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The lifetime of a metastable state of a quantum system with linear dissipation is calculated for 
T = 0 and arbitrary viscosity. The various types of potential that occur in superconducting weak 
links are considered. The dependence of the quantum-decay rate r on the mass for the potentials 
considered and in the limit of strong dissipation has the form r a m - "0 <S < 2) ,  and, in the 
absence of Coulomb nonlinearity in the potential it satisfies r a ln(m - '). 

1. INTRODUCTION 

Recently investigations of various quantum-mechani- 
cal systems with dissipation have attracted considerable at- 
tention. As has been shown by Caldeira and Leggett,Is2 dissi- 
pation can substantially increase the lifetime of a metastable 
state of a quantum system. In these papers the authors stud- 
ied the quantum decay of a metastable state of a quasiclassi- 
cal degree of freedom interacting with a thermostat that con- 
sists of a large number of quantum harmonic oscillators. The 
dissipation in such a system appears upon averaging over the 
variables of the thermostat. 

The interest in the study of quantum phenomena in the 
presence of dissipation is due, in particular, to the real possi- 
bility of investigating such phenomena experimentally in 
macroscopic systems. Superconducting systems with weak 
coupling provide such a possibility. Quantum fluctuations of 
the difference in the phases of the order parameters are able 
to induce transitions between different current states of su- 
perconducting junctions. Transitions between the states of 
the electron subsystem lead to dissipation. 

A microscopic expression for the effective action of tun- 
nel junctions was obtained in Refs. 3 and 4, and, in the case of 
superconducting junctions with direct conduction, in Ref. 5. 
In a number of cases the effective action found in these pa- 
pers in the adiabatic approximation has the same form as the 
effective action of the phenomenological theory of Refs. 1 
and 2. The microscopic theory then makes it possible to de- 
termine the parameters appearing in the action of Refs. 1 and 
2. For certain types of weak coupling (for more detail see 
Ref. 5 )  the effective action differs appreciably from that ob- 
tained in Refs. 1 and 2. 

The case of linear dissipation is particularly important. 
The probability of the quantum decay of metastable states in 
the presence of linear dissipation was calculated with expo- 
nential accuracy in Refs. 1, 2, 4, and 5, and also in certain 
other papers. The expression for the coefficient of exponen- 
tial in the case when the potential in the effective action has 
the form of a cubic parabola was obtained in the dissipation- 
less limit by L i k h a r e ~ , ~  and in the limit of strong dissipation 
by Larkin and Ovchinnikov.' In the present paper the coeffi- 
cient of the exponential in the expression for the rate of decay 
of metastable states will be calculated for arbitrary relation- 
ships between the mass and viscosity for the various poten- 
tials that describe practically all the types of superconduct- 
ing weak coupling. 

2. LIFETIME OF A METASTABLE STATE 

The evolution of a quantum system can be described by 
means of the quantity 

J(w+. 1,-; n+, cpt-.,-) = DI exp { i  j d t ~  d} . (1 )  
c. 

where Co is the Keldysh contour: 

and L,, is the effective Lagrangian of the system, which 
depends on the variable p ( t ) ,  and pi( + = p ( t  + ) 1 = ,,(/, . 

Let the state p = 0 of the system correspond to a local 
minimum of the potential V(p) .  In the case of supercon- 
ducting junctions the quasiclassical variable p describes 
fluctuations of the difference in the phases about the equilib- 
rium value, and, in the adiabatic approximation, when a cur- 
rent I close to the critical current I, is flowing across the 
junction, V(p)  can be represented in the form 

The constants x, A, and y for different types of junction will 
be determined below. Let the maximum of the potential 
V(p)  be reached at the point p = X. The probability that by 
the time tf the system is in the region p > X  (the metastable 
state has decayed) is equal to 

m m 

Wi, = JdW J J dTi+ d?i-J(pi+. pi-; pf)p(pi+. Ti-). (3 )  
X -00 

Here pf = pf + = pf- , andp  is the initial density matrix of 
the system. Henceforth we shall assume that 

P  pi+, Ti-) =6 (Ti+) X6 ( ~ i + - c ~ l - ) .  

