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A quasiclassical approach to the description of finite-temperature nonadiabatic and tunnel transi- 
tions is proposed, based on analytic continuation of the equilibrium density matrix along the lines 
of Landau's method of complex classical paths. This approach separates out explicitly the expon- 
entially small factors in the transition probabilities and indicates how the coefficients of the 
exponential terms can be calculated correctly. An extension of the approach to the case of transi- 
tions to the continuous spectrum, using a quasiclassical description of the free-electron motion, 
makes it possible to analyze both multiphonon trapping on an impurity center in a semiconductor 
and self-trapping of current carriers and excitons from a single viewpoint, including the energy 
dependences of the rates of these processes. Specific calculations are carried out for simplified 
models which yield exponential accuracy. 

1. INTRODUCTION 

Multiphonon nonradiative transitions provide an im- 
portant channel for electron relaxation in solids, especially 
when the electronic transition energy is large and intermedi- 
ate electronic states are absent. Under these circumstances, 
it becomes necessary to apportion the excitation energy of 
the "unrelaxed" electron among a large number of lattice 
vibration quanta (in this work we will not investigate the 
radiative and Auger processes which compete with these 
phonon-mediated transitions). Theoretical treatments of 
this kind of relaxation are based on an adiabatic description 
of the system, involving rapidly-moving electrons which 
"track" the much slower motion of the massive nuclei of the 
lattice. Multiphonon nonradiative transitions between elec- 
tronic states appear in this context as deviations from adia- 
baticity (see reviews 1, 2);  this nonadiabatic character is 
shared by nonradiative electronic transitions in molecules3 
and is also encountered in inelastic atomic  collision^.^ 

In the simplest (idealized) case of multiphonon transi- 
tions between discrete states of a deep impurity center, the 
usual method of attack is as follows: in the full Hamiltonian 
of the electron-lattice system, the kinetic energy of the lat- 
tice, which is quadratic in the nuclear momenta, is separated 
out: 

A=K (-ifididq) +Ao (q).  

The vector q Genotes the ensemble of lattice coordinates qi ; 
the operator H,(q) does not include differentiation with re- 
spect to them, i.e., it depends on q only parametrically. For 
each value of q there is an eigenvalue U, (q)  and an eigen- 
function a q )  of the electronic Hamiltonian; the index a 
enumerates the terms of the discrete spectrum. Using the 
Born-Oppenheimer approximation, we can find the eigen- 
functions of the full Hamiltonian ( 1 ) in the form 

where @, (q)  is an eigenfunction of the "adiabatic" Hamil- 
tonian: 

(q)  =Em@= ( q )  , HA-K(-ihaiaq) +Ua ( q )  

The wave function (2)  is an eigenfunction of the full Hamil- 
tonian (1)  if small terms are neglected which come from 
differentiating the electronic function laq) with respect to q; 
this differentiation arises from the action of ( 1 ) on (2) .  The 
presence of these terms is usually trazed to the action of a so- 
called "nonadiabaticity" operator L defined implicitly by 
the expression 

A@, (q)  laq)-E,@,(q) Iaq)=L@, (q)  laq) .  
h 

In reality, L is not a true operator, since its action on an 
arbitrary function of the electronic and lattice coordinates is 
not defined. 

The inexactness of the adiabatic approximation leads to 
mixing ofadiabatic wave functions (2)  with different a ,  or in 
other words, to transitions between terms. The usual ap- 
proach to calculating the probabilities for these transitions 
(see Refs. 1, 2),  sometimes called "adiabatic perturbation 
theory" and first used by Kronig5 for investigating the pre- 
dissociation of molecules, is to regard the nonadiabaticity 
operator as a small perturbation which causes the transitions 
in the usual way. In practical terms, this approach consists of 
choosing in place of the matrix elements of the full Hamilto- 
nians ( 1 ) the set of orthonormal adiabatic functions (2)  
with different indices and substituting them into the "golden 
rule" of quantum mechanics for the transition probability: 

I 

where the summation over the final states 1 f ) is carried out 
on the assumption that the spectrum is quasicontinuous. Ac- 
tually, expression (4)  is the first term of an iteration series 
which arises from solving the time-dependent Schrodinger 
equation in the basis of adiabatic functions (2) .  The terms of 
this series are all of equal (exponential) smallness, but do 
not decrease in magnitude, so that the golden rule (4)  when 
used for nonadiabatic transitions is only an estimate, and not 
strictly an expansion in the adiabaticity parameter (see, e.g., 
Ref. 3, $28). 

Treatments analogous to the one described above have 
also been used to investigate the related problems of transi- 
tions induced by slowly varying external perturbations and 
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high-energy reflection from a barrier. In due course it was 
established (see Ref. 6, §52, $53, and Refs. 7, 8 )  that these 
problems were in essence quasiclassical and thus required 
investigation in the spirit of Landau's method of complex 
classical paths. As we will show here, the quasiclassical 
method must also be used to investigate multiphonon nonra- 
diative transitions; this is because the condition for quasi- 
classical motion of the lattice, i.e., slow variation of the adia- 
batic potential energy U, ( q )  in ( 3 )  over a wave length 
characteristic of this motion, is in essence identical to the 
requirement of adiabatic slowness of lattice vibrations com- 
pared to electronic motion. Of course, the situation can be 
complicated by the presence of other small parameters in 
addition to the adiabaticity parameter. Disregarding these 
complications, we can assert that a consistent expansion in 
the adiabaticity parameter leads not to perturbation theory 
but rather to a quasiclassical approximation which is based 
on a classical treatment of the lattice motion in the adiabatic 
potential U(q) corresponding to purely adiabatic variation 
of the electron wave functions. 

The quasiclassical transition amplitude from one point 
q' to another q for a system with kinetic energy K ( q )  and 
potential energy U(q),  according to general expressions ob- 
tained long ago by F ~ c k , ~  equals 

(5 )  
where S(q,  q') is the value of the classical action 

s [ q ( t ) l =  .I [K( i l ) -U(c~) ld t  (6 )  
1 '  

along an extremal path starting at the point q' at time t ' and 
ending at the point q at time t; A is a normalization factor 
which does not depend on q, q', t or t '. The adiabatic poten- 
tial energy, regarded as a function of the complex lattice 
coordinates q, is in general a single many-valued analytic 
function whose branches are the electronic terms. Each 
branch represents a specific sheet of a Riemann surface, so 
that a transition from one sheet to another is effected by a 
circuit of the corresponding manifolds which define the 
branch-type singularities (in the one-dimensional case, 
branchpoints); these singularities are pairwise complex con- 
jugates in view of the reality of U(q) for real q." A path 
which describes a nonadiabatic transition must go from one 
electronic term to another; because this path must encircle 
the above-mentioned branch singularities, the action along it 
is complex, causing the transition amplitude to be exponen- 
tially small. For this reason, nonadiabatic transitions 
between terms are analogous to transmission through a po- 
tential barrier by tunneling. The fact that the action is com- 
plex for a tunneling transition, however, is not a conse- 
quence of circling any potential singularities, but rather 
comes from traversing the classically forbidden region. 

The approach we will describe in this work was used by 
Miller1' in the theory of slow inelastic atomic collisions. In 
this case, both initial and final states belong to the contin- 
uous spectrum of the adiabatic Hamiltonian (3) ,  and the 
scattering amplitude is given directly by the Green's func- 

tion (5 )  in the momentum representation. The origin of non- 
adiabatic transitions in impurity centers and molecules, on 
the other hand, can be ascribed to the quantum-mechanical 
decay ofstates in a quasidiscrete spectrum which is associat- 
ed with the vicinity of some minimum of the adiabatic poten- 
tial U(q).  The point-to-point transition amplitude (5 )  by 
itself can say nothing about the transition probability of 
these processes. 

