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A particle accelerated by stochastic resonant fields can either acquire energy from or transfer 
energy to nonresonant waves and fields. This effect underlies a nonlinear mechanism for wave 
amplification or absorption which may lead to an efficient transfer of electromagnetic energy 
upward in frequency. 

51. INTRODUCTION 

Nonlinear amplification (or an absorption) of waves 
with several unusual properties was studied in a nonlinear 
theory as early as 1970 (Refs. 1 and 2; see also Refs. 3 and 4) .  
In the simplest case, the occurrence of this effect requires 
( 1 )  an intense random resonant field (well above the ther- 
?a1 level), e.g., a radiation field satisfying the condition for a 
Cerenkov or cyclotron resonance, (2)  a steady-state distri- 
bution of particles, which may be resonant with the random 
field, and ( 3 )  a probing wave which does not satisfy the 
resonance conditions and which may be amplified or ab- 
sorbed in the system. The absorption (or amplification) 
which occurs makes possible a significant change in frequen- 
cy when no energy inversion of the particle populations is 
present but the resonant radiation is anisotropic. The damp- 
ing rate (or growth rate) decreases slowly with the frequen- 
cy, in proportion to l/w2; i.e., there is a possibility, for exam- 
ple, of exciting electromagnetic waves of extremely high 
frequency. This absorption (or growth) cannot be an in- 
duced process with respect to some spontaneous emission. 

In the motion of particles in a low-frequency resonant 
field there are no high-frequency harmonics, and such har- 
monics cannot be emitted spontaneously at high frequencies. 
It was shown in Ref. 4 that spontaneous emission does not 
occur in that order (q4) in the charge q or that order ( lEOl2) 
in the resonant field E, found from the relationship between 
absorption and spontaneous emission which is ordinarily 
used. 

It was shown in Ref. 4 that the result of Ref. 1 for the 
nonlinear absorption (damping) under the assumption of a 
steady-state distribution of resonant particles can be derived 
rigorously by the Landau method5 and therefore has the 
same theoretical foundation as the well-known linear Lan- 
dau 

The existence of absorption in a system which is far 
from equilibrium when spontaneous emission is absent does 
not rule out the possibility of a transition of the system to 
thermal equilibrium. 

It was shown in Ref. 4 that the nonlinear absorption 
coefficient is proportional to the square amplitude of the 
resonant field, (E,j2, only under conditions such that the 
energy of the resonant field is much higher than the energy of 
the thermal fluctuations of this field, 1 E,, 1 2. In general, on 
the other hand, the nonlinear absorption coefficient is pro- 
portional to IE,/' - IE,, 1 2 ,  and it vanishes as the energy of 

the resonant field approaches the thermal noise level. 
Many recent papers have developed certain aspects of 

Refs. 8 and 9, have extended the list of wave types for which 
this interaction has been and have taken into 
account the effects of an iteration of currents of second order 
in the field in the third-order nonlinear r e ~ ~ o n s e s ' ~ - ' ~  (an 
effect which vanishes for high-frequency waves1j4). The 
physical interpretation of the effect in many of these papers 
has been, in our opinion, inexact or, in several  case^,'^-'^ 
simply wrong. 

An error was made in Ref. 15 in connection with the 
symmetry properties of the real parts of the nonlinear re- 
sponses. The interpretation and the diagram technique used 
in Ref. 15 are also inexact (see also Refs. 16-1 8).  Our pur- 
pose in the present paper is to described the physical mecha- 
nism which is responsible for the exchange of energy 
between particles and a nonresonant high-frequency field 
when intense resonant fields are present. 

52. PHYSICAL MODEL FOR THE NONLINEAR WAVE 
ABSORPTION OR AMPLIFICATION 

It was pointed out back in Ref. 2 that this nonlinear 
mechanism is closely related to the processes by which parti- 
cles are accelerated by random fields or oscillations. The 
absorption coefficient in the isotropic case, for example, is 
proportional to the diffusion coefficient in momentum space 
describing the acceleration process. 

