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The intrinsic angular momentum in the A phase of superfluid 3He is found in terms of the response 
to the angular velocity of rotation. It is shown that in the weak-coupling approximation at an 
arbitrary temperature and with allowance for the Fermi-liquid renormalization the intrinsic 
angular momentum is small in accordance with the smallness of the asymmetry in the distribution 
of particles and holes. 

The question of the orbital angular momentum of su- 
perfluid 3He-A has stimulated increased interest since the 
time of the discovery of superfluid 3He. The A phase is a 
superfluid Fermi liquid, the Cooper pairs of which are in a 
state with orbital angular momentum L = 1, L, = 1 (the 
latter is the component of the orbital angular momentum 
along the selected direction 1) and with pair spin S = 1, 
S, = 0. The order parameter is (see Ref. 1) 

&,=A ( T )  Va(A,'+iAil ') .  (1  

Here A ( T )  is the modulus of the order parameter, V is the 
unit spin vector, and A' and A" are unit orthogonal vectors 
whose vector product A' X A" = 1 specifies the direction of 
the orbital angular momentum. Each pair in the liquid pos- 
sesses orbital angular momentum fil, and the total orbital 
angular momentum of a vessel containing N atoms of 3He, at 
T = 0, is 

This angular momentum is formed as a result of the macro- 
scopic motion of the centers of mass of the pairs, i.e., is ex- 
pressed in terms of the current density as 

At the same time (see Ref. 2 and the references there- 
in), within the volume of the liquid there is almost complete 
cancellation of the orbital motion of the pairs, and the orbital 
angular momentum of unit volume of the liquid, containing 
n, atoms of the superfluid component (i.e., the local orbital 
angular momentum corresponding to the intrinsic rotation 
of the pairs) turns out to be equal not to (nS/2)fil but to a 
quantity considerably smaller in order of magnitude: 

The intrinsic angular momentum for an arbitrary tempera- 
ture was first found in papers of Volovik3 and Cross.495 

In all the indicated the magnitude of the in- 
trinsic angular momentum has essentially been established 
from the current density. The procedure of separating out in 
the current density the term 

joL='12 rot L ~ R L ,  (4)  

corresponding to the intrinsic angular momentum, is not 
fully defined, since besides the term (4)  the current density 

1 
ji"pij"vj"vjn) + -Cijo (rot 1) 

2 

1 1 Spp" +-.-- 
4 3 p  

[ VPX 11 ,+jioL 

also contains the term Ci (curl l)]. Here j0 is the current 
without Fermi-liquid corrections, and the coefficients in (5)  
are equal to 

pi  andpi are the tensors of the density of the superfluid and 
normal component, respectively. Thus, Cross's a p p r ~ a c h , ~ , ~  
which does not give rise to any doubts for T-tT, (see the 
review in Ref. 6 and the more detailed account in Ref. 7 )  is 
not so obvious in the intermediate range of temperatures, in 
which allowance for the Fermi-liquid renormalization of the 
current prevents us from separating out a contribution to the 
current in the form (4)  of an exact curl of an intrinsic angu- 
lar momentum. 

On the other hand, the generalization of the method of 
Ref. 2 to nonzero temperatures with Fermi-liquid correc- 
tions taken into account leads to the result that the intrinsic 
angular momentum of the A phase of 3He turns out to be 
small not to the extent that the asymmetry - ( T, / 
E~ ) In (eF/TC ) in the distribution of the particles and holes 
is small, to the extent that of the anisotropy F, (p," - p;i )/pn 
of the normal-density tensor is small. Here, 

and F, is the parameter of Fermi-liquid theory. As a result, 
according to Refs. 8 and 9, in the dynamical equations for 
the vector 1 the inertial term associated with such a large 
magnitude of the internal angular momentum turns out, 
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near the temperature of the A-B transition, to be of the order 
ofseveral percent of the frictional torque arising as a result of 
the orbital viscosity. Therefore, in Ref. 8, an experiment to 
measure the intrinsic angular momentum has even been pro- 
posed. We should say immediately that we do not share the 
optimism of the authors of Ref. 8, since, as shown in Refs. 10 
and 11, in the dynamical equations there appears a dynami- 
cal intrinsic orbital angular momentum, in the calculation of 
which the contribution from the change in the distribution 
function of the excitations drops out; therefore, the inertial 
term does not contain a Fermi-liquid renormalization, and 
consequently remains small in accordance with the small- 
ness of ( T, / E ~  ) 21n(~F/Tc  ) .  Moreover, in the present paper 
it is shown that even the static intrinsic angular momentum 
with Fermi-liquid renormalization taken into account re- 
mains small in accordance with the smallness of (T,/ 
EF)  2 1 n ( ~ f / T c ) .  