In one-dimensional models, where the "lattice" is de- 
scribed by a single coordinate q and the classical path is com- 
pletely determined by the energy, one avoids certain funda- 
mental difficulties characteristic of the general case. The 
system motion takes the form of oscillation around a poten- 
tial energy minimum at one of the electron terms, while the 
transition probability per cycle of oscillation from this term 
to other terms is given by a transition "coefficient" com- 
pletely analogous to the tunneling transmission coefficient 
for a one-dimensional potential barrier (see Ref. 6, $50) 

where M is the mass of the lattice. The integration in (7 )  
amounts to calculating a "truncated" action [in contrast to 
( 5 ) ]  along a contour with real end points located in the 
classically allowed regions around the initial and final elec- 
tronic terms. The coefficient 2 of the exponential, like the 
factor of two which arises in the theory of Landau and Zener 
(Ref. 6, §90), is connected with the possibility of making a 
circuit around either of two complex-conjugate branch 
points of the potential U( q ) .  The imaginary part of the ac- 
tion on these two paths is the same while the real parts differ; 
this leads to rapid interference oscillations in D(E) which 
disappear when we average over a small energy interval. 

The present report is dedicated to applying the quasi- 
classical approach to more complicated situations. In sec- 
tion 2, we present a general method for describing nonadia- 
batic transitions and tunneling in systems with many degrees 
of freedom at finite temperature. In section 3 this method is 
generalized and applied to the problem of capture of current 
carriers by a deep trap in a crystal, while in section 4 the 
same method is used to investigate barrier autolocalization 
(self-trapping). In contrast to simple trapping, the quasi- 
classical description is customary in the theory of autolocali- 
zation,I1-l3 although autolocalization at finite temperature 
is investigated for the first time in Ref. 13. The formalism 
developed in the present report differs from that presented in 
Ref. 13; a comparison of results is given at the end of section. 
4. 

Calculations are carried through to the end with expo- 
nential accuracy in simplified analytically soluble models. 
The quasiclassical approach allows us to highlight the expo- 
nential smallness of the transition probabilities and to for- 
mulate precisely the problem of calculating the argument of 
the coefficient of the exponential which will be the funda- 
mental object of investigation in the present article. This co- 
efficient, whose calculation is significantly more difficult, is 
usually estimated (in order of magnitude) using the charac- 
teristic vibration frequencies of the system. 

It must be noted that first-order adiabatic perturbation 
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theory, when used with the quasiclassical wave functions of 
the Born-Oppenheimer approximation, also should yield ex- 
ponentially small results with accurate values of the expo- 
nential arguments (see Ref. 3, ch. 4) .  In  practice, however, 
this approach usually is accompanied by a quadratic expan- 
sion around minima of the adiabatic potential U(q),  and 
sometimes other rather crude approximations are invoked 
(see Refs. 1, 2 ) .  I t  is clear that the value of the exponent so 
derived can only be an estimate, since in reality the total 
action along the path which describes the transition is made 
up of contributions which can originate quite far from the 
potential minimum. Exponential accuracy in the results one 
usually derives will be attained only in those models where 
the terms interact weakly, and where these terms are purely 
oscillatory in character everywhere except over a narrow 
region where the interaction is significant. 

2. QUASICLASSICAL DENSITY MATRIX 

As is well-know (see, e.g., Ref. 14), quantization of the 
energy spectrum of a multidimensional potential well by 
quasiclassical methods is possible only when separation-of- 
variables techniques can be applied. The question of separa- 
bility also causes special difficulties in the general investiga- 
tion of transitions in dynamic systems with more than one 
degree of freedom. A quasiclassical calculation of the rate of 
nonadiabatic or tunneling decay of a particular stationary 
state in a specific valley of the potential U(q)  makes no 
sense; only a transition probability averaged, let us say, over 
a small energy range of the spectrum, can be calculated qua- 
siclassically. In what follows, we will investigate this averag- 
ing procedure using a Gibbs population distribution over all 
initial states, in the limit of a single valley within which lies 
some minimum of the potential U(q) . 

Formulating the problem in this way presupposes the 
presence of a heat bath with which the system interacts; the 
interaction should be strong enough to mediate the estab- 
lishment of thermodynamic equilibrium in the initial valley, 
but weak enough to neglect in the system equations of mo- 
tion. In practice, this means that the timer, it takes to estab- 
lish thermal equilibrium must be small compared to the time 
T it takes for the system to leave the valley, but large com- 
pared to one of its typical periods of oscillation. For a dis- 
crete spectrum of final states, a lower bound on the strength 
of the interaction with the heat bath which is more impor- 
tant than the one described above is the condition that the 
spacing between final state levels be small compared to their 
thermal broadening. Only in this case is it permissible to use 
the quasiclassical approximation of treating the final-state 
spectrum as a quasicontinuum. In the case of an impurity 
center in a crystal, equilibrium is established in the limit of a 
single term by one-phonon processes whose intensity is 
usually sufficient to satisfy the conditions outlined above. In 
molecules, matters can be more complicated (see Ref. 3 ) . 

A general method allowing us to find the total probabil- 
ity per unit time for the escape of a system from a metastable 
valley at finite temperatures has been presented by LangerI5 
and involves calculating the imaginary part of the system 
free energy. By representing the statistical sum in the form of 

a Feynman integral,16 and in the latter choosing the required 
path of steepest descent, we are led to the following exponen- 
tial expression for the transition probability: 

where S( 0 )  is the action ( 6 )  taken over one period of that 
classical path which has a period of - ifi 0 (0 is the inverse 
temperature). The potential U(q) is measured from the bot- 
tom of the valley; after examining the various extremal 
paths, we choose the one which gives the largest T-I. The 
coefficient of the exponential can also be calculated, though 
this is much more difficult. A shortcoming of this approach 
is that it provides no information at all about the partial 
probabilities for transitions into various final states, which 
sometimes (see the next section) are of principal interest. 

We choose to take a somewhat different approach here, 
which preserves Langer's method but is free of these defi- 
ciencies. The evolution of the density matrix of a system 
initially located in some valley is described quantum-me- 
chanically by the equation of motion 

perturbed by the weak interaction with the heat bath and by 
processes which cause the sytem to leave the valley. On the 
time scale r,, a distribution is established with a density ma- 
trix which, except for exponentially small damping, is sta- 
tionary (commutes with the Hamiltonian); in the final-state 
region (i.e., beyond the barrier for tunneling or at some oth- 
er electronic term in the case of nonadiabatic transitions) 
the current associated with this density matrix is purely out- 
going, i.e., leaving the valley, while deep in this valley the 
density matrix has the exponential form exp( - OH). Separ- 
ating out the time dependence 

for r)rO, we arrive at a functionp(q, q') depending only on 
the coordinates; we will refer t o p  henceforth as the quasi- 
equilibrium density matrix, which is conveniently normal- 
ized to unity by integratingp(q, q )  over the initial valley. All 
possible information about the transition probabilities into 
various final states from the thermodynamic equilibrium 
distribution in the initial valley is contained inp (q ,  q') or in 
the corresponding Wigner distribution (see, e.g., Ref. 17) : 

( n  is the number of degrees of freedom), which is more 
transparent in form and contains all the physical informa- 
tion. 

The procedure described above can be compared to the 
use of quasistationary wave functions in the description of 
the escape of a particle from a potential well by tunneling 
(see, e.g., Ref. 18, ch. 7 ) ,  in which one chooses in a similar 
fashion an analytic continuation of the wave function of 
some stationary state. An explicit form for F(q ,  q') can be 
obtained in an analogous fashion. We turn to the well-known 
formulation of the equilibrium density matrix as a Feynman 
integralI6 with the action ( 6 ) ,  i.e., 

p (q .q f )=S  exp{ifi-'S[q(t) 1 } 0 t q ( t )  I ,  (10) 
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along paths which start at the point q' at time ifiP/2 and 
arrive at the point q at time - ifi p /2. In the quasiclassical 
regime the integration in ( 10) is performed by the method of 
steepest descent, and p(q,  q ' )  takes the form of a sum of 
Gaussian integrals evaluated over a neighborhood around 
those paths which make the action extremal, i.e., which sa- 
tisfy the classical equations of motion. The quasiclassical 
density matrix is one term of this sum, which is chosen in the 
following way. 

