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A perturbation theory is constructed for the highly excited states of a two-electron atom under 
conditions when the multipole expansion of the interelectron potential is applicable. The new 
procedure is used to calculate the first nonzero correction, first found by Nikitin and Ostrovskii, 
to the energy. This correction only partially lifts the Coulomb degeneracy. It is shown that, in the 
quadrupole approximation, the degeneracy is completely lifted, except for a specific twofold 
degeneracy (quasidegeneracy ) for some of the states, which is lifted by nonperturbative quantum 
effects. The indicated quasidegeneracy for some of the states leads to the possibility of their 
exhibiting the linear Stark effect in weak fields. The effective quadrupole-approximation Hamil- 
tonian, the semiclassical quantization of which yields the energy levels, is found. 

1. INTRODUCTION 

The doubly excited states of atoms have in recent years 
found numerous applications in most diverse areas of experi- 
mental physics and technology, primarily in isotope separa- 
tion and fine frequency tuning of lasers. This has made the 
problem of a more accurate computation of the spectrum of 
doubly excited atoms a pressing one. 

Below we shall be concerned with only those states in 
which the principal quantum nunibers of the excited elec- 
trons are connected by the inequality n(N (we shall hence- 
forth call these electrons the inner and the outer electron). 
In this case the interelectron interaction potential 
IR, - r, I - '  can be expanded in a series in powers of the 
ratio r/R of the distances of the inner and outer electrons 
from the nucleus, i.e., in a multipole series. The terms of the 
multipole series decrease rapidly (the 2'-pole term V, is of 
the order of n2'/N2'+ ), which allows us to limit ourselves 
to only the first few terms. 

In spite of the considerable number of papers devoted to 
the doubly excited states of atoms, no consistent theory has 
so far been constructed which allows us to compute the cor- 
rections to the spectrum in the quadrupole approximation 
(i.e., the corrections of order n4/N6).  The need to achieve 
this accuracy in the computation of the spectrum is due to 
the fact that (as will be shown below) it is precisely in the n4/ 
N 6-order approximation that the degeneracy is completely 
lifted. 

There are fundamental obstacles to the construction of 
a rigorous quantum perturbation theory for the doubly ex- 
cited states, and this to a considerable extent limits what we 
can learn about the spectrum. Indeed, the unperturbed spec- 
trum is imbedded in the continuum, so that the individual 
eigenvalues are not isolated (besides, they are multiply de- 
generate). When the perturbation (say, V,) is switched on, 
the discrete spectrum dissolves in the continuum, so that 
there are, strictly speaking, no perturbed eigenvalues. 

But at the physical level of rigor the problem of the 
spectrum is quite interesting, since, for example, the cross 
section for electron scattering by ions (with one excited elec- 
tron) exhibits relatively narrow peaks corresponding to au- 

toionizing states. In view of this various attempts have been 
made to compute the spectrum outside the bounds of quan- 
tum perturbation theory. In particular, Leopold and Perci- 
val and a number of other researchers1-3 have developed a 
classical perturbation theory for the quadrupole approxima- 
tion. But because of the fact that these authors constructed 
the perturbation theory only in first order, they did not find 
that contribution to the energy which is quadratic in the 
dipole term V,, and which, as will be seen below, is compara- 
ble in order of magnitude to the contribution from the qua- 
drupole term V,. 

The spectrum was computed within the framework of 
the dipole approximation in a series of  paper^^-^ by Nikitin 
and Ostrovskii. They also investigated the symmetry proper- 
ties of the states. I t  follows from their results that, in the 
leading order n2/N4, the energy does not contain a correc- 
tion due to the dipole term, and they computed the first non- 
zero correction, which is of order n3/N ', and which partially 
lifts the degeneracy (from the Coulomb multiplicity n2N 
down to the multiplicity 2(n - m )2L, where m is the mag- 
netic quantum number of the inner electron and L is the 
orbital angular momentum of the outer electron). 

Our problem is to compute the correction to the spec- 
trum in the next order n4/N6. This correction completely 
lifts the degeneracy in terms of the quantum numbers of the 
inner electron, leaving only 2A-fold degeneracy in terms of 
the component M of the total angular momentum A. For 
some of the states, however, there remains an additional 
twofold quasidegeneracy (see Sec. 4).  

The approach developed by us is based on the perturba- 
tion theory for highly excited states. This theory was recent- 
ly developed for systems with multiple classical degeneracy 
by Kazantsev and P o k r o ~ s k i i . ~  Following this theory, we 
shall consider the purely classical case, when not only the 
outer, but also the inner electron is highly excited, and has a 
large orbital angular momentum (i.e., when n) 1, 1) 1).  
These conditions, together with the conditions N)n, L)l, 
guarantee the applicability of the classical perturbation the- 
ory for both the inner and outer electrons. 