As usual, we shall assume that the potential barrier is 
sufficiently high that the decay rate r of the metastable state 
is exponentially small, and to calculate it we can use the 
quasiclassical approximation. We shall consider first the 
case tf - ti <T- ' .  In this case the quantity WV is also expon- 
emially small: Wlf a e - A ,  A ,  1. To determine A we intro- 
duce a parametrization ~ ( t )  ( t ,  as before, varies on the con- 
tour Co) such that 

d+/dt=i. ( 4 )  

The quantity A is determined by the value of the action func- 
tional on the trajectory 6 ( 7 ( t )  ), which contains the points 
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p > X  and satisfies the extremum (minimum) condition SS / 
SG = 0, i.e.,l' A = s[@(T) 1. 

Here we shall consider the region of temperatures much 
smaller than the characteristic fluctuation frequencies. With 
this condition the action S [ p  (7)  ] corresponding to the po- 
tential (2 )  has, in the case of linear dissipation, the form 

The function a ( Iw 1 ) determines the dissipative contribution 
to the action of the system. For ohmic dissipation, 

a(lol)=qlol. ( 6 )  
In a number of cases a ( 1 w 1 ) has a more complicated form 
(see, e.g., Refs. 5 and 9) .  Here we shall be interested mainly 
in the case (6) .  For superconducting junctions the viscosity 
satisfies = 1/Re,e2, where Re, is the shunt resistance4 or 
effective short-circuit re~is tance,~ and the mass m = C * / e 2 ,  
where C * is the renormalized capacitance of the junction. 

The coefficient of the exponential in the expression for 
Wif for tf - ti (T-' is determined by the deviations from 
the extremal trajectory &(T) .  We shall consider the parame- 
trization r ( t  - t , ) ,  t, <t,(tf. For a given trajectory p ( t )  we 
define the quantity t, by means of the relation 

where 

Substituting the identity 

into the integrands of ( 1 ) and ( 3 ) ,  for tf - t, (T- '  we find 
'f 

w.,=l/,e-* [ j d t , ~  ( t+ )+  jdt-Y ( t - )  1, 
11 11 

( 9 )  
Y ( t )  = j ~6~ ( t )  6 ( t - t , )  

Xcxp{- l /r  J d r  drrG-l ( r ,  r ' )  6 p  ( t  (r)) S p  ( t  ( a J )  ) }, 
G-'=SY/S$ ( r )  6$ ( a ' )  

In formula (_9) we have used the notation 
S p ( t )  = p ( t )  - p ( r ( t  - t , )  ) and have expanded the action 
S [ p ]  (5 )  to terms quadratic in Sp. Since the expression (9)  
for Y does not depend on t, we can set t = 0 in it. By making 
use of the relation 

in which in the leading approximation in S p  we can assume 
that p ( t )  = G ( r ( t  - t , )  ), and integrating in (9 )  over t , , 
we obtain for tf - ti (r-' 

where rn 

X exp [- ~,,a.'] , K (0) = (det  Go- ' )  - I 2 ,  ( 1 1) 
n =  0 

in which K ( 0 )  is a normalization constant, and the a, are 
the coefficients of the expansion in the eigenfunctions p, ( r )  
of the operator G - I :  

cc 

and A, are the eigenvalues corresponding to the p, (7 ) .  For 
larger times tf - ti - r-' the probability Wif is of order uni- 
ty. In this case it is necessary to take into account processes 
in which the system passes repeatedly through the classically 
forbidden region. To describe such processes we introduce a 
family of parametrizations r ( t  - t, ), n = 1,2, ..., where 
ti (t,(t2( ... <t, <tP It is not difficult to see that the general 
expression for Wif, valid for all tf - t i ,  can be represented in 
the form of a sum of contributions of n-instanton trajectories 
describing n-fold intersections of the classically forbidden 
region by the system in the time tf - ti : 

m f f  t* 1, f ?  

W,,= (-I).+' j dl. j dt.-, . . . j dt,  j d t , ~ ~ e - ~ * ,  ( 12) 
TI=,  f1 tl 1' 11 

whence we easily find 

The formula ( 1 1 for B is well known. To obtain it, a number 
of authors (see, e.g., Refs. 7 and 10) have used the imagi- 
nary-time technique. We note that the interpretation of the 
presence of the "zero mode" A ,  = 0 in the technique that we 
have used differs slightly from the usual interpretation in the 
imaginary-time technique (cf. Ref. 10). 

As follows from ( 1 1 ), to determine B it is necessary to 
calculate the infinite product of eigenvalues A, of the opera- 
tor G --'. In a number of cases (including those considered 
below), for various reasons this procedure turns out to be 
inconvenient, and to calculate the coefficient B of the expo- 
nential other methods must be invoked. 