Having placed the points q and q' at the bottom of the 
initial valley, let us take the path q ( t )  = const = q = q' with 
these end points, which clearly satisfies the classical equa- 
tion of motion. Now we investigate complex-conjugate end 
points q and q' (the saddle point in (9 )  always corresponds 
to imaginary 6); we will study in the integral ( 10) only that 
saddle point which lies on the aforementioned path and is the 
analytic continuation from q to q' = q*. The density matrix 
so obtained commutes with the Hamiltonian (along with 
contributions from other saddle points) and coincides with 
( 10) deep in the initial valley where the saddle point we have 
picked dominates. We can therefore identify it with the qua- 
siclassical density matrix, once we have sorted out any ambi- 
guity in the analytic continuation of the extremal path. For a 
nonadiabatic transition this ambiguity arises because one 
has the alternative of circling one of two complex-conjugate 
branch points of the adiabatic potential U(q);  note that both 
circuits must be taken into account with equal weight inp (q, 
q'). The ambiguity, which is connected with the possibility 
of surmounting the barrier by either tunneling through it or 
being activated over it, is removed by the inclusion of supple- 
mentary physical considerations (see section 4 ) .  We note 
that analgous questions must also be resolved in the use of 
Langer's method. l9 

The expression obtained forp (q, q') is actually the ana- 
lytic continuation to imaginary times t = - ifiP/2, 
t ' = ifi f l /2 of the quasiclassical Green's function (5  ) : 

0 (q, q') =G (q, -ifiP/2 1 q', ihP/2), (11) 

while the distribution function (9 )  is its mixed (momentum- 
coordinate space) representation. As regards S(q, q') in 
( 5 ) ,  we need to substitute the action along the saddle-point 
path described above, while the constant A is determined by 
invoking the requirement that the quasiclassical density ma- 
trix be normalized. 

For calculating the transition probability we need to 
evaluate the distribution function (9 )  or the current density 

A d d  
J ( 8 )  =-i- (- - -- )P (P. PI) I r=.,=l I(P. q)M-'pdnp 2M 9q dq' 

(12) 
in the classically allowed region of final states, i.e., for values 
of the potential U(q) smaller than the system energy on the 
saddle-point path. If the distribution over some of the de- 
grees of freedom in the final state regions are of no interest, 
the coordinates in q and q' which correspond to them must 
be set equal to one another and @(q, q') must be integrated 
over these q,. In f (p ,  q),  this is accomplished by integrating 
over q, and the corresponding momenta p, . Applying the 
method of steepest descent to this integration imposes on the 

extremal path the conditions that the values of the coordi- 
nates qj and velocities & be the same for t = ifi P / 2  and 
t = - ifi 0 /2; the resulting density matrix and distribution 
function contain complete information about the remaining 
degrees of freedom. 

The inverse lifetime of the system in the initial valley 
equals the integral of the current density ( 12) in the vicinity 
of this valley over an ( n  - 1 )-dimensional surface. Evaluat- 
ing this integral by saddle-point methods, we obtain a classi- 
cal path with period - ifi 0 similar to the one which appears 
in Langer's method. A general demonstration of the precise 
equivalence of the expression for T - I  which we have ob- 
tained and expressions obtained by other methods has not 
yet been found. 

In the one-dimensional case, from ( 12 ) , ( 1 1 ), and ( 5  ) 
we obtain the expression 

where fl,=(M - 'U"  ) I / *  is the frequency of small oscilla- 
tions around the bottom of the initial valley, from which the 
energy is measured. In the classically-allowed region S( q, 
q )  does not depend on q and is equal to the action S (  f l )  
computed along a periodic path with period - ifiP. The 
coefficient of the exponential is transformed by using the 
relation 

d S  d2S M-1-, , - =- 
dq' dqdq '  d t d q  

where S S (  q, q', t )  is the action (6)  along a path which 
carries the particle from point q' to point q with a time t .  The 
result ( 13) can be cast in the form 

for a nonadiabatic transition it has an additional coefficient 2 
[compare with (7 )  1. This expression is obtained in Ref. 19 
by Langer's method and coincides with the integral 

c.2 

where D ( E )  is the tunneling or nonadiabatic transmission 
coefficient (7) .  

In order to apply the approach developed so far to a 
practical calculation of the probability for a nonadiabatic 
transition, we must first integrate the classical equations of 
motion, and for complex initial conditions to boot. For a 
realistic model of an impurity center this can only be done 
numerically. A considerably simpler situation obtains in a 
model with one "lattice" degree of freedom; this will also be 
the case in models which are reducible to one-dimensional 
problems by separation of variables, since expressions (14) 
or ( 15 ) can be used. 

As an illustration we investigate the one-dimensional 
"spin-oscillator" modelZ0 with a two-level electron Hamil- 
tonian (see Ref. 1 ) .  

A o ( q )  ='/2iWo2q2+ 1 / 2 E 0 ~ i + i / 2  (B,a,f B,ir,+B,6,) q,  
where e x ,  +,,, GZ are Pauli matrices, w, Eo, B,, By, B, are 
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FIG. 1. Energy schemes for various cases of multiphonon nonradiative 
transitions: a )  Two-level model for an impurity center; b )  single-level 
impurity center with a continuous (free-carrier) spectrum (shaded area). 
Boldface curve: the adiabatic potential of the bound state; c )  barrier auto- 
localization, or an impurity center with a level which appears in the pres- 
ence of a lattice deformation. At the point where the bound state appears, 
the slopes of the adiabatic and intrinsic lattice potentials coincide. 

parameters. The adiabatic potential energy 
U ( q )  ='/ZMo2qZ*'/2 [ ( E a t -  B,q)+ (B,VB,Z) qZ] '" 

for small interaction constant a r  ( B  + B ) ' 1 2 / ~ ,  1 con- 
sists of two parabolic terms with equal oscillation frequen- 
cies w, small in keeping with the requirements of the adiaba- 
tic approximation. The potential minima are found at the 
points f B,/2Mw2; depending on the value of the param- 
eter 

y =2,~fo2Eu/Bz2, 

these are located on one (for y > 1) or on both (for y < 1 ) 
sides of a narrow region around the quasi-intersection 
q=: - Eo/B, (see Fig. l a ) .  In the case y > 1, the transmis- 
sion coefficient (7) from one term to the other for energies 
lower than the intersection region equals 

and does not depend on the interaction constant a. In this 
expression, the energy is measured from the quasi-intersec- 
tion point, and before it is substituted into ( 15) one must 
first lower the energy origin until it coincides with the bot- 
tom of the upper electronic valley, i.e., at the energy 
E0(2y - 1 )/4y. Then we obtain for the probability ofa non- 
adiabatic transition from the upper term to the lower 

where N is the equilibrium occupation number of the lattice 
oscillator. The inverse transition probability differs from 
(16) by a factor of exp( -PE,,). 

The region in which expression (16) is applicable is 
determined by two conditions: first, that the separation of 
the terms in the quasintersection regime, which equals aEo, 
must not be so small that the quasiclassical approximation is 

violated. Second, the energy on the extremal path must be 
lower than the quasiintersection energy range. These condi- 
tions can be formulated quantitatively on the basis of an ac- 
curate (nonquasiclassical) investigation (Ref. 21, Ref. 4 ch. 
5) of the question of linear quasiintersecting terms; they take 
the form of inequalities 

a2yEu/Ao<J< (ay)" ' (y2-I)" .  
When the first inequality is violated, the quasiclassical con- 
dition is also and we must turn to perturbation theory in the 
interaction constant a. When the second inequality is violat- 
ed, we must make use of the exact expression for the trans- 
mission coefficient D(E) ,2 '  or for the inverse (strong) ine- 
quality use the Landau-Zener formula, In an analogous way, 
we must investigate the transition between terms for y < 1. 
In this case, expression (16) (decreased by half) gives the 
tunneling transition probability between valleys of the lower 
term. 

Since the terms are strictly parabolic in the model we 
havejust investigated, perturbation theory in the nonadiaba- 
ticity operator using an oscillator expansion around any oth- 
er potential minimum must likewise yield exponential accu- 
racy in a calculation of 7 - I  (see the introduction). When all 
the oscillators have equal frequencies, one can (after a de- 
tailed investigation) recover the results of Huang and 
R h y ~ ~ ~ ;  however, due to the cumbersomeness of the expres- 
sions which result, it is possible to match the exponents in 
our results with those of Huang and Rhys only asymptotical- 
ly. Specifically, the high-temperature asymptotic behavior 
(activated) and zero-temperature limit [see, e.g., formulae 
(54) and (47) in Ref. 231 of their exponents agree with the 
corresponding forms derivable from ( 16). A comparison of 
the coefficients of the exponentials is meaningless for the 
reasons discussed in the introduction. 