What distinguishes Fermi acceleration by waves and 
 oscillation^'^ is whether the particle passes through a 
"cloud" (this is the case of acceleration by "waves") or is 
reflected from it (Fermi acceleration). The cloud might be a 
wave packet or a soliton (for magnetic clouds, it would be a 
packet of MHD waves). The condition that the time re- 
quired for the particle to traverse the soliton (or cloud), 
t = I /v,, be smaller than the characteristic period 2 ~ / o  ( w  is 
the wave frequency, v, is the velocity of the partic15 and I is 
the size of the soliton or cloud) is the same as the Cerenkov 
condition v ,  > o l / 2 ~  = w/k. Under this condition, a particle 
in a soliton is acted upon by a static field E,, so that the 
simplest model for stochastic acceleration would be the fol- 
lowing. 

A system contains randomly distributed regions with a 
static electric field E, (capacitors) l' the size of a region is I, 
the average distance between regions is L,  and there are 
equal probabilities that a particle will encounter fields with 
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E, and - E,, i.e., with opposite signs, along its path. After it 
has encountered a field E, directed along its velocity, a parti- 
cle acquires an energy qEol, where q is the charge of the 
particle. When it encounters a field - E,, it loses an energy 
of the same magnitude (for simplicity we assume that the 
soliton capacitors are at rest), but when it acquires energy 
the particle spends less time in traversing the distance L to 
the next region with a field. Consequently, the particle on the 
average acquires an energy 

where (Eo2)  = Eo21 /L is the average square field. 
This result agrees (to within a coefficient of order uni- 

ty) with the result first derived in Ref. 19 (see Ref. 20) and 
also with a result derived from a quasilinear equation2' 
(more on this below). 

We now consider a nonresonant field E which causes 
particles to oscillate with a frequency fl  different from the 
field frequency w because of the Doppler effect, i.e., 
f l  = w - kv. This event occurs in the absence of a resonant 
field E,. It is customary to assume that the nonresonant field 
on the average performs no work; this assumption is of 
course correct if we are talking about the average work over 
the period. 

When there is a resonant field Eo, the average must be 
calculated slightly more accurately. Let us assume, for ex- 
ample, that the size I of a region with E, = 0 is equal to an 
integer number of oscillation periods of the particle in the 
field E, so that after traveling a distance 1 a particle has the 
same velocity it had initially. If, on the other hand, a reso- 
nant field Eo points in the same direction over a distance I, 
the average velocity of the particle (and its energy) will in- 
crease, so that the period 2a/fl increases, by virtue of the 
Doppler effect. The distance I is now not equal to an integer 
number of periods. Let us assume that E and E, are small, so 
that the deviations from a whole number of periods are 
small. At the exit from the slab the energy acquired is then 
slightly smaller than qE,I, by an amount which depends on 
E. We set 

Ae=qE,l ( I  -aE) ,  

where a is some coefficient. 
If a particle meets an oppositely directed field E,, its 

velocity will decrease, the period 2a/fl will also decrease, 
and the particle will lose slightly more energy, 

As a result, the average change in the energy of the particle is 

We actually find in the energy acquired by the particle an 
additional term which depends on the amplitude of the non- 

resonant field; i.e., the field E performs work on the particle. 
Obviously, this model is extremely crude. Among the 

many factors which it neglects are the change in the synchro- 
nization of the particles with the resonant fields due to the 
effect of the resonant fields and the result change in the rate 
of acceleration by the resonant fields. We thus turn to a rig- 
orous, quantitative analysis of the question. 

63. ENERGY TRANSFERRED TO PARTICLES 

For simplicity we consider the most elementary case, of 
nonrelativistic particles and longitudinal fields, both reso- 
nant and nonresonant. The resonant fields E, are described 
by the Fourier components E,, , 

E o ( r ,  f) = E,, e rp ( - iw , t+ ik . r )dk , ,  K O =  {k , ,  a , ) ;  

dk ,=dk ,do , ,  ( 3 )  
while the nonresonant fields E are described by the Fourier 
components E, , 

E ( r ,  t )  = j Ek e r p  ( - i o t + i k r )  d k ,  k= { k ,  a ) ;  dk=dk  d o .  