A. Nonquasiclassical potential, A = 0 

We shall consider first the potential ( 2 )  for A = 0. Such 
a potential describes clean SNS bridges, if x = 21c/e and 
y = 27rx. The extremal trajectory for the action ( 5 )  is easily 
found5: 

7 mu = Go ( o )  sin o r 0 ,  ,= J q.e-'w'o. 

When the relation ( 5 )  and the condition { = 27rxx/ 
y(l are fulfilled (for SNS b r i d g e s , ~  = 7r( 1 - I /I, )/2), we 
have5 
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r-'=n-2 arctg 11 q<2(mx) ' I1,  
( 4 m x - q Z )  '!I ' 

and p is found from the equation p ( 1  - C - ln(p) = 1, 
whereCr0.577is Euler's constant. The function G - ' in (9 )  
for the potential ( 2 )  for il = 0 has the form 
~ ~ - 1  ( a ,  o l )  = 2 n ~ o - 1  ( a )  6  (0-0') - g [ e i ( w - w ' ) ~ o + e - i ( e - ~ o ) ~ o  1 ,  

(16) 
where r0 is defined in ( 14) a n d g  is given by the relations 

To calculate B we shall consider the functional integral 

d o  do' 
K ( g )  = 5 ~ 6 r p  exp (- 5 GF;' (d, or) 6cpm6rp,.}, 

(18) 
where g = g - E. Let R e  be positive and large enough for 
the integral (18) to be well defined. We have the obvious 
equality 

.D 

where A, (E) are the eigenvalues of the operator G; ', 
which are found from the equation 

d o  I+ ( -1)"  cos 2ato 
% Go-. ( a )  -A, ( E )  

' 

The integral K ( g )  can also be calculated by another method. 
Differentiating lnK(g) with respect to g, we obtain 

The function Gg ( r , r l )  is the inverse of the function ( 16). 
For g < If(0) + f(2r0) ] - '  it is found in explicit form: 

g { [ f ( t + r Q )  - ~ ( T - T o )  I 
G ( T ,  T ' )  =f  ( T - T ' )  + - 2  1 - g [ f  ( 0 )  - f  ( 2 ~ 0 )  1 

Substituting (22) into (21 ) and integrating overg, we obtain 

~ ( g )  = K ( o )  {[  I - z ( ~ ( o )  + f ( Z T a )  I [ l - g ( i ( O )  - f ( z . ~ o ) )  I I-"'. 
(23) 

The quantity B in (11) is obviously a function of g, 
B = B(g) .  From ( l l ) ,  using (19),  we have 

iK- '(0)  [ 5 d r ( z ) ' ]  ' X ( g ) A , ' l z ( ~ ) .  (24) B ( g )  =- --- 
( a n )  "l 

Thus, to determine B there is no need to solve the transcen- 
dental equation (20) and determine all the A,, ( E ) .  As fol- 
lows from (23) and (24),  it is sufficient to determine only 
A,(&),  and then analytically continue the quantity B(g)  
(24) in g t o g  = g. For E-0, with the aide of (20) we find 

- 2  1 

A I ( E ) = E ~ ' [ ~ ( o ) - ~  (27,) l 2 [ 2 S  d ~ ( 3 )  d t ] . (25) 

Using the relations (23)-(25), for g-+g we obtain 

r f ( 0 )  - f  ( 2x0)  B E -  
( 2 n )  '" 2 [ f ( 2 ~ 0 )  ] '% ' 

For ((1 in the case of ohmic dissipation ( 5 ) ,  B is easily 
calculated: 

where r andp  are defined in Ref. 7. 
We now indicate the range of applicability of the results 

obtained. We shall consider the extremal (one-instanton) 
trajectory @ ( r ) .  In finding the expression (26) we neglected 
the contribution of trajectories intersecting the boundary 
p (7") = ,y more than twice, and also neglected the change in 
the timer, of intersection of the boundary in higher orders in 
S p ( r ) .  A necessary condition for this is that the fluctuations 
S p ( r )  be small on the boundary T = r,: 

b = <  (6'q (a,)  ) 2 ) " ' l ~ ~ 1 .  (28 

For r# k r0 the action is quadratic in p(r)  and the contri- 
bution of fluctuations is taken into account exactly. The 
function S 1 p ( r )  in (28) is given by the expression 

We shall calculate the correlator 

n f  i 

We rewrite the relation (29) in the form 

( 6 ' ( p ( ~ ) 6 ' ( p ( t ' )  >= lim [ G ( T ,  a ' )  -TI  ( r ) T i  ( .c ' )Ai- ' (&) 1. 
e - 0  

