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We investigate resonant ionization of atoms in an external intense electromagnetic radiation field, 
when the upper state of the atom comprises many closely spaced levels that are at multiphoton 
resonance with the lower level. The multilevel structure of the upper state can either consist of 
many close levels of highly excited states of the atom or be a multiplet. The photoelectron distri- 
bution in energy and the probability of resonant ionization of the atom in the intense electromag- 
netic field are calculated as functions of time. The case of doubly split states of the upper level is in- 
vestigated. A computer calculation is carried out of the photoelectron distribution for one-photon 
resonance of the fine-splitting levels 32S112 with 32P11, and 32P312 of the sodium atom, and the 
results are plotted. 

91. INTRODUCTION 

A theoretical and experimental investigation of reso- 
nant ionization of atoms is not only of fundamental impor- 
tance for the elucidation of the laws governing multiphoton 
detachment of an electron from an atom, but also of practical 
significance for isotope separation, electron polarization, 
study of highly excited states, and others. Resonant ioniza- 
tion of atoms is the subject of many works in which correct 
account is taken of transitions between discrete levels and 
continuum states. The temporal evolution of resonant ioni- 
zation of atoms was investigated in Ref. 1 under conditions 
when both the resonant and the ionizing fields are turned on 
instantaneously, and with neglect of the transitions between 
all spontaneous and nonresonant transitions as well as tran- 
sitions between continuum states. This reference contains 
also a generalization of the Fano's familiar configuration- 
interaction method2 for a constant perturbation to the case 
of a periodic one. 

Of particular interest in resonant ionization is the case 
of intermediate two-photon resonance. Turning-on the reso- 
nant field adiabatically in the inversion regime3 leads to sub- 
stantially new results for the resonant-ionization probabil- 
ity. The influence of self-induced inversion on resonant 
ionization was considered in Refs. 4-6. A more complete 
discussion of resonant processes in multiphoton ionization 
of atoms is given in Ref. 7. The polarization-angular distri- 
bution of photoelectrons was investigated by perturbation 
theory in Refs. 7 and 8. Three- and four-photon ionization of 
an atom in the presence of a multiplet resonance was investi- 
gated in Ref. 9, but a final expression for the probability was 
given only for four-photon ionization and was obtained by 
perturbation theory. Two-photon ionization of an atom in 
the presence of an intermediate resonant doublet was consid- 
ered also in Ref. 10, where the ionization probability as t+ cc 
was obtained for instantaneous application of an external 
field. The expression obtained there for the probability is, 
however, very unwieldy and the authors confined them- 
selves to the locations and widths of the maxima in strong 
fields. 

We consider in the present paper resonant ionization of 
atoms in an intense external electromagnetic radiation field, 
when the upper state of the atom constitutes many closely 
spaced levels that are at multiphoton resonance with the 
lower level. The multilevel structure of the upper state may 
be either many close levels of highly excited states of the 
atom or a multiplet. Fano's generalized configuration-inter- 
action method for periodic perturbation2 is used to calculate 
the photoelectron distribution in energy and the probability 
of resonant interaction of an atom in an intense electromag- 
netic radiation field as a function of time. The computer- 
determined photoelectron distribution for one-photon reso- 
nance of the sodium-atom fine-splitting levels 3'S1,, with 
32P,12 and 32P,12 is reported. 

92. PROBABILITY OF MULTIPHOTON IONIZATION OF AN 
ATOM IN THE CASE OF N CLOSE INTERMEDIATE 
RESONANCES 

We consider the ionization of an atom in the field of 
intense electromagnetic radiation, when the upper level con- 
sists of many close levels that are at multiphoton resonance 
with the lower level (Fig. 1 ) . For the basis wave functions 
for the discrete spectrum of the atom in the electromagnetic- 
wave field we choose quasi-energy wave functions written in 
the approximation of multiphoton resonance with adiabatic 
turning-on of the periodic perturbation 

These functions take the form 
N 

i mO ( t )  = erp [ -Rhot ] ( ~ ~ ~ l p . + e - ' ~ " ~ ~  cio$i) 7 

i n 1  

(2) 

where A, ( Y  = 0, 1, ..., N )  are the atom quasienergies in the 
radiation field; when the interaction is turned off, i.e., as 
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FIG. 1. 