3. CAPTURE 

The capture of current carriers on deep traps plays an 
important role in semiconductor recombination processes 
(see Ref. 2). A free carrier can fall into a localized trap state 
whose energy lies in the forbidden gap at a depth which sig- 
nificantly exceeds the limiting phonon energy either by des- 
cending a staircase of excited states of the trap ("cascade" 
capture),2' by radiative or Auger processes (which are not 
discussed here) or by means of multiple phonon emission. In 
the last case, especially for deep neutral or repulsive traps, 
the transition is essentially nonadiabatic and can be studied 
by the approach developed in this paper. The principle dif- 
ference between these transitions and intracenter transitions 
lies in the fact that the electronic subsystem, in addition to its 
discrete spectrum (in the simplest case, a single level), also 
has a continuous spectrum for which the adiabatic approxi- 
mation is certainly inapplicable. This same difficulty also 
appears when one investigates the ejection of a particle from 
a potential well by a slow external p e r t ~ r b a t i o n ~ ~ . ~ ~ ;  a well- 
known method of overcoming it is to describe the free-parti- 
cle motion quasiclassically, taking into account the influ- 
ence of the well via boundary conditions on the wave 
function (see, e.g., Ref. 18, chapter 5, $4). 

The approach we will develop below for analyzing cap- 
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ture on an impurity center makes use of the quasiclassical 
nature both of the lattice motion, which is based on the adia- 
batic approximation, and of the free-electron motion. The 
latter has its origin not in adiabaticity, but simply in the fact 
that phonons have a rather weak influence on band electron 
states. The calculations in this and the following sections 
yield exponential accuracy; this is because they can also be 
obtained within the framework of adiabatic perturbation 
theory. 

To demonstrate the approach, let us first investigate the 
capture process for the simplest one-dimensional model of 
an impurity center, after which it will become clear how to 
proceed in the general case. The Hamiltonian of a captured 
particle [see ( 1 ) ] we take in the form 

where m is the particle mass, x is its coordinate. The coeffi- 
cient x (  q ) ,  which has the dimensions of inverse length, de- 
termines the dependence of the deep 8-function potential 
well on the normalized lattice coordinate q, while Uo( q )  
represents the intrinsic potential energy of the lattice. Corre- 
sponding to this latter degree of freedom is a mass which we 
denote by M. The curve Uo( q )  and the adiabatic potential 
energy 

U ( q )  =Uo ( q )  -AZx2(q)/2m 
are shown schematically in Fig. lb. 

Because it is easier to calculate, we will first investigate 
the inverse of the capture process, which is the ionization of a 
center. This may be regarded as the decay of a bound state 
due to thermodynamic fluctuations. Once this problem is 
solved, the capture rate and its dependence on particle ener- 
gy can be found from the principle of detailed balance. For 
the reasons described above, we cannot limit ourselves to a 
simple calculation of the adiabatic binding energy 
- fi 2x2 (  q ) / 2 m  of a particle moving in the lattice potential. 

Therefore the quasi-equilibrium density matrix describing 
the ionization must be determined from the two-dimension- 
al integral ( 10)  along the path [ x ( t ) ,  q ( t )  ] having the spe- 
cific values x,  q  at the time t  = - ifi 0 / 2  and x ' ,  q' at the time 
t  ' = ifi p /2, with the action 

s l x ( t ) , q ( t ) l  

. . - 

'" (') 6 ( x )  +q -u0 ( q )  ] dt. 
m 2  

In keeping with the assumption of "slowness" of the 
phonon coordinate, which, let us say, is a consequence of the 
smallness of the lattice zero-point energy compared to the 
particle binding energy, it is natural to integrate ( 1 0 )  first 
over the "rapid" degree of freedom x ( t ) ,  and treat the 
"slow" path q ( t )  as given. Then it is simple to perform the 
functional integration, yielding a Schrodinger-representa- 
tion density matrix in the form 

where G ( x ,  t  Ix', t  ') is the time-dependent Green's function 
for the Schrodinger equation with the Hamiltonian ( 17) ;  
note that G depends parametrically on the lattice path and 
the supplementary condition for t  f t  ': 
dG(x,  t lx ' ,  t ' )  

I 

dt 

dG ( x ,  t  1 s f ,  t ' )  
'dr' 

Since for all x #O the particle motion is quasiclassical, 
we can look for a solution to ( 19) in the form 

G (x, t  lx', tf)me?ip [i f i- 'S(x,  t  Is', t ' ) ]  . ( 2 0 )  

Substituting this into ( 1 9 )  gives an equation of Hamilton- 
Jacobi type for S ( x ,  t  Ix', t  '), analogous to the treatment in 
Ref. 9, whose solution (see, e.g., Ref. 2 6 )  in turn leads to the 
expression3' 

and where the times t ,  and t  ; are found from the expressions 
mxY d Y ( t i  1 t,') + = 0 ,  

a(t- t , )2 dt, 

mxT2 - dY(t1 I t i ' )  
= 0. 

2  ( t ' - t i ' )z  dt,' 

The function Y ( t ,  It ; ), which for a general integral of 
the Hamilton-Jacobi equation is arbitrary, is here deter- 
mined by the boundary conditions imposed on the Green's 
function for the 6-function potential well: 

dG ( x ,  t  1 x', t ' )  
lim - = r x ( q ( t ) ) G ( O ,  t l x ' ,  t ' ) ,  

X++O ax 
dG ( x ,  t  1 x', t ' )  (23) 

lim = r x  ( q  ( t ' )  ) G ( x ,  t  10, t ' ) .  
x r + * o  dx' 

Having noted the obvious symmetry of the problem under a 
sign change of either x or x', we will henceforth assume that 
x and x' are positive. Substituting ( 2 0 )  into the boundary 
conditions ( 2 3 )  gives the following conditions for S ( x ,  t Ix', 
t ' ) :  

dS(x ,  t lx ' ,  t ' )  
ax 

dS(x ,  t l x ' ,  t ' )  I =iAx ( q  ( t r )  ) . 
dx' ..=a 

Substituting ( 16 )  into these conditions, we obtain 
mx mx' 

l im-=i f ix(q( t ) ) ,  %-+a t-tl Z - + O  l i m y = -  t1-ti ihx (q  ( t ' )  ). 

By studying ( 2 2 )  in the limit x 4 ,  x'+O (in this case, obvi- 
ously, t+il, t  '+t ; ), we finally obtain an equation for 
Y ( t , l t  ; 1: 
a u t ,  I t i1)  - f t 2 ~ 2 ( ~ ( t I ) )  w t i  I t l f )  f j 2 x 2 ( q ( t l ) )  - - -- 
. at, 2m ' at,' 2m ' 
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from which 
t. 

R"2iq ( t )  1 
Y (ti 1 t i f )  = j - 

t,' 

Now, substituting the resulting expression for the 
Green's function (20) into ( 18) and ignoring the weak de- 
pendence of the coefficient of the exponential in (20) (which 
in this work is not calculated) on x, t, x', t ' and on the path 
q ( t ) ,  we are led to the one-dimensional path integral 

with the effective action 

and the following equations for t, and t ; : 
mx mx' 

= ihx ( q  ( t i )  ) . = -ihx ( q  ( t i ' )  ) .  
-iA/3/2-ti ihpl2-ti' 

(26) 
The physical meaning of this effective action is obvious: the 
first two terms in (25) are the action accumulated by the 
particle due to its free motion fromx' to 0 and from 0 tox; the 
third term is due to the bound motion of the particle, and 
equals the time integral of the binding energy of the particle 
in the well. 