With allowance for ( 12), ( 18), and (21 ) we obtain 
(30) 

( 6 ' 9  ( T )  6 ' q  ( r ' )  >=f ( T - r ' )  

- [ / ( T + T o )  +/ (T-TU)  1 i / ( ~ ' f  T o ) + / ( ~ ' - ~ o ) l  [ 4 / ( 2 ~ o )  I-'. 
(31) 

Setting T = r' = ro in ( 3  1 ), we find the condition for the 
fluctuations of p ( r )  to be small in the form 

The applicability of the noninteracting-instanton ap- 
proximation used is assessed in the usual way. The restric- 
tion thereby obtained on the parameters of the system turns 
out to be less stringent than the inequality (32) .  Thus, the 
above calculations of the quantity r are valid under the con- 
dition (32).  In the case of superconducting junctions this 
inequality is fulfilled by a large margin. 

B. The potential V(q)  = xq2 /2  - k ~ 3 / 6  

We now consider another extremely important case, 
viz., y = 0. In this case the function V(p)  is a cubic parabo- 
la. A potential of this form, with the current I close to I,, 
describes different types of superconducting weak cou- 
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pling-tunnel junctions with short circuits, and short super- 
conducting bridges in the case of very dirty superconductors 
(for more detail, see Ref. 5 ) .  For such systems, 

In the presence of ohmic dissipation ( 6 ) ,  

where M and N, generally speaking, are functionals of &(r)  
and, consequently, functions ofy, although the change of M 
and Nwheny goes from 0 to cc is small. In the dissipationless 
limit, M = 5 3 ' 2 / 6 ~  1.863 and N = 9 J S f ( 3 ) / a 3 r  0.780, 
while in the strong-dissipation limit, M = 2512.rr/9= 1.975 
and N = 1/fl=0.707, and the expression (33 ) in this case 
coincides with the results of Refs. 2 and 4. There are also 
numerical calculations of the quantity A (Ref. 11 ) and an 
interpolation formula for A (Ref. 12), describing the case of 
intermediate dissipation. Thus, the dependence A(y) has 
been sufficiently well studied for arbitrary y. 

The expression for the coefficient B of the exponential, 
as already noted, has been obtained in the absence of dissipa- 
tion6 and in the limit of strong di~sipat ion.~ The calculation 
of B for arbitrary dissipation is complicated by the fact that 
the analytical expression for the extremal trajectory in this 
case is unknown. To determine B in the case of an arbitrary 
relationship between the mass and the viscosity we shall 
make use of the effective-action formalism of Ref. 13. It will 
be convenient to go over in ( I ) ,  ( 4 )  to integration over the 
quantity q ( r )  = A p ( r ) .  Then the effective action S (  - A 2, 
q ( T ) ) is a functional of the classical field ij ( T )  and, under the 
condition ( 5 ) ,  is given by the relations 

exp {-S (-A" q )  ) 

1 d o  1 
A ( x .  q ( r )  = -i- J - q u q - U ~ o - l  ( o )  - drq3 (r) , (35) 

2n G 

where the field h (7)  is found from the condition for the max- 
imum of the right-hand side of (34) for a given i j ( r ) .  The 
functional (34) can be represented in the form 

S(-h2,  q )  =X ( x ,  q)/hZ-Q(-?u2, 

The quantity Q describes the contribution of quantum fluc- 
tuations to the effective action and is the result of summing 
the irreducible r-loop diagrams of the p 3  field theory. The 
extremum ofS(  - A 2, q )  is reached at h = 0, and the extre- 
ma1 quantity i j ( r )  gives the average value o f q ( r ) .  As follows 
from (34),  (35),  the contribution of a diagram having k 
loops appears with a factor A 2 k ,  so that the effective action 
S( - A 2 ,  ij) is a function of the variable z = - A 2. 