To find Li,, we shall regard superfluid 3He formally as a 
charged Fermi liquid withp-pairing in an external magnetic 
field. We obtain a gauge-invariant expression for the energy 
9 (quadratic in the gradients) of such a liquid with 
allowance for Fermi-liquid renormalization at an arbitrary 
temperature. If we make use of the well known analogy 
between superfluid and superconducting systems and as- 
sume that the vector-potential field is equivalent to the nor- 
mal-velocity field: 

while the magnetic field corresponds to the angular velocity 
= 1/2 curl vn of rotation of the normal component, the 

intrinsic angular momentum can be found as the response of 
the system to the angular velocity of rotation: 

The calculations we have made (see the Appendix) 
show that the gradient energy contains not only the terms 
found by C r o ~ s , ~  in which, of course, it is necessary to make 
the Galilean-invariant replacement v" (v" vn ) (see also 
Ref. 12, in which, in addition to (4),  terms proportional to 
gradients of the density p are taken into account), but also a 
term linear in the angular velocity of rotation: 

The quantity L,,, is nonzero only because of the asymmetry 
of the particles and holes, and for the A phase is equal to 

A ( T )  ' E F  
Lint=,--- "" ( 1 + L F . ~ ) ' ( ~ )  In- (8 )  4m Na 3 '  P T c  

( m  is the mass of the 3He atom), which for F, = 0 coincides 
with the result of C r o ~ s . ~  Here No and N, are the coefficients 
in the expansion of the density of states for one spin direc- 
tion: N ( 0  = No + N ,  (6 / E ~  ) .  The corresponding contribu- 
tion to the current is obtained by varying (7 )  with respect to 
vn : 

jL=-6FL/6v"='/, rot Lint. ( 9 )  

Thus, the spontaneous orbital angular momentum in 3He-A 

is a well defined quantity, which appears in the energy and in 
the current in the form of the terms ( 7 )  and (9), respective- 
ly. 

The authors are grateful to G. E. Volovik for suggesting 
that we fill out the details in the question of the spontaneous 
orbital angular momentum. 

APPENDIX 

Using the gradient expansion of the Gor'kov equations 
we shall find the Green functions of the system, after which 
we shall obtain a microscopic expression for the current and 
for the free energy. As already stated above, using the ana- 
logy between superfluid and superconducting systems we 
can consider a superconductor with p-pairing, placed in a 
magnetic field. To go over to the case of 3He we make the 
replacement 

In the following we shall use atomic units ( lei = ti = c = 1 ). 
The Poisson-brackets method used by CrossI3 to obtain 

the free energy is not suitable in the present case, since in this 
method the gauge invariance is broken for the small nonlocal 
terms responsible for the appearance of the spontaneous or- 
bital angular momentum. Therefore, we shall use the meth- 
od proposed by Eilenberger,I4 having generalized it to the 
case ofp-pairing and for the presence of Fermi-liquid renor- 
malizations. The Gor'kov equations have the form 

1 
im+p (r) - - d 

2m' 

-6eT(-k, r) }F+ (k, r. W )  

where 

1 a o=--- 
i dr 2A(r), a= ( 2 n f  l )  nT, H = rot A ,  

and ,u ( r )  is the chemical potential. Here we have used the 
barred Green functions 

~(k,r)=jexp[-ik(r-r')]G(r,r')d3(r-r'), (A.3) 

Ft (k, r) = exp[-ik (r-r') ]F+ (r, r')d3(r-rr), 

which are related to the usual Green functions by 

C (r, rl) =G (r, r') esp [i j A  (x) LZX 1, 
I' 
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(the integration is taken over the straight line connecting r 
and r'). Below, for brevity of writing, we omit the depen- 
dence of the functions on the frequency. Under the gauge 
transformation 

A+A+Vx, 

C+C, F++F- exp [2ix(r)], 
it is not difficult to verify that the gauge invariance (A.5) is 
preserved for the solutions of (A.2) in any order of the ex- 
pansion in the slow gradients - id/& and 0. The order 
parameter 

lik' TE F ( k f ,  r ) ,  A=-39 jzG 

A (k, r )  =iaaa,Aaiki/kR, (-4.7) 

where A,, is the matrix of the order parameter ( 1 ) of the A 
phase, and ua = (ux ,a, ,a, ) are the Pauli matrices. The 
Fermi-liquid corrections Se(k, r )  are determined in the stan- 
dard way: 