The integration over the paths q ( t )  can be performed by 
a simple saddle-point technique, since the lattice motion is 
quasiclassical for all times. The path through the saddle- 
point satisfies an equation of motion which corresponds to 
free motion of the particle on the time intervals (ifi 0 /2, t ; ) 
and ( t , ,  - ifi /3 /2) ,  and bound motion on the connecting in- 
terval ( t  ;, t, ). The equations of motion in these regions con- 
tain the unperturbed (i.e., no particle present) and adiabatic 
lattice potential energies, respectively: 

Variation of the actions[ q ( t )  ] at  t, and t ; while taking into 
account (26) yields the condition of conservation of the ve- 
locity q for a transition from one portion of the path to an- 
other, i.e., at the connecting times t, and t ;. 

The conditions we have formulated here determine 
completely the classical path q ( t )  and the extremal action 
(25) for given end points x, q, and x', q'. The probability 
distribution of final values of the lattice coordinate is usually 
of no interest; integrating (24) over these final values q = q' 
yields the coincidence conditions on q and q at  the times 
- i f ip  /2 and ifi /3 /2. Later on, since we are interested only 

in the distribution of escaping particles with momentum p,  
we will transform from the density matrixg (xlx') (the argu- 
ments q and q' have been integrated out)  to the Wigner dis- 
tribution function in accordance with the recipe (9) :  

where once again the integral can be evaluated by the saddle- 
point method. 

Here it must be recalled that the energy origin was cho- 
sen to be the energy of the unperturbed lattice plus the ener- 
gy of a stationary free particle. This implies that in order to 
obtain the true momentum distribution function for a parti- 
cle escaping from the center by ionization, expression (28) 
must still be multiplied by the Gibbs exponent exp( Burn,, ), 
where Urn, < 0 is the minimum of the adiabatic potential 
U( q ) .  However, in the final analysis we are interested in the 
capture cross-section of a particle with momentump, which 
is not strongly dependent on p ,  and which is determined 
from the equation of detailed balance; to exponential accura- 
cy this equals 

where f ( p )  is a distribution function (28) ,  independent of 
X. 

Omitting simple operations we write down the final ex- 
ponential expression for a( p )  and the conditions which de- 
termine the extremizing trajectory and the argument of the 
exponential: 

The equations of motion (27) together with conditions (3  1 ) 
and the requirement of continuity ofq( t )  entirely determine 
the path q ( t )  and the connecting times t, = - iB and 
t ; = i0, which can be chosen pure imaginary because of the 
possibility of arbitrarily shifting the real part without affect- 
ing the value of the action. 

Let us turn to a specific calculation based on the model 
described above, considering the lattice as a harmonic oscil- 
lator: 

U ,  ( q )  =MooZq2/2 (32) 
and assume that the dependence x ( q )  is linear 

x (q)==xoi-xiq, x,>O (33) 
(the interaction constant is chosen positive for definite- 
ness). To  complete the final specifications of the system, the 
bound-state potential is also taken to be an oscillator 

but with a different frequency and a shift in equilibrium posi- 
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tion. The equation of motion (27) gives a sinusoidal path 

q ( t )  =C, cos [ o ,  (t-l;,ztifip/2) ] (35) 

on the free segment ofthe motion from f i6' to f ifi /2 and 

q ( t )  =Q+C cos [ o  (t-c) ] (36) 

on the bound segment. The parameters Co, f,, C, f are all 
real, due to the symmetry of the path relative to the real axis 
and the coincidence of q and q for t = f ifi 8 /2. 

The final manipulations consist of substituting the path 
obtained above into the equation 

[see (26)]  and into the continuity conditions for q at 
t = - iQ; this leads to a system of equations 

C, cos (oOl;,) ch [oo('lZh@-O) l = - ~ o l ~ l ,  

C ,  sin (o,Lo) sll [ o ,  ('12h$-0) ]=-p l f i~~I ,  

C sin (ol;) sh (o0)  =p/Axl, (38) 

o,C, sin (o,l;,) ch [oo('/,tlp-0) ] = o C  sin (ol;) ch (oO) ,  

ooCo cos (a&,) sh [ o ,  ('/,A@-0) 1 =-oC cos (05)  sh (me) 

for determining the parameters C,, fa, C, f ,  and 8 (although 
there are more equations than unknowns, the system still has 
a solution). 

Solving the system of equations (38) and then calculat- 
ing the action (30) gives the following expression for the 
capture cross section of a particle: 

in which out of all the parameters alluded to before only 6' 
remains, determined by the transcendental equation 

We note that 0 appears to be negative (for w < w,) ,  and does 
not depend on the particle momentump; this latter property 
is evidently a characteristic of the specific model under 
study. The total capture cross section for a thermalized par- 
ticle, i.e., a( p )  integrated over p with a Maxwell distribu- 
tion, is equal to u ( 0 )  to exponential accuracy. Of course, the 
characteristic momentum of a captured particle is not strict- 
ly zero, but is determined by (among other things) how the 
coefficient of the exponential depends onp.  

In Fig. 2 we show schematically a path q ( t )  forp = 0 on 
the imaginary time axis (for p > 0 the path is complex and 
therefore difficult to represent graphically). The bound state 
motion is found by time inversion with respect to the free 
motion, corresponding to the negative sign of 0. 

Expressions (39) and (40) completely describe the 
capture process for a free particle by a one-dimensional 6- 
function well in a model which consists of one lattice oscilla- 
tor and the interaction (28) which is linear in q. Let us pro- 
ceed to asymptotics, which we will obtain in various limiting 
cases. In the low-temperature limit 8-m we have 

8- - w - ' Arth(w/wo) and the capture cross section ap- 
proaches 

In the high-temperature limit 8-0 (restricted, of 
course, by the requirement of that the exponential be small, 
we obtain 

The total capture cross section for thermal particles, given 
by a(O),  depends on temperature in this limit in an activated 
fashion, where the activation energy E, is equal to the oscil- 
lator energy at the point q = - x,/x,, which is where the 
binding energy f i  'x2( q)/2m reduces to zero. 

It is also interesting to consider the limit of small x, 
corresponding to weak electron-phonon interaction. In this 
limit wo and w approach each other and 6' diverges logarith- 
mically: 

0=- (200)- '  in [ 4 m 1 l l o , ~ / R ~ y . ~ ~ ( ~ V + l )  1. 
the expression for the capture cross-section in this case 

evidently agrees with the results of perturbation theory in 
the constant x,. The number n is the number of quanta 
which a particle with momentump must emit in order to fall 
into the bound state. Varying the temperature leads to a 
change in the oscillator occupation number N. 

In spite of the extreme simplicity of the one-dimension- 
a1 model investigated above, the equations we have obtained 
also have some applicability in the three-dimensional case 
for capture of a carrier on an uncharged deep trap from a 
nondegenerate, not-too-narrow band. Let the carrier (an 
electron for definiteness) have an isotropic effective mass m; 
its Hamiltonian clearly depends on the whole ensemble of 
lattice coordinates q, . The problem of calculating the quasi- 
equilibrium density matrix is solved, as before, by first inte- 
grating over the electron path, and then over the lattice path. 
Replacing the first integration by a solution of the Schro- 
dinger equation, we observe that near the connection times 
the binding energy of an electron on the center is close to 
zero, and the electron is found with overwhelming probabil- 
ity in the free-particle region (far from the center the lattice 
is only weakly perturbed). Such weak-coupling states are 

FIG. 2. A characteristic path q ( t )  which describes the ionization of an 
impurity center. Boldface curve: the bound-motion segment. The fact that 
the connection time @is negative is due to the "overhang" of the barrier as 
shown in Fig. l b ) .  
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spherically symmetric, and in the spirit of the zero-radius 
potential methodz7 we can in the usual way reduce the three- 
dimensional Schrodinger equation to a one-dimensional 
one. The particular characteristics of the center are here con- 
tained in the inverse scattering length x, which is defined in 
terms of a boundary condition for the logarithmic derivative 
of solutions of the one-dimensional Schrodinger equation in 
the external region (Ref. 6, $133). This boundary condition 
(23) has precisely the same form as condition (23), which 
arose from the 6-function potential in the one-dimensional 
problem; therefore the integration along the electron path 
leads once again to expression (24) with the action (25). 
For q we must substitute the ensemble of all the lattice co- 
ordinates, while for x (  q) we need the inverse scattering 
length for each of these q; for U,( q) we use the elastic lattice 
energy. 