We shall calculate the functional integral (34), (35) by 
the method of steepest descent. We first find the uniform 

FIG. 1. Irreducible diagrams determining the effective action Sin the one- 
loop ( a ) ,  two-loop ( b ) ,  and three-loop ( c )  approximations. 

solutionij, that produces an extremum of the actions( - A 2, 

ij). In the one-loop approximation the quantity Q is deter- 
mined by the simple diagram a (see the figure), the contribu- 
tion from which is easily calculated. For T-tO we have 

m 

~ , ( i j ) = -  J $ L ~ L I - S G ~ ( ~ ) I .  (37) 
0 

Minimizing S( - A 2, ij) (36) with respect to ij, taking (37) 
into account we find that the quantum fluctuations give rise 
to a nonzero average value ij = ij,, which is determined by 
the relations 

n-x-ij0=[x2-hZp ( x )  

2 1 q+ (q2-4mx)'" p ( x )  == - In , q>2(mx)  L.  
n (q2-4mx) "' 2 (mr,)  '" 
2 1 4mx '12 

(38 
b ( x ) = -  n (4mx-q2)'" arctg(- - 1 )  . q<2(mx)lh. 

q2 

In the calculation of the quantity D ( x )  = dQ/dx we have 
assumed, as before, that the relation (6 )  is fulfilled. 

As in the previously considered case of the potential ( 2 )  
with A = 0, one can show that the action S( - A  2, q )  pos- 
sesses an imaginary part that determines the decay rate r of 
the metastable state. We have 

(39) 
where 2 and do not depend on A, and the function A ( x  ) is 
determined by the expression (33).  To calculate B for arbi- 
trary relative magnitudes of the parameters 772 and mx we 
shall use dispersion relations for the effective action S(z,  9 ) .  
In accordance with (39) the function of the complex vari- 
able z = - A has a discontinuity on the negative semiaxis 
z < o :  

while for z > 0 we have ImS(z, ij) = 0. With the assumption 
that the function S(z,  ij) is analytic in the plane of the com- 
plex variable z with a cut along the real semiaxis z < 0 we 
write the dispersion relation for S(z ,  ij) with two subtrac- 
tions, which for x > 0 has the form 

0 

We note that dispersion relations in the coupling con- 
stant for a stable field theory have been used in a number of 
papers.14-l7 In contrast to these papers, we have used the 
method of dispersion relations directly for the effective-ac- 
tion functional (35).  From (40) and (36) there follows the 
relation 

1094 Sov. Phys. JETP 62 (5), November 1985 A. D. Zaikin and S. V. Panyukov 1094 



Substitution of the imaginary part (39) of the action into 
(41) makes it possible to determine the coefficient of the 
exponential: 

where T ( x )  is the Euler gamma function. 
As follows from (41 ), the accuracy of the relation (42) 

increases with the number r. Expanding the root in (38),  we 
find 

In the coefficient (39)  of the exponential the difference 
between 2 and x can be neglected, and the expansion (43) of 
the argument of the exponential gives an additional contri- 
bution to the coefficient of the exponential: 

Thus, the fluctuational shift (43) of the position of the 
ground state of the system leads to the renormalization (44) 
of the coefficient of the exponential. 

I t  is interesting to compare our result (44) ,  (42) with 
the known expressions637 for B, found in the limiting cases of 
weak and strong dissipation. The parameter 8 is easily calcu- 
lated, so that in the limiting cases of interest to us we have 

For 7% ( m x )  ' I2  both the exponent A (33) and the quantity 
B (42) are independent of m. Consequently, in this case the 
quantity 6' completely determines the dependence of T on m. 
In the simplest two-loop approximation the quantity Q, is 
determined by diagram b (see the figure). Taking (42) and 
(44) into account, in this approximation we obtain 

Calculation of the function X for arbitrary 7 yields extreme- 
ly cumbersome expressions, which will not be given here. In 
the limiting cases, from (46)  we have 

It can be seen that in the limit of strong dissipation the 
expression (47) differs from the exact formula for B in Ref. 7 
only by a factor r2 /9 .  In the dissipationless limit the agree- 
ment of (47) with the exact expression for B in Ref. 6 is 
somewhat worse: To obtain the result of Ref. 6 we must re- 
place the numerical coefficient (327~/375) '12e" 10.40 in 
(47) by the quantity 12/,15=6.77. I t  should be stressed, 
however, that the proposed method for r i m  makes it possi- 
ble to calculate the quantity I- to any specified accuracy, 
and, for finite r, determines an upper bound for this quantity. 

In  other words, the parameter that regulates the accuracy of 
the proposed method is l/r. Thus, calculations in the next 
order ( r  = 3 )  give better agreement (in comparison with 
those with r = 2)  with the exact formulas of Refs. 6 and 7 for 
B. In the three-loop approximation the coefficient of the ex- 
ponential is determined by the diagrams c (see the figure), 
calculation of which in the dissipationless limit gives for the 
numerical factor in the expression for B the value 
e3266<75f/375+%=9.21. 

