the indirect transitions); however, the 
estimate presented here is of the same order of magnitude as 
the observed data. In Ref. 2 it was concluded that the latter 
data argue in favor of the hybridization model. As was 
shown above, the exciton effects do not change the structure 
of the single-particle excitation spectrum, once we have 
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made the substitution 21 V I-+IX I .  In view of this, the large- 
radius exciton-condensate model (i.e., with IX 14 W )  can 
give agreement with experiment for SmB, which is as good 
as that of the hybridization model. The question of the rela- 
tive contribution of hybridization versus Coulomb interac- 
tion in the formation of the gap is determined as a function of 
the relative magnitudes of the model parameters. Experi- 
mentally, it could be clarified by precise measurement of the 
temperature dependence of X( T )  . 

There is also considerable interest in investigating the 
optical properties of the narrow-gap state in a strong exter- 
nal electric field. Let us assume 

F ( t )  =Fo+F cos ( a t )  e g t .  

In the presence of the field F,, all values of the electronic 
energy become allowed, and a finite probability emerges for 
an electron to cross the forbidden gap, even if the photon 
frequency w is smaller than the value of the gap /X / (the 
Franz-Keldysh effect; see, e.g., Ref. 24). For purposes of 
calculation, it is necessary to retain the quantity F, on the 
left-hand side of equation (3.4). The solution to (3.4) has 
the form 

i 

%(k ,  t )  = - e ~ l  dt , W ( k ( t r )  
0 ak ( t ' )  

e x p { i . ! d r c ( k ( r ) ) } ,  (3.11) 
0 

For the imaginary part of the dielectric permeability, we ob- 
tain to logarithmic accuracy in the exponentz4: 

From here on we will limit ourselves for simplicity to the 
one-dimensional case, which affects only the numerical val- 
ue of the multiplier in the final result. Computing the inte- 
gral by the saddle-point method (see Ref. 25 1, we find 

where the saddle-point k, = k, + ik, is determined from the 
equation 

For the narrow-gap state, we can use an expansion in 

which gives 

Performing the integration in (3.13), we obtain 

. . 
(3.14) 

A ( y )  =arcsin (1-y2)"'-y (1-yz)"'. 

The breakdown probability in a static field (Zener break- 
down) is proportional to 

In the case (X ( - w( (X 1, (3.14) takes the form 

4 (21XI ) 'h ( IXI -o )"  
Im e  (0,  Fo)m eap [- -1. (3.16) 

3 1 e 1 FotzuF 

Thus, under the action of a static field, for a narrow gap 
semiconductor the direct optical absorption develops a fairly 
deep exponential "tail" into the forbidden gap. Because (X 1 
is small, the relative shift in the absorption edge in the exter- 
nal electric field must be considerably larger than in ordi- 
nary semiconductors. 

In conclusion, the authors want to thank K. A. Kikoin, 
A. I. Larkin, A. V. Trefilov and D. N. Khomski for thorough 
discussions of questions which related to the work contained 
herein. 
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