Here we must recall that, generally speaking, the center 
can be described by a scattering length only near the capture 
connecting times, while for other times (i.e., in the bound- 
state segment of the path) the state must be strongly local- 
ized. It is easy to see, however, that in the expression for the 
action (25), x(q)  enters in only in combinations which in- 
volve the well binding energy of the particle. It is therefore 
clear that in the general case the real binding energy on the 
center (which depends on q) should appear in (25) in place 
of4 2x2(q)/2m. In Eq. (26), which determines the connect- 
ing times, the real inverse scattering length x (q )  appears, 
which can be expressed in terms of the binding energy in 
view of the one-to-one correspondence between them in this 
region. 

Integrating along the lattice path and then transform- 
ing leads to precisely the same result as for the case of a single 
variable q ( t ) .  As a result it is found that the scattering cross 
section u (  p )  for a carrier with momentump on a deep un- 
charged impurity center is given by expression (29) with the 
action (30), and by the conditions (3  1 ) on the path, where 
for q we substitute the ensemble of lattice coordinates q; 
x (q)  is connected with the impurity level energy by the rela- 
tion 

x(q) --fi-'[-2mE (q) ]'", (41 

where the branch is chosen to be positive for negative E(q) .  
The lattice path q( t )  consists of two free segments and an 
intermediate bound segment; the equation of motion on the 
bound segment has the corresponding form 

The total path is determined by the continuity condition for 
q ( t )  and by Eq. (42), in full analogy to the single-oscillator ' 
case. The capture cross section for thermal carriers 
u-u(O), analogous to the one-dimensional model, is deter- 
mined by the action along the path q( t) ,  into which the im- 
purity level energy is substituted up to the region of the con- 
tinuous spectrum at the connecting times + i0.4' 

The solution to the equations so obtained in the case of 
more or less realistic models describing capture is accompa- 
nied by difficulties in calculation, and it is not possible to 
describe them here. Further computation using the analytic 
one-dimensional, single-oscillator model apparently yields a 

qualitatively accurate picture of capture on a neutral trap 
with the assistance of phonons of various types; for a local 
mode the model can approach quantitative accuracy. Evi- 
dently one can discern a general regularity in the growth of 
the scattering cross section with temperature from the result 
(in agreement with Ref. 28) that the high-temperature law is 
an activated one. The activation energy for thermal carriers 
equals the minimum energy of the lattice configuration 
which ejects the impurity level into the band. Since the adia- 
batic energy in the bound state U,,(q) + E(q )  has no saddle 
points (see Fig. lb)  which could result in the appearance of 
an activation path in the quasiequilibrium density matrix, 
one arrives at an activation law only through a sequence of 
several steps. The inverse case, which occurs in barrier auto- 
localization, is investigated in the next section. A less trivial 
general property of capture processes is the decrease of u( p )  
with increasing carrier momentum, connected with 0 being 
negative, i.e., with the presence of retrograde motion along 
the extremal path. 

The calculation scheme we propose can be directly gen- 
eralized to the more complicated cases of anisotropic carrier 
dispersion laws and multilevel traps. The case of an impurity 
which has an energy level which is delocalized in the unde- 
formed lattice but becomes localized due to the electron- 
phonon interaction (see, e.g., Ref. 29) is analogous to auto- 
localization, which we will investigate in the next section. To 
investigate capture on a repulsive center we must take into 
account the Coulomb potential in the external region of qua- 
siclassical particle motion. There is no obstacle in principle 
to pursuing our approach for the analogous calculation in- 
volving two bands; generally speaking, such a calculation is 
a necessary preliminary to any investigation of carrier re- 
combination in real semiconductors. 

Barrier autolocalization of charge carriers and excitons 
in three-dimensional crystals can also be viewed as a multi- 
phonon-mediated nonradiative capture process (see Refs. 
30, 11-13); however, the carrier is not localized on an al- 
ready present impurity level, but rather in a potential well 
generated by a concomitant lattice deformation. The exis- 
tence of self-consistent (autolocalized) states in which the 
binding energy of a particle in the well exceeds the elastic 
lattice energy requires a rather strong electron-phonon in- 
teraction. An absolute minimum in the adiabatic potential 
energy U(q) is responsible for this state; a path to it from the 
undeformed lattice-plus-free-particle state for a short-range 
electron-lattice interaction goes through energetically unfa- 
vorable configurations where a bound state in the well is 
absent or its binding energy is small (see Fig. lc) .  As a re- 
sult, it is found that the adiabatic lattice energy U(q) has a 
saddle of height Wwith a maximum along one principle axis 
(in q-space) and a minimum along all others except those 
which are responsible for translation of the well as a whole. 
The multidimensional potential barrier obtained in this way 
must be surmounted either by activation or tunneling, which 
is the topic of this discussion. The question of what degree of 
influence such barriers have on the rate of autolocalization 
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in real crystals has not yet been resolved. Experiments, 
which are described in work which we will cite later on, 
imply that such barrier heights are completely insignificant. 

From the point of view of calculating transition rates, 
the autolocalization process does not differ in principle from 
the case of capture on an impurity center which we investi- 
gated in the previous section. The lattice equations of motion 
( 4 2 ) ,  the connection between the energy of a bound state in 
the well and the inverse scattering length (41 ), the formal 
expression for the action ( 2 9 )  and conditions ( 3 0 )  which 
determine the connection times, all retain their validity. 
There are, however, important differences due to the pres- 
ence of the potential barrier. These differences are expressed 
in the form of boundary conditions imposed on the lattice 
path, which lead to the appearance of various types of ex- 
trema as mentioned in section 2. The autolocalization rate is 
determined, depending on the energy band of the captured 
particles and on temperature, by one or  another of these 
paths. 

In view of the impossibility of doing any analytic calcu- 
lations on realistic models, we turn as in the previous section 
to the one-dimension1 single-oscillator models ( 17) ,  ( 3 2 ) ,  
and (33 ), which allow us to demonstrate the qualitative fea- 
tures of more complicated cases. A level in the undeformed 
lattice will be absent if the condition x,<O in ( 3 3 )  holds, 
while an autolocalization barrier is present if 

f i 2 ~ 1 2 / m M > ~ 0 2 ,  
so that the system in its bound state is an inverted 0scillator 
[see ( 3 4 )  1'': 

U ( q )  = W-'/zMQ2 ( q - Q )  ', ( 4 3 )  

with an imaginary oscillation frequency o = i n .  
As with the case of capture on an impurity center, the 

"free-particle" motion of the lattice is given by a path of the 
form ( 3 5 ) ,  while the form of the bound-motion path de- 
pends on the relation between the total energy and the bar- 
rier heights. The path for the below-barrier case is of the 
form 

q ( t )  = Q + C c h [ Q ( t - % )  I ,  
of over-barrier case 

q ( t )  =Q-C s h [ R ( t - < )  1, 

where C  and f ,  as before, are the real amplitude and time 
shift. In the same way as for capture at an impurity center, 
we will be interested in paths which describe not autolocali- 
zation itself but rather the inverse process of fluctuation- 
induced decay of an autolocalized state. Then we must re- 
quire that C agree in sign with Q, that is (for x, > 0 )  be 
positive, so that for negative real times t  < < there will be a 
current which corresponds to escape over the barrier from 
the region of the autolocalized state. Let us recall that in the 
previous case we investigated only one type of bound mo- 
tion, since for a real frequency o inserted in ( 3 5 )  the cosine 
is equivalent to a sine with f shifted by a quarter period. 