3. DISCUSSION OF THE RESULTS 

Thus, we have shown that the lifetime of a metastable 
state of a quantum system with linear dissipation can be cal- 
culated even in those cases in which the application of stan- 
dard methods encounters considerable difficulties. Thus, in 
the case of the nonquasiclassical potential ( 2 )  withA = 0 the 
determination of the coefficient B of the exponential in the 
expression for r by means of the usual method of calculating 
the product of the eigenvalues A, of the operator (16) is 
difficult, since the analytical determination of A, involves 
solving the transcendental equation (20) .  This difficulty can 
be circumvented by expressing B in terms of the Green's 
function G, which can be calculated exactly. In this case Eq. 
(20) is used only for the correct isolation of the zero eigen- 
value A,  = 0. 

In  the case of a potential of the cubic-parabola type, 
with an arbitrary relationship between the mass and the vis- 
cosity, the problem of determining I- becomes still more 
complicated, since we do not know the analytical expression 
even for the extremal (for the action) trajectory that deter- 
mines the exponent A .  Nevertheless, the quantity A is calcu- 
lated almost exactly for arbitrary relative magnitudes of the 
parameters 7 and (m?t)"* (Refs. 2, 5, 11, and 12), and for 
the determination of B, as shown in the present paper, one 
can use dispersion relations for the effective action, which is 
regarded as a function of the complex variable z = - A 2 .  By 
means of such relations one can find the imaginary part of 
the effective action-the part which determines the decay 
rate r. 

The proposed method for calculating I- is applicable for 
a wide class of potentials V ( p ) .  We note also that this meth- 
od can be used to find the imaginary part of the free energy of 
the system for a finite temperature T. For this, in the dia- 
grams determining the quantity Q,, one must, as usual, re- 
place the integration over w by summation over the Matsu- 
bara frequencies w ,  = 277-n T. 

The potential considered, as already noted, describe dif- 
ferent types of superconducting junctions. By means of the 
methods we have used one can also investigate the more gen- 
eral case of the potential ( 2 )  when neitherA nor y is equal to 
zero. For ?t = I,x/e, A = 31c/2e, y = 21c/e, and 
x = r( 1 - I /I, )/2, such a potential, with the current close 
to Ic , describes superconductor-constriction-superconduc- 
tor (SCS) junctions with a small quantity of impurities. 
Here we shall discuss only the question of how the quantity 
I- depends on the mass m in the strong dissipation limit. For 
A = 0, as follows from (27) ,  the quantity I- in this limit de- 
pends logarithmically weakly on m, while for y = 0 we have 
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y z m-2 (Ref. 7 ) .  This difference is easily understandable, 
since the dependence of T on m is determined by the average 
value (p ) calculated with allowance for quantum fluctu- 
ations. The potential of the cubic-parabola type is "less sym- 
metric" about the point p = 0 than the potential ( 2 )  with 
A = 0; i.e., the quantity (p ) when y = 0 should be greater 
than A = 0. In the limit of strong dissipation with y = 0 the 
average (p ) = q/A cc ln(m- ' ) ,  whereas for ;t = 0 the aver- 
age satisfies (p ) cc lnln(m- ' ) .  

Now let A # O  and y#O. In this case, to determineA we 
can use a method analogous to that used in Ref. 5 for the case 
of a potential of the cubic-parabola type. The quantity A in 
this case is expressed in terms of the invariants of the two- 
parameter group of scale transformations with respect to the 
coordinate p and time 7 .  The values of these invariants de- 
pend weakly on the relationship between the mass and the 
viscosity. The dependence of l- on the mass m in the limit of 
strong dissipation, as in the case y = 0 [see ( 4 4 )  1 ,  is deter- 
mined by the factor 

When we neglect the logarithmic dependence on m in com- 
parison with the power dependence, P(K) is determined by 
the expression (38) .  The quantity A is easily found in the 
limiting cases of small y or small A. As a result we have 
l-ccm-', where 

for small A ,  and 

for small y. We note also that the formal divergence of r as 
m-0 disappears if we express r in terms of the quantity 2 

renormalized with allowance for the quantum fluctuations. 
The authors are grateful to D. A. Kirzhnits, A. I. Lar- 

kin, K. K .  Likharev, and Yu. N. Ovchinnikov for useful 
discussions of the results of the paper. 

"The way in which the factor e - A is separated from the expression for 
Wtf is obviously somewhat arbitrary in character, and, in general, non- 
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tion (cf. Ref. 8) .  
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