V ( t ) + O ,  they go over into the free-atom energy levels, and 
the wave functions ( 2 )  go over into the free-atom functions 

Turning-on an ionizing field, the interaction with 
which we denote by 

we represent the complete solution of the Schrodinger equa- 
tion, with the continuum taken into account, in the form 

N 

Y ( t )  =ao( t )  m o ( t ) +  z a k ( t )  m k ( t ) +  JaA( t )qr ( t )dh .  ( 4 )  
k= i 

where p, ( t )  = p, exp[ - iRt / f i ]  is the unperturbed wave 
function of the continuous spectrum of an atom of energy A .  

Substituting the expansion ( 4 )  in the Schrodinger 
equation, we obtain a system of differential equations for the 
coefficients a,  ( t )  and a, ( t ) ,  which are reducible by the 
Fourier transformation 

i 
a, ( t )  = erp [% (h0+nho+hof )  t ] J dE no ( E ) e x p [  - f ~ t ]  . 

to the following system of algebraic equations for the Four- 
ier coefficients a, ( E )  and a, ( E )  : 

v-0 

where 

k= 1 

We solve the system ( 6 )  by the methods cited in Ref. 2. 

We represent the solution of the second equation of the sys- 
tem ( 6 )  in the form 

N 

a A ( E )  = [ P / ( E - h )  + Z ( E ) 6 ( E - ) )  I z B i v a r ( E ) ,  ( 9 )  
v=o 

where P stands for the principal value and z ( E )  is some arbi- 
trary function that will be determined. After substituting 
( 9 )  in the first equation of ( 6 )  we get 
N 

vr-0 

where 

With the aid of the unitary transformation 

av ( E )  = z AvV,Zv, ( E )  , 

where A is a unitary matrix, we diagonalize the matrix 
E, 8 ,  + F, ( E ) .  The set of equations for the unitary ma- 
trix and the eigenvalues g, takes the form 

N 

E d w ,  + z F ~ ( E ) A ~ ~ ~ = A ~ ~ E ~ ~  
,,=a 

( 1 3 )  

and the system ( 10) reduces to the following set of algebraic 
equations: 

whose solutions are 

where 

while 

B ( E )  =z BE.& ( E )  = @Eva" ( E ;  

is determined from the condition for orthonormalization of 
the complete quasienergy function to a S function. 

Multiplying Eq. ( 14) by B,,/(E - E, ) and summing 
Over Y ,  we get 

and, taking ( 17) into account, 
N 
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This yields for z ( E )  the expression P(E)= a(E)/(z(E)- in), 

where 

In ( 2 5  ), s: ( v  = 0 ,  1 ,  ..., N )  are roots of a complex equation of 
degree N + 1 : 

r,(E) =2n ( 2 0 )  
Substituting ( 15 in ( 9 1 ,  we get 

Substitution of ( 15)  and ( 2  1 ) in the Fourier expansion 
( 5 )  yields for the completely orthonormalized quasienergy 
wave function ( 4 )  the final expression 

which is in turn the characteristic equation of the matrix 

i 
D = ~ ~ E ~ ~ ~ , - - ( ~ ~ ~ ~ ) ' ~ ~ ~  2 ( v . ~ = O , l ,  ..., N ) .  ( 2 8 )  

The eigenvalues of the matrix ( 2 8 )  are the roots of the 
characteristic equation ( 2 7 ) .  This matrix is uniquely ex- 
pressed in terms of two Hermitian matrices B and C: 

We denote the eigenvalues of the Hermitian matrix 
C = - ( 1 / 2 )  1 1  (f',F, ) 1 ' 2 1 1  by A,; they are the roots of the 
equation 