The requirement that L%I% 1 may at first glance appear 
to be artificial. But as has been shown by a number of auth- 
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0rs,4.6.~o it is precisely such states that are stable against 

autoionization, and have an exponentially small decay prob- 
ability. Therefore, it makes sense to formulate the spectrum 
problem precisely for such states. 

Since such states cannot be obtained through optical 
excitation, the question of the methods of their production 
requires special examination. We indicate here one method 
that, from our point of view, is the most promising. I t  is 
described in detail in Ref. 11, and consists in the following. 
First a weak electric field is adiabatically applied to the 
atomic system. Then the field is suddently rotated through 
90°, and suddenly switched off after a Stark period has 
elapsed. As a result, the states with high principal quantum 
numbers acquire large orbital angular momenta. 

We carry out the computations for an arbitrary effec- 
tive atomiccore charge Z ,  limited only by the inequalities 
1 + n/N < Z < N /n, which, together with the requirement 
that L%I, allow us to estimate the relative magnitudes of the 
various contributions to the correction to the energy in terms 
of only the ratio n/N of the principal quantum numbers (no 
additional small parameter arises). 

2. CLASSICAL PERTURBATION THEORY IN THE CASE OF 
MULTIPLE DEGENERACY 

Let us first formulate the perturbation theory for highly 
excited systems in the action-angle  variable^.^.'^ First of all, 
since A and M are integrals of the total Hamiltonian, the two 
angle variables, 0, and 0, , conjugate to them will not en- 
ter into the effective Hamiltonian (in any approximation). 
The phase 0, , moreover, is a constant, since the degeneracy 
in M is maintained. The phase w conjugate to n is the fastest 
angle variable, the corresponding frequency being equal to 
w = Z '/n3. The next fastest phase is the phase W conjugate 
to N; it varies with frequency fl = (Z - 1 ) '/N 3.  The phases 
wand Wcorrespond respectively to the inner- and outerelec- 
tron motions along unperturbed Coulomb orbits. The re- 
maining action-angle variables pertain to the slow motions 
in the system (the variation of the orbit parameters). 

As the action variables we choose the components of the 
Runge-Lenz vector a and the orbital angular momentum 1 of 
the inner electron along the total angular momentum A of 
the system, and as the angle variables we choose the varia- 
bles canonically conjugate to these components: 

As will be shown below, 1 A is also an invariant of the 
effective Hamiltonian for the quadrupole approximation, 
and therefore the phase $does not enter into this Hamilton- 
ian. 

As shown in Refs. 4-8, the first nonzero correction E, to 
the energy is of the order of n3/N5. This part of the energy 
does not depend on the variable k. The correction E, comput- 
ed by us below is of the order of n4/N 6. From this we obtain 
the estimates given below for the characteristic frequencies 

om-deldm-n2/N" wk-deldk-n3/N8 
of the slow motions of the inner electron. These frequencies 
are much lower than the frequency, -aV,/dn-n/N4, ob- 
tained in the preceding approximation for the slow inner- 

electron motion. The frequency w ,  is of the same order as, 
while the frequency w,  is significantly higher than, the li- 
bration frequency w, of the outer electron. 

Thus, the following frequency hierarchy obtains: 

wlQ- (Nln) ', Q/o,- (Nln)', o,/o,- (Nln) ', ak/QL- (Nln)'. 
( 2 )  

From this it follows that the naive adiabatic approximation, 
in which the inner-electron terms are computed for a fixed 
position of the outer electron, is not valid. The reason for this 
is that the orbital motion of the outer electron is faster than 
the libratory motion of the inner electron. This is a charac- 
teristic feature of the Coulomb problem with threefold clas- 
sical degeneracy of the frequencies (for the unperturbed Ha- 
miltonian). The correct adiabatic approximation consists in 
the following: we shall, after carrying out the averaging over 
the fast orbital motions of the two electrons, consider the 
effective Hamiltonian describing the variation of the param- 
eters of the inner electron's orbit for frozen outer-electron 
orbit parameters. 