61 (k. r) = f (k, k f )  8n (kt ,  r) 

(6eT is the transposed matrix), and SG is the deviation of the 
Green function from the equilibrium Green function. As in 
Ref. 4, in f(k,kl)  we shall retain only the term with I = 1: 

Following Ref. 14, we can expand (A.2) in a series in powers 
of a /ar, 0 ,  and A: 

Writing the expansion (A. 10) in matrix form, we obtain 

1 
o,,=D-IE+( o ) $ (A. 1 l a )  

Oi=-D-'E+R,S,,, (A. 1 lb )  

9,=-D-'E+ (RlSl+R,8,1). (A. 1 l c )  

Here, 

G 
3, = ( ) , i=o. 1,2. . . . . (A. 12) 

(k, r) - 
im* dr i-'"- 

The current density can be expressed in terms of the Green 
function: 

Alternatively, recalling (A.8), from (A.  18) we obtain 

68 (k, r) = m k ~ - ~ f i k i j i .  (A.19) 

Substituting into (A. 18) the solution (A. 1 l b ) ,  we obtain 
the expression for the current with allowance for the Fermi- 
liquid renormalization: 

where j0 is the current ( 5 ) ,  i.e., the current without Fermi- 
liquid corrections. 

To obtain the free energy we shall use the method (gen- 
eralized top-pairing) of integration over the coupling con- 
stant (see, e.g., Ref. 15). We have 

(A. 14) 

(A. 15) 

1 I d 2  1 --(--) --L[HX;] --- 
2m' i d r  2m'i 

1 d2A+ d 2  ---- I 1 --02-- 
2 d k i a k j  dridrj 2m' 2im 

(A. 17) 

=- J #r {$ Sp T J dhA (k, r) F2+ (k, r, h )  f h.c. 
0.k 0 

Here F: (k,r,A) is the function from (A.  1 l c ) ,  in which the 
replacement A+AA has been made. 

Concerning the gradient energy 9 it is necessary to 
make the following remark. In Refs. 13 and 4 9 was calcu- 
lated by integrating the function G, over the frequency, as 
first suggested in Ref. 14. If we proceed by this method, the 
current density (A. 18), with allowance for the small terms 
arising on account of the asymmetry in the distribution of 
the particles and holes, is not equal to the variation SF/SA.  
The reason for this is not clear to us; we note only that, as 
shown in Ref. 16, in the A phase it is necessary to exercise 
care with the frequency dependences. The calculation from 
(A.21), as we shall show, is free of this discrepancy. 
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We shall write F: from (A. 1 lc)  in the form of three 
terms, of zeroth, first, and second order, respectively, in the 
Fermi-liquid corrections: 

Then, retaining terms of each type only in leading order in 
A/eF, we have 

i I 

T A e E dA+ dG" T E A --r, J~M-(LO)-----r, j ciuT 
im' ~ , r  o DL DL d k ,  dr,  im' O,k 201 

(A.23) 

where D, = co2 + 6 + A  2AA+. Integrating over A, we ob- 
tain 

where the first term is the energy found by C r o s 4  The spon- 
taneous orbital angular momentum arises from the last term 
in (A.23). 

Concerning the second term in (A.23) it is necessary to 
make the following remark. The origin of the terms with Vp 
is associated (see Ref. 17) with the coordinate dependence 
of the potentialp ( r )  near the walls of the vessel with 3He-A, 
where, on account of the influence of the walls, the modulus 
of the order parameter is reduced in a layer of thickness - IC, 
on the walls, leading to a density change Vp/p-(A/ 
EF )'6 . A further decrease of the density, to zero, occurs 
over atomic distances, and, of course, lies beyond the limits 
of applicability of the gradient expansion. Therefore, the 
term with Vp in the energy and in the current describes the 
extent to which the density of 3He inside the vessel exceeds 
the density at distances of the order of the interatomic dis- 
tance from the surface of the vessel. In accordance with the 
philosophy developed in Ref. 2, this term gives that contri- 
bution to the total (integral) orbital angular momentum of 
the vessel which arises on account of the near-wall current: 

-. 