~hcSvp+l/~(flvF 11) ''*I =O. ( 3 0 )  
The equation ( 3 0 )  of degree N + 1 is of the form 

The atom-ionization amplitude 

reduces upon substitution of the wave functions ( 2 )  and 
( 2 2 )  to the expression 

and its roots are 
A' 

The imaginary parts of the eigenvalues of the matrix D, and 
hence the imaginary parts Im s: of the characteristic equa- 
tion ( 2 7 ) ,  lie in the interval from min{A, 1 to max{A, 1, i.e., 

N 

All the matrix elements, as well as F,, ( E ) ,  are assumed 
hereafter to depend little on the energy E  and are regarded as 
constants. As noted in Ref. 1, these functions are indeed 
slowly varying in E ,  since the characteristics interval of their 
variation ( - Ry ) is large compared with their value. The 
ionization amplitude ( 2 3 )  can then be rewritten as 

The roots of Eq. ( 2 7 )  of degree N + 1 are thus located on the 
lower complex E  half-plane and Im s: # O .  

Integrating with respect to E  in the first term of ( 2 4 )  we 
obtain for the ionization amplitude the expression 

where 

where 

Consider the case when all the roots of ( 2 7 )  are differ- 
ent. The presence of multiple roots calls for a separate inves- 
tigation. 

11 57 Sov. Phys. JETP 62 (6),  December 1985 A. D. Gazazyan and R. G. Unanyan 1157 



- -- r ,  I f  exp , ( - r t l f i )  - 2 exp ( - r o t / 2 f i )  cos ( (h-E,-A,) t lA)  
25% ( h - ~ , -  A , )  z + r , 2 / 4  

FIG. 2. 

At t = 0 the ionization amplitude vanishes: 
A(/2,0) = 0. As t+m we obtain for the electron-distribution 
amplitude the expression 

N 

which shows that the photoelectron-distribution amplitude 
has N + 1 different maxima located at the points A = Re s: 
with respective widths 2 Im s:. 

Confining ourselves to weak ionization, when 
r,/AE, - Av/Ev 4 1, where AE, is the distance from the 
quasienergy level E, to the nearest quasienergy level, and 

are respectively the width and shift of this level, approximate 
solutions of Eqs. ( 13) and (27) yield for s: the values 

where E, is defined in (7) .  
The total ionization probability at the instant t is given 

by 
+oo 

W ( t ) =  l A ( h , t )  ' d h .  
- m 

Substituting here the amplitude A (At)  ( 33), we obtain for 
the time dependence of the total ionization probability 

In the case of weak ionization A,, z&,,, and f, z 19 ,+, f, z O  
(v#O), we get the following approximate expression for the 
photoelectron-distribution amplitude: 

1-exp [ i (A-Eo-A,) t /A]exp  ( - r 0 t / 2 f i )  
A (h ,  t )  - 6,' 

A-Eo-A,+iro/2  
, (38) 

where 9, is determined from (8)  and the width [Eq. (20) 1, 
is r, = 2a/9,I2. For the photoelectron distribution in ener- 
gy we get therefore 

(39 
and the total ionization probability is 

At relatively short times t(fi/r, and at t)fi/(A - E, - A,) 
we get from (39) 

i.e., the ionization regime becomes linear in time in accord 
with perturbation theory. 

We confine ourselves henceforth for simplicity to the 
case when the upper resonant state comprises two close lev- 
els. This is the situation, for example, for fine splitting of an 
atomic level. The case of an intermediate resonance multi- 
plet was considered in Ref. 9 for three- and four-photon ioni- 
zation of the atom. Final results, however, were obtained 
only by perturbation theory for four-photon ionization. The 
case of a one-photon resonant multiplet in an external elec- 
tromagnetic field switched-on instantaneously was consid- 
ered in Ref. 10, but the final expression for the ionization 
probability, obtained for t+w,  was very unwieldy. The 
authors confined themselves therefore only to an analysis of 
the locations and widths of the maxima in strong fields. The 
simplest example of the situation considered here occurs at 
two-photon resonance of a singlet Sl12 level with a doublet 
Dl/,  and D3/,. In this case the quasienergies have a particu- 
larly simple form for strong and weak resonant fields. 