Substituting ( 4 4 )  or  (45 ) in place of ( 3 6 )  into equation 
( 3 7 )  and into the continuity condition for q ( t ) ,  and then 
calculating the extremal action, we are led, both for the 
above-barrier and below-barrier cases, to an exponential 
expression for the autolocalization probability per unit time 
r - ' ( p ) ,  which coincides with expression ( 3 9 )  for o( p )  
with U * = - W ,  w = i n .  All the subtlety is contained in the 
fact that Eq. ( 4 0 )  which determines 0  now has not one but 
formally an infinite number of real solutions. The choice of 
solution is also exactly determined by the character of the 
motion of the system on the bound segment. The over-the- 
barrier path ( 4 5 )  carries the particle through the barrier for 
motion directly along the real time axis. For real time t  the 
below-barrier path describes reflection from the barrier, 
while the transition through the barrier occurs because of an 
additional shift along the imaginary axis of - i n / n .  I t  is 
therefore clear that the root of Eq. ( 4 0 )  which is smallest in 
modulus corresponds to the above-barrier case, being nega- 
tive in sign, while the smallest positive root gives the below- 
barrier case. The positiveness of the amplitude C in ( 4 5 )  or 
in ( 4 4 )  yields a condition which defines the regions of appli- 
cability of the solution so obtained. As can be shown by in- 
vestigating systems of equations analogous to ( 3 8 )  on the 
extremal path, these regions are described by the inequalities 

for the above-barrier and below-barrier cases, respectively. 
Substituting the values of 0 appropriate to each region 

into ( 4 6 ) ,  it is easy to convince oneself that these regions do 
not cover all values of the particle momentum p  and tem- 
peraturep - I .  In intermediate regions the path which deter- 
mines the ionization rate does not belong to one of the types 
( 4 4 ) ,  ( 4 5 )  which make the action an absolute extremum, 
but rather can only be a conditionally extremal path. The 
physical constraint which determines this path is provided 
by equating the total system energy to the barrier height. On 
the bound segment, such a path cannot be identified with a 
unique analytic function, but has the form 

q  ( t )  =Q+C exp[Q ( t k i 0 , )  ] ( 4 7 )  

( C  and 0 ,  real) which describes a system motion which 
crosses the barrier with zero velocity at time t = - a, - id,. 
The path parameters are determined as before by matching 
at  the connection times with the free-motion path ( 3 5 )  and 
using Eq. ( 3  1 ) ; specifically, 

For a given particle energy p2/2m (smaller than the 
barrier height W )  the transition from one type of bound- 
motion path to another is implemented as follows: for high 
temperatures the extremal path corresponds to motion 
above the barrier [see (45 ) 1. As the temperature is lowered 
to a value p ; ' ( p ) ,  the total energy on the extremal path 
decreases until it reaches the barrier height; from then on it 
remains constant [the path has the form ( 4 7 )  ] right up to 
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FIG. 3. Various possibilities for a )  the energy dependence of the lattice 
period of the inverted potential and b)  the corresponding temperature 
dependence of the action along a periodic path for the case of tunneling. W 
is the barrier height, fl, is the critical value of the inverse temperaturefl. 
The dotted curve corresponds to the model discussed in the text for auto- 
localization with no anharmonicity. The straight line on graph b shows 
the activated dependence corresponding to the path with zero amplitude 
of oscillation. 

the valuep =Po( p )  + 2n/fiS1, after which point the bound 
motion corresponds to motion below the barrier. 

By following this procedure, we find that the autolocali- 
zation probability per unit time of a particle of momentump 
in the single-oscillator model under discussion here equals, 
to exponential accuracy, 

(48) 
The value of 8 for P<&( p ) ,  and also for p>,fixolw/R 
(which corresponds top, = + m ) is given by the equation 

while forP>Bo( p )  + 27r/fiR, it is given by the other root of 
the same equation, which lies in the region 

and for Po( p )  <P<Po( p )  + 2a/fiS1, by the expression 

[The argument of the exponential in (48) in this region is 
linear in P.] . 

Let us iiow focus our attention on the fact that 8 is a 
continuous function of particle momentum and tempera- 
ture, while r- ' ( ) is continuous along with its first deriva- 

tives with respect t o p  and 0. If we study the dependence of 
the autolocalization rate on particle momentum for a given 
temperature, then it is clear that there exists a critical tem- 
perature. 

below which r 7 ' ( p )  has three analytic segments i n p  (49a, 
b, C )  while above this temperature it has two such segments 
(49a, b) .  On the segment described by expression (49a), 
7- ' (  p)  falls off exponentially with an increase in particle 
energy p2/2m; on the branch described by (49c) (for 
,5' >PC ), it grows exponentially. Hence r- ' ( p )  achieves its 
maximum for 

p=hl r.,l ooQ- '  th (Awo$/2) 

and corresponds to the value 8 = 0 [expression (49b) 1. As 
the temperature falls, the region defined by expression (49b) 
shrinks while the particle energy which matches the maxi- 
mum r - ' (  p )  tends toward the barrier height W. The aver- 
age probability per unit time r- ' of autolocalization of ther- 
mal carriers, which in the exponential approximation 
coincides with r-' (0 ) ,  forP>Pc is given by expression (48) 
withp = 0 and the value of 8 from (49c), while forP<PC we 
are led to the activation expression 

T-fVrre-wB 

Having concluded our investigation of a simple model, 
let us turn to a discussion of the general case of barrier auto- 
localization. As we noted earlier, there is an analogy between 
autolocalization and capture on a deep impurity center; this 
implies that the prescription for finding the extremal path 
formulated at the end of the previous section is also fully 
pertinent to autolocalization at finite temperature and given 
particle energy. However, in addition to solving the classical 
equation of motion for the lattice, in the autolocalization 
case it is also necessary to investigate the action for various 
types of extrema. The physical basis for choosing a path was 
demonstrated earlier; in the general case we must also arrive 
at three types of extremal paths. The dependence of the auto- 
localization rate on particle energy and temperature ob- 
tained earlier is apparently general in a qualitative sense. 
The optimum particle energy for autolocalization at high 
temperatures is small, while at lower energies it converges 
towards the height of the saddle point. It is not possible to 
dwell here on a proof of this assertion. 

The case of degeneracy gives rise to certain subtle quali- 
tative regularities in the model under investigation. In order 
to see this, let us first examine the temperature dependence 
of the transition rate for a particle to exit a multidimensional 
potential well of general shape by tunneling. The potential 
energy U(q) as a function of the particle coordinate q has a 
saddle point of height W at some point Q with a maximum 
along one direction and a minimum along the others. Calcu- 
lating the exit probability from this well reduces (see section 
2)  to finding the classical path for a particle with given 
imaginary period - ifi P. If we make a variable transforma- 
tion to imaginary time i = it, such a path with energy E will 
describe the general oscillatory motion in a reversed poten- 
tial o(q) = - U(q) with energy - E. For each value 
0 < E< W the purely oscillatory solution to the equation of 
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motion is unique, while for E > Wit is absent. The period of 
these oscillations T(E)  for E approaching Wis finite and is 
determined by the frequency S1 of harmonic oscillations of a 
particle near to the saddle u ( q ) ,  while as E approaches the 
bottom of the potential well it diverges logarithmically. The 
variation of T ( E )  in the intermediate region is determined 
by details of the potential U(q) ,  in particular its anharmoni- 
city near the saddle point; however, it clearly is natural to 
suppose that T ( E )  grows monotonically as E decreases (see 
Fig. 3a). 

Returning to the usual time domain, we have for the 
action in one period, which according to (8 )  determines the 
lifetime of a particle in the well, the expression 

TV R 

where E( p )  is a root of the equation T ( E )  = f ip .  In addi- 
tion to the oscillatory path described above, the required 
condition of periodicity is also satisfied by the trivial solu- 
tion to the equation of motion q ( t )  = Q with action 

S(p) =iAPW. 

The characteristic dependence of the action on temperature 
for both paths is displayed in Fig. 3b. For high temperatures 
the trivial activation path is unique; as the temperature is 
reduced, there is a concurrent gain in the oscillatory path 
which describes activated tunneling. For a monotonic de- 
pendence of T ( E )  the transition occurs in a smooth fashion 
at a critical temperature0 , ' = fiS2/27r (see Ref. 19). In the 
non-monotonic case the dependence ( 5  1 ) of Im S on P has a 
characteristic "beak," and the transition occurs with a dis- 
continuity in slope at a temperature larger than the critical 
one. In  principle, more elaborate dependence for T ( E )  and 
S( 0) are possible; however, in practice the existence of such 
forms is doubtful. As the temperature goes to zero, S( 0) 
goes to a constant, corresponding to the case of pure tunnel- 
ing. 