If we formally regard the result of the gradient expansion as 
valid up to the boundary (i.e., 6p = p ) ,  the term with Vp 
gives 

-. 

h 6 p h  - - -Ip, - m - 
V m p m  lp., 

as can be easily seen by integrating the second term in 

(A.24) by parts. It would be incorrect, however, to identify 
this quantity with the intrinsic angular momentum of the 
liquid, as was done, e.g., in Ref. 9, since, although Sp does 
coincide with p, Vp is concentrated in the near-wall layer. 
Therefore, the second term gives the orbital angular momen- 
tum only from the near-wall region. This angular momen- 
tum for a uniform texture 1 coincides, to within a coefficient, 
with the angular momentum of the superfluid current flow- 
ing in a nonuniform texture.' 

We consider now the terms linear in 6.5: 

Substituting (A.25) into (A.21) and proceeding as in the 
derivation of (A.24), with allowance for (A.19) we obtain 

Finally, we consider 

A + 

Fzt (6e 6.5) = (66 6e) (30'-EZ), (A.27) 
D 

whence 

Here it is necessary to make the following remark: In 
the integration over A we assumed that 6.5 does not depend 
on A, inasmuch as in the Gor'kov equations (A.2) 6.5 plays 
the role of an external potential, and only in the equations for 
the current is it found self-consistently, as it should be in 
Fermi-liquid theory. According to (A.2 1 ) we should sub- 
tract the contribution corresponding to A = 0, i.e., in the 
integration over A the lower limit A = 0 (corresponding to 
A = 0)  should be discarded. After this, from (A.27) it is not 
difficult to obtain (A.28), whence, summing (A.28), 
(A.26), and (A.24) and taking into account the last term in 
(A.21), we obtain 

F=B (PZ0+) 

Varying (A.29) with respect to the vector potential gives the 
expression (A.20) for the current, while varying it with re- 
spect to the magnetic field H = curl A gives the spontaneous 
orbital angular momentum (8)  with allowance for Fermi- 
liquid renormalization. Finally, from (A.29) it can be seen 
that in the energy there is a term of the form (7) ,  corre- 
sponding to the energy of interaction of the angular momen- 
tum and the field. 

'V. P. Mineev, Usp. Fiz. Nauk 139,303 (1983) [Sov. Phys. Usp. 26, 160 
(1983)l. 

'G. E. ~o lov ik  and V. P. Mineev, Zh. Eksp. Teor. Fiz. 81, 989 (1981) 

1198 Sov. Phys. JETP 62 (6), December 1985 A. V. Balatskil and V. P. Mineev 1 198 



[Sov. Phys. JETP 54, 524 (1981)l. 
3G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 22,234 (1975) [JETP Lett. 
22, 108 (1975)). 

4M. C. Cross, J. Low Temp. Phys. 21, 525 (1975). 
5M. C. Cross, J. Low Temp. Phys. 26, 165 ( 1977). 
6W. F. Brinkman and M. C. Cross, in: Progress in Low Temperature 
Physics (ed. D. F. Brewer), North-Holland, Amsterdam (1978), Vol. 
VIIa, p. 105. 
'G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 86, 1667 (1984) 

[Sov. Phys. JETP 59,972 ( 1984) 1.  
8A. D. Eastop, H. E. Hall, and J. R. Hook, in: Proceedings of the Seven- 
teenth International Conference on Low Temperature Physics [LT- 171 
(ed. U. Eckern et al.), North-Holland (1984), Part I, p. 37. 
9H. E. Hall and J. R. Hook, in: Progress in Low Temperature Physics (ed. 

1199 Sov. Phys. JETP 62 (6), December 1985 

D. F. Brewer), North-Holland, Amsterdam (1985), Vol. IX. 
'OR. Combescot, Phys. Rev. B18, 3139 (1978). 
"K. Nagai, J. Low Temperature Phys. 36,485 (1979). 
I2K. Nagai, Prog. Theor. Phys. 65,793 (1981). 
I3M. C. Cross, Thesis, University of Cambridge (1975). 
I4G. Eilenberger, Z. Phys. 182,427 ( 1965). 
I5A. V. Svidzinskii, Prostranstvenno neodnorodnye zadachi teorii sverkh- 

provodirnosti (Spatially Nonuniform Problems in the theory of Super- 
conductivity), Nauka, Moscow ( 1982). 

16G. E. Volovik and A. V. Balatskii, J. Low Temp. Phys. 58, 1 ( 1985). 
I7N. D. Merrnin and P. Muzikar, Phys. Rev. B21, 980 (1980). 

Translated by P. J. Shepherd 

A. V. Balatskir and V. P. Mineev 11 99 