93. NUMERICAL RESULTS AND DISCUSSIONS 

To investigate the influence of the multiplet structure of 
a resonant level on multiphoton ionization of an atom, we 
used computer calculations for only the simplest case, that of 
one-photon resonance between the fine-splitting levels 
32S,12 and 3,P,/,, 3'P3/, of the sodium atom. Figure 2 shows 
the scheme of two-photon ionization through fine-splitting 
sublevels of the sodium atom by right-polarized radiation. 
The ground state 32S1/2 was chosen to have m, = - 1/2; 
the ionization is therefore only through the resonant fine- 
splitting doublet 32P112 and 3'P3/,. We consider atom ioni- 
zation by a radiation field stronger by one or two orders than 
the resonant field, and turned-on instantaneously at a cer- 
tain instant t = 0. The instantaneous turning-on of the field 
cannot influence substantially the result for the ionization, 
since the latter links the discrete level with the continuum, 
where there are no resonances at all. 

If the atom can be in the lower state on a level with m, 
= 1/2, ionization by right-hand polarization from this state 

is possible only through the upper state 3'P3/, of the doublet, 
with m, = 3/2. This leads to two additional maxima, which 
were investigated in detail in Ref. 1 for an instantaneously 
applied external field and in Ref. 6 for adiabatically applied 
resonant radiation. 

The matrix elements between the discrete levels of the 
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FIG. 3. 

ground state 3'S,/, and the fine-splitting doublet 32P,,2 and 
3'P3,, are related as follows: 

and 

where FY is the resonant-radiation field strength and d is the 
radial part of the matrix element (we neglect spin-orbit in- 
teraction). For sodium, d = 3.98 a.u. (Ref. 13 ). 

Figure 3 shows plots of the photoelectron distribution 
as t-+a, for two values1' of the resonant-radiation intensity, 
g = 3.10-6 (Fig. 3a) and g = 3.10-5 (Fig. 3b) at a fre- 
quency w = wp,12 - w, + Ad2, where Aw is the fine split- 
ting of the doublet, Aw = 7.8.10-5 for sodium. The matrix 
elements of the transition to the continuous spectrum is 
based on Seaton's f ~ r m u l a , ' ~ . ' ~  which yields the value 

where 8' is the intensity of the ionizing field. At 
8' = 3.10-4 the ionization width, calculated with the aid of 
(44), yields r i  = 1.5-lo-'. The chosen ionizing-radiation 

frequency is w' = ( I EPIl2 / + 0.01 ). Since Fig. 3 could not be 
drawn to scale, we present some numbers for the plots. As 
can be seen from Fig. 3, three maxima with respect to energy 
are obtained. In Fig. 3a the respective maxima are d W /  
dA = 3.103, 2.103, 3.104 with widths 1.3~10-~, 1.1.10-6and 
1.9.10-5. The respective minima are d W/dA = 7-10', 9.10'. 
In Fig. 3b the respective maxima are d W/dA = lo3, 7.103 
and 3.104 with widths 1.9.10-5, 8.8.10-' and 1. 1.10-5. The 
respective minima are d W /dA = lo2, 8.102. 

If the resonant-radiation field strength is further in- 
creased so that the interaction energy exceeds considerably 
the fine-splitting energy and the ionization width, a major 
role is assumed by one Lorentzian maximum. This means 
that the ionization goes mainly from the upper resonant 
doublet, which in this case acts as one level. 

In conclusion, we are grateful to M. L. Mikaelyan and 
M. V. Fedorov for a number of helpful remarks. 
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