With these methods we can study ionization of an auto- 
localized state, where the role of a potential well is played by 
the adiabatic potential energy as a function of the lattice 
 coordinate^.^' The character of the temperature dependence 
of the action described above, which determines the total 
ionization probability per unit time, and consequently the 
autolocalization rate for thermal carriers, is also entirely 
contained in this treatment. There is, to be sure, one subtlety 
connected with the fact that the adiabatic potential deter- 
mines only the bound motion of the lattice. The activation 
and oscillatory paths are confined (with rather small ampli- 
tudes) entirely within the bound motion region. However, as 
the amplitude of oscillatory motion increases, a configura- 
tion is reached where the autolocalized particle has zero 
binding energy, and for larger amplitudes of oscillation the 
path certainly includes a segment of the free motion (see Fig. 
lb) .  Because there is a specific time at which this free-mo- 
tion segment first appears, a weak singularity is present in 
T ( E )  and in the temperature dependence of the action ( 5  1 ) . 
In a calculation of the autolocalization rate for nonthermal 
carriers this singularity will be smoothed out due to the com- 
plex-valued path. 

According to the picture obtained here, as the tempera- 
ture decreases, the character of the transition undergone by 
the autolocalization rate (smooth or with a "kink") from 
activated to activated tunneling (see Fig. 3b) is in fact deter- 
mined by the anharmonicity of the adiabatic potential ener- 
gy U(q) near the saddle point. In the single-oscillator model 
investigated earlier there was no anharmonicity at all [see 
(43 ) 1 ; therefore, the dependence of T ( E )  has a horizontal 
segment (see Fig. 3a). The temperature dependence of the 
action is shown in Fig. 3b; the curve which corresponds to 
tunneling branches off from the activated curve at the point 
p = P C ,  as in the case of monotonic dependence of T ( E ) ,  
only with different slope. The slope discontinuity we obtain 
is related to the fact that for a transition across the critical 
temperature ( 5 )  ( p = O), the oscillation amplitude C in 
(44) grows discontinuously from zero to I x 0 I ~ ~ / x , R 2 ,  en- 
closing the free-motion region q( 1 x, l/x ,. 

Barrier autolocalization for various specific lattice in- 
teraction mechanisms was investigated for the case of cold 
particles at zero temperature in Refs. 1 1, 12, and for the case 
of thermal carriers at finite temperatures in the more recent 
works of Yoselevich and Rashba.13 The formulation given 
above, which provides a general prescription for calculating 
the exponents in expressions for the autolocalization rate 
r-' applicable to thermal particles, is equivalent to the one 
used in Ref. 13; however, the qualitative pictures of the ex- 
tremal action S( 8 )  are somewhat different. According to 
Ref. 13, both activated and tunneling paths are present; the 
latter disappear as the temperature increases, "annihilating" 
with extremals of a third kind-the "long instantons." In 
such a picture the curve S (  p) corresponding to a tunneling 
path intersects the linear activation dependence, so that the 
change in regimes of temperature dependence of 7- ' occurs 
with a discontinuity. According to the picture set forth in the 
present work, the tunneling path changes over, generally 
speaking, in a continuous way to activated at  a critical tem- 
perature p ; I ,  determined by the curvature of the saddle 
point. At this point the tunneling curve S( P) branches off 
from the activated dependence, in general without a slope 
discontinuity. The slope discontinuity in the temperature 
dependence of T-' due to the intersection at somep  <PC of 
the activation and tunneling dependence of S( 0 )  therefore 
does not always occur, but rather appears only in the case of 
a non-monotonic energy dependence of the oscillation peri- 
od of the inverted potential T (E) ,  leading to the "beak- 
shaped" bend in the tunneling curve S( 0) (see Fig. 3 ) .  A 
precise conclusion about the character of the transition 
between the activation and tunneling regimes in the tem- 
perature dependences of the autolocalization rate for specif- 
ic models can be obtained on the basis ofa rigorous investiga- 
tion of the anharmonic oscillations near the saddle point. 

A quantitative discussion of the true mechanisms of au- 
tolocalization falls outside of the framework of this paper, 
since it requires numerical calculations for all but a few spe- 
cial cases. One such case is the autolocalization of Wannier- 
Mott excitons in polar crystals when the difference between 
electron and hole masses is large; in this system (according 
to Ref. 12) the deformation potential acting on the exciton 
remains constant in form during the tunneling process, 
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changing only in strength. Describing the lattice deforma- 
tion in terms of this strength with a single coordinate, we 
obtain the single-oscillator model investigated above with 
parameters 

where mh is the hole mass, assumed to be large, a is the 
exciton Bohr radius determined by the small electron mass, 
wo is the optical phonon frequency, 2 is the inertial dielectric 
permittivity of the crystal, e is the electron charge, Wo=: 1.07 
and Eo=. 3.1 are constants calculated in Ref. 12. The autolo- 
calization rate for excitons with momentump (i.e., with en- 
ergy p2/2mh ) is given to exponential accuracy by expres- 
sions (48) and (49).  We must keep in mind that certain of 
the quantitative details predicted here may also appear with- 
in the accuracy implied by the approximations used in Ref. 
12. This problem is investigated in Ref. 13 for thermalized 
excitons. 

5. CONCLUDING REMARKS 

The quasiclassical method we have presented here for 
calculating the thermodynamic mean probabilities for var- 
ious processes (within the exponential approximation) re- 
duces to finding the correct method of determining the clas- 
sical paths. In this work, the coefficient of the exponential is 
obtained only for the one-dimensional case of a transition 
between terms [formula ( 16) ] ; in the multidimensional case 
it is necessary to calculate rigorously determinants of the 
type ( 5 ) .  For transitions involving a portion of the contin- 
uous spectrum even this is insufficient; the corresponding 
development of the method to include this case will be pre- 
sented in a future publication. 

Application of this approach is limited by the usual qua- 
siclassical requirement that large values of the exponential 
argument appear. As applied to the problems investigated in 
this paper, i.e., capture on a deep trap and autolocalization, 
this limitation will in turn give rise to the adiabatic condition 
I E ( q )  I )ti 10 / - ' for the characteristic binding energy on the 
bound segment of the path. Other criteria, which in one way 
or another reduce to limits on the nonadiabaticity of the 
system, are pointless even to enumerate in view of their de- 
pendence on specific properties of the system under study. 
An important requirement of a different sort, which essen- 
tially bounds from above the admissible values of momen- 
tum p for a captured or autolocalized particle, is that the 
localization of the lattice distortion at the instant of binding 
be on a scale smaller than W p .  In order to remove this re- 
striction, we must give up the use of the zero-radius potential 
method and attempt to understand in more detail the bound- 
ary conditions for integrating along the path of "rapid" mo- 
tion. We note that large particle energies require an acceler- 
ated relaxation rate into the final-state region. When this 
relaxation rate is too small, trapping or autolocalization 
states will "decay back" before they can thermalize. 

The author thanks E. I. Rashba and A. S. Ioselevich for 
allowing material from their work to be used before publica- 
tion. and for useful discussions. 

"It is necessary to emphasize that for such a circuit, the transition between 
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place continuously (adiabatically); therefore, it is not necessary to im- 
pose any supplementary principles (such as the Franck-Condon princi- 
ple). 

"The staircase spreads out as the energy goes down, so that at the end of 
the cascade, the transitions can be described as essentially multiphonon 
transitions. 

"The trivial solution S ( x ,  t; x', t ') = m ( x  - ~ ' ) ~ / 2 ( t  - t ' )  which corre- 
sponds to free particle motion without any interaction with the well, is of 
no interest to us. 

'"We point out that forp > 0 the connection time corresponds formally to a 
positive energy for the bound state. 

5'In this model, an energy minimum corresponding to an autolocalized 
state is absent (it goes to - co ); however, this is irrelevant to an investi- 
gation of the autolocalization rate. 

6'The lack of dependence of U(q) on an arbitrary spatial translation of the 
lattice configuration as a whole is important only in calculating the coef- 
ficient of the exponential. The possibility of secondary extrema of U(q) 
is likewise unimportant, since the action on trajectories associated with 
these extrema makes an exponentially small contribution to the whole. 
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