To construct the perturbation theory, we represent the 
Hamiltonian of the two-electron atom in the form of a sum of 
the unperturbed system's Hamiltonian (the noninteracting- 
electron approximation), to which we attribute the major 
part of the interelectron interaction 1/R, and the perturba- 
tion potential V: 

where r, , p, , R, , and P,, are the coordinates and momenta 
of the electrons. Let us expand the perturbing potential in a 
multipole series 

ca 

limiting ourselves to the dipole and quadrupole terms: 

The classical perturbation theory is based on the solu- 
tion of the Hamilton-Jacobi equation by the iteration meth- 
od. This equation in the action-angle variables has the fol- 
lowing form: 

(the Hamiltonian depends on five action and three angle 
variables). 

We shall seek the expressions for the action S and the 
energy E in the form of series in powers of n/N: 

The correction E, is of the order of n + ' / N J +  3 .  We shall 
seek the solution for S, by the method of approximate sepa- 
ration of the variables: 
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where S, ( W) is the action's slowly oscillating part, which 
depends only on W, while sj (wl W) is the rapidly oscillating 
part, which depends largely on w and weakly on W. Let us 
demonstrate the method of solving Eq. ( 6 )  by carrying out 
the first iteration. The subsequent iterations can be carried 
out in much the same way. For the first iteration, it is suffi- 
cient to limit ourselves in the potential V to the dipole term. 
We obtain the following equation: 

as1 asi 
Hl=Q-+a-+Vi(N,n,A, k,mIW,w,q)=ei.  ( 9 )  

a aw aw 
Let us introduce a notation for the average over the phase w: 

and one for the part that oscillates with varying w: 
P = V -  ( V ) ,  (and similarly for W). 

To carry out the subsequent calculations, we must in- 
troduce Coulomb parametrizations of the coordinates and 
momenta of the electrons: 

n 
r, = - [ (n cos g-a)% + sin Ee,vrlvarl, 

Za 
L 

(-n sin ta, + cos %epVhlvah), '" an (i-a cos 5) 
N 

R'- (2-1) A 
[ (N cos 8-A)  A, + sin BepvrL,Ar], 

2-1 
P, = (-N sin EA, + cos EE,,~L~AA), 

AN (N-A cos 8) 

where 6 and E are the eccentric anomalies of the inner and 
outer electrons and E,,~ is the completely antisymmetric 
tensor. Let us average (9 )  over w. Then the term containing 
s ,  vanishes, and we obtain the equation 

Averaging (9 ' )  over W, we find 

(the average over W is equal to zero since it is proportional 
to the average force exerted on the outer electron by the 
nucleus). Thus, there is no correction of order n2/N4 to the 
energy. 

Separating out in (9 ')  the W-oscillating part, we find 
W 

1 
S1 (W) =- -I (V,).wdIY1. 

Q (11) 

A simple calculation yields 
aJ', 3n S, = - 8 =-- 

(Z- I ) '  * -  22 a,- 

The quantity S ,  is of the order of n2/N. Separating out in Eq. 
(9 )  the w-oscillating part (the rapid oscillations), we obtain 
in similar fashion 

The rapidly oscillating parts ,  of the action is of order (n5/ 
N 4 )  of magnitude significantly lower than that o fS , .  

The first nonzero correction (of order n3/N5) to the 
energy is given by the second iteration. This correction is 
quadratic in the dipole term, and has the form 

av, as, 
e2~d=(xdm)w' 

where we have introduced the notation V,= ( V, ), . The cor- 
rection E : ~  can be represented in the form of a Poisson 
bracket averaged over the variables of the inner electron: 

ezdd='/z( {Vlr Si)int)w (15') 

Evaluating the Poisson bracket in terms of the coordinate- 
momentum variables (which is much simpler than the direct 
evaluation in terms of the action-angle variables), we find 

To obtain the final expression, we must go over in ( 15" ) 
from L, to A,, since in the order n4/N (which is of interest 
to US) L, is not conserved. 

This correction, which was first found by Nikitin and 
Ostrovskii by an entirely different m e t h ~ d , ~ - ~  effects a par- 
tial lifting of the degeneracy. But there still remains substan- 
tial-2 ( n  - m ) (2L )-fold-degeneracy, which is lifted by 
the next-order corrections to the energy. (There remains 
only the trivial 2A-fold degeneracy and, for some of the 
states, a twofold degeneracy. ) 

3. COMPUTATION OF THE CORRECTION TO THE ENERGY IN 
THE QUADRUPOLE APPROXIMATION 

The correction E,, which is of the order of n4/N 6, to the 
effective Hamiltonian corresponds to the quadrupole ap- 
proximation, and is made up of three terms: the first order in 
the quadrupole interaction and the second and third orders 
in the dipole interaction. 

The contribution to the effective Hamiltonian from the 
quadruple term is obtained by carrying out the following 
elementary averaging: 

The computation of the higher-order contributions 
from the dipole term, which are of the same order of magni- 
tude as n4/N 6, is significantly more complicated. The correc- 
tion that is quadratic in the dipole term assumes, after a 
number of transformations, a form similar to that of the for- 
mula ( IS), with the difference that the Poisson bracket is 
averaged over the variables of the outer electron: 

From the calculations we find 
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The correction of third order in the dipole term has the form 

where S2 is given by the expression 
w 

Here E~ is given by the formula ( 15" ), and the expression for 
S, is taken from ( 11 ) .  The quantity S, is of the order of n3/ 
N 2. 

The expression for the correction of third order in the 
dipole term can be represented in the form of a double Pois- 
son bracket: 

' ddd 1 
es =- ( ( {Ti ,  Si)tnfi Si)tnt)w. 3 

The calculation yields 

The correction E!~~, (22) ,  to the effective Hamiltonian does 
not, in the order under consideration by us, make a contribu- 
tion to the energy, the result of its addition to E?, ( IS" ) ,  
amounting to a slight redefinition of the quantum numbers k 
and m. 

In the formulas obtained, we must go over from the 
orbital angular momentum L, of the outer electron to the 
total angular momentum A,. This is due to the fact that the 
action variables of the inner electron should be defined as the 
components of the Runge-Lenz vector and the orbital angu- 
lar momentum of this electron along the system's total angu- 
lar momentum vector, and not along the time-varying outer 
electron's orbital angular momentum vector. We shall indi- 
cate the corrections obtained as a result of such a transition 
by a tilde. 

As a result of this transition, the correction &idmakes a 
contribution to E:d: 

For the accuracy required by us, it is sufficient to simply 
replace L, by A, in the correction of first order in the qua- 
drupole term and in the correction of second order in the 
dipole term. Thus, the expression for the effective Hamilton- 
ian in the quadrupole approximation has the form 

Let us give the final formulas: 

The expression for the part E ,  of the effective Hamilton- 
ian is the new result. As has been shown by S ~ l o v ' e v , ' ~  a 
Hamiltonian of similar form (with different coefficients) 
arises in the problem of the Rydberg atom in a magnetic 
field. In our problem the total angular momentum plays the 
same role as the external magnetic field in the above-cited 
paper. 

4. SEMICLASSICAL QUANTIZATION OF THE EFFECTIVE 
HAMILTONIAN. THE DENSITY OF STATES 

The effective Hamiltonian Xe, = 2, + E3 found in the 
preceding section has 1 A as an invariant, and this makes its 
quantization within the framework of the semiclassical ap- 
proximation possible. Using the definition ( 1 ) of the action 
variables (i.e., of the quantum numbers) k and m, as well as 
the semiclassical formula for a2:  

1 
a2 = - (n2+kz-mz+qZ cos 29),  

2 
(26) 

qZ=(k4-2k2(n2+m2) + (n2-mz)z)'12, 

we obtain the following semiclassical expression for the ef- 
fective Hamiltonian: 

+ (3-4(Z-I) ) qz cos 2v 

The effective Hamiltonian does not, in accordance with 
the fact that m is an adiabatic invariant, depend on the phase 
11 conjugate tom.  This allows us to reduce the problem of the 
semiclassical quantization of this Hamiltonian to a one-di- 
mensional problem for any fixed m. To  solve this problem, 
let us separate out the k- and p-dependent part of the Hamil- 
tonian: 

F = C  (xkZ+qz cos 2q), (29) 

A similar Hamiltonian arises in the problem of the Ryd- 
berg atom in a magnetic field, as was first shown by Solo- 
v'ev.13 Its spectrum is investigated in detail in Refs. 9, 14, 
and 15. In view of this, we shall not dwell on its quantization, 
limiting ourselves to the listing of the results. The energy 
levels are determined from the Bohr-Sommerfeld quantiza- 
tion rule: 
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Heres is a new action variable (quantum number), k ,  and k, 
are the turning points, and e, ( k ) i s  found from (29), where E 
should in the process be regarded as a parameter. The most 
computationally convenient characteristic is the density of 
stat;sp(E) d s / d Z .  The general formula for it is the follow- 
ing: 

k: S 
1 dk 1 

=- 
dk 

p ( c ) = - J  
n ,, IRe/dqI 2nIcl [q ' -(c/~-xk')~]" ' 

The classically admissible region of motion is bounded by 
two curves, which are the loci of the turning points: 

There exists a unique value of Z (equal to 7/4) at which the 
classically allowed region in the plane of the variables k and E 
degenerates into a curve as a result of the vanishing of the 
coefficient of cos2p in the effective Hamiltonian. At this val- 
ue of Z the classical quantization degenerates into the trivial 
identity s=k. 

The coincidence of the "correct" action variables with 
the original variable k is approximately realized in the vicini- 
ty of the point Z = 7/4. For the He atom (Z = 2)  the devi- 
ation ofs from k can, in a sense, be considered to be insignifi- 
cant for the majority of the states, since the classically 
allowed region is very narrow. 

The roots of the denominator in the formula ( 3  1 ) can 
be disposed in two different ways: the first case ( I )  corre- 
sponds to two real and two complex conjugate roots 
( k  2- < 0 < k '+ ); in the second case (11) all the four roots 
are real ( 0  < k 2- < k '+ ). Let us give the explicit form of the 
roots: 

The case I is realized at all 2 for m > m,, as well as at 
E > Z, for m < m, . Here 

The case I1 is realized at i < Z, for m < m, . In the case I 
the trajectories are symmetric and the states are nondegener- 
ate, while in the case I1 the trajectories are concentrated in 
the region k > 0, or in the region k < 0, and the correspond- 
ing states are doubly degenerate (here we ignore the quan- 
tum tunneling effect (which lifts the degeneracy) in view of 
the fact that it is exponentially small everywhere except in a 
small neighborhood of the point E, 1. Because of the fact that 
x for Z = 2 is large (equal to 37 ), in the He case m, = ( 18/ 
19)"'nzn, and the doubly degenerate states constitute a 
significant fraction of the states at virtually all values of m. 
At m = 0 this fraction is approximately equal to 6/7. 

In conclusion of this section, let us give the formulas for 
the density of states. In the case I 

In the case I1 

where K ( k )  is the complete elliptic integral of the first kind. 
Notice the logarithmic singularity in the density of states for 
m < m, at the point E = E, = Ici (n2 - m2).  The presence of 
a specific twofold quasidegeneracy makes possible the obser- 
vation of the linear Stark effect, to which the following sec- 
tion is devoted. 

5. POLARlZABlLlTY IN A WEAK ELECTRIC FIELD 

As noted above, a significant fraction of the trajectories 
are k-symmetric, to which fact corresponds the twofold de- 
generacy in the energy of the corresponding states. In a suffi- 
ciently weak electric field we can, as a result of the existence 
of symmetric inner-electron states, detect the linear Stark 
effect in a background of the quadratic effect (due largely to 
the outer electron), which is of the order of g 2 N  6 .  The set of 
quantum numbers chosen by us corresponds to a basis in 
which the components a, and I,  along A, simultaneously 
have definite values. The averages of the operators r, and 
- (3n/2Z)a,A,AA/A2 over the states InNAMms) are 

equal. 
The energy shift in a weak electric field g, is found 

from the formula 

In a state with a definite component of the total angular 
momentum A, along the axis g,, specifically, in a state with 
M = A, $, / 6?, the dipole moment is equal to 

Here the averaging is over the phasex: 

where w ,  = l/p(E) is the frequency with which the param- 
eters of the inner-electron orbit vary as a result of the action 
of only the part Z(k, p) of the effective Hamiltonian. 

The computation of the average ( k  ), is elementary. As 
a result we find 

It can be seen from this formula that the polarizability is 
inversely proportional to the density of statesp(2). The lin- 
ear Stark effect predicted by us pertains to electric fields in 
the range 

and is stronger than the quadratic effect involving the outer 
electron. The quadratic Stark effect, which is o: g 2 N 6 ,  is 
stronger than the linear effect in the following range of elec- 
tric field intensities: 
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and is comparable to it when n2 8 - n4/N6. In the strongest 
fields, i.e., when n 2 8  Rn3/N5, the linear Stark effect again 
predominates. It should be noted that the linear Stark effect 
for doubly excited atoms was predicted by Nikitin and Os- 
t r o v ~ k i l ~ - ~  on the basis of a dipole-approximation analysis. 
The effect predicted by them pertains to fields in the range 
(39), in which the quadratic Stark effect involving the outer 
electron is significantly stronger than the linear effect in- 
volving the inner electron. The linear Stark effect in the in- 
tensity range (39) occurs in all the states, whereas the case 
investigated by us extends to the region (38) of significantly 
weaker fields, and occurs in approximately three fourths of 
the states. 

In conclusion the authors wish to express their pro- 
found gratitude to V. L. Pokrovskil for stimulating discus- 
sions and interest in the work. 
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