The field E, is random (4)  

(E, ,  ,Ek,f  ,>= (ko ,k 1 ,lko2) (EkOl28 (ko+kof) .  ( 5 )  

We consider two cases regarding the nonresonant field: 
( 1 ) a regular sinusoidal field 

E ~ = E ~ O ' G  ( k - k l n ~ )  +E(@) 'G  (k+k(O1) ,  (6)  

(2)  a random field 

(Ek,,Ekr,j>= (k ,k , l k2 )  (E,126 (k+  k )  . ( 7 )  

The results for the regular field, (6),  can be derived from the 
results for the random field, ( 7 ) ,  by making the replacement 

lEh/'-+ I E i@'I26 (k-12"'). (8  

This circumstance is understandable since the result de- 
pends on the square of the amplitude of the regular field, and 
for a random field the only important consideration is the 
random nature of the relative phases of the different har- 
monics. When a single harmonic is left [as in (8 )  1,  its phase 
does not appear. 

For a particle which is being accelerated, we can formu- 
late an initial-value problem; we assume that the velocity of 
the particle at t = 0 is v,. The energy acquired from the reso- 
nant field is determined by ( E  = 0) 

d 
- dt  ( & ) = q  J ( E b v ( t )  enp ( - i o o t + i k o r ( t )  ) )dKo, (9)  

rn-=4 d t  J E, e r y  ( - iw, t+ikor  ( I )  )dk.. (10) 

We write v = vo + vEo,  r = v,t + rEo, where vE0 and rEo are 
perturbations of the motion of the particles linear in the field 
E,. Retaining in (9)  the terms quadratic in E,, we find 

Ub 

q E , ( exp ( - iQo t )  - 1 )  (11) 
V f i = - J *  -Ino m 

dko, 

J b  

E,,(exp ( - iQo t )  - l+iQot) 
rro = - dko. (12) 

m - 5 2 0 1  
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Examining the asymptotic behavior at t+m, and using 

sin Qot/Qo-.n6 (Q , )  , Qo=oo-k0v,  (13) 

we find 

The subscript on the left side of ( 14) specifies the power of 
the resonant field which is being taken into consideration. 

Expression ( 14) describes the well-known resonant ac- 
celeration,19 which can also be found from the quasilinear 
equation2' (a, is the average distribution function) 

We wish to stress that since we are dealing with the initial 
rate at which a particle acquires energy in ( 14), it is suffi- 
cient to substitute the initial particle distribution function 
af" into the right side of ( 15). We find 

(16) 
The increase in the average energy of the particles is there- 
fore determined by the rate at which an individual particle 
acquires energy, averaged over the initial distribution. 

We now consider an additional effect in the transfer of 
energy to particles; this effect stems from the presence of a 
nonresonant field. The term linear in E (for a regular field) 
oscillates markedly, and in the limit t+w it vanishes. For a 
random nonresonant field its average value is zero. The term 
quadratic in E is determined by the expansion 

v ( t )  = v ~ + v ~ , + v ~ + v E , ~ + v ~ ~ + v E ~ ,  E + v E ~ ~ ,  E + v E ~ ,  El+ . . . ( 17) 

and by an analogous expansion for r ( t ) ,  where the subscript 
specifies the power of the field which is being taken into 
account. The quantities v,  and r, are determined by ( 12) 
with Eko+Ek and k,+k; the other quantities are deter- 
mined from the equations 

= ~j E,dko exp (- iQot)  [ i(k.rEo) i(korE) + i  (korE.,E) 1 
m 

with analogous equations for vE0,E2 and v E 2 ,  found by mak- 
ing the substitutions E,+E and k,+k. 

The energy change which is quadratic in E and E,, i.e., a 
term which arises in addition to the quasilinear acceleration 
in ( 15), is determined by 

After some lengthy but straightforward calculations in- 
volving the solution of ( 16), finding the corresponding 
r,, ..., taking an average with the help of (5)  and (7),  and 
calculating the asymptotic behavior in the limit t+ w (mak- 
ing use of the fact that only the resonance no = 0 is possible; 
both the direct resonance of the fields E, i.e., a =  0, and the 
resonance - no = 0 are impossible), we find the final re- 
sults: 

d d 9' a ( Q E ~ S ,  E: + ;ir ( Q E ~ ,  EOS = - $ I Eda I Eke l a  dk dko ma 

The primes on the 8-functions indicate derivatives with 
respect to their arguments. The result in (19) contains no 
secular terms of any sort, proving that the expansion is legiti- 
mate and also showing that a particle undergoes a change in 
energy under the influence of the nonresonant field. It is also 
obvious that this change is due not only to the absorption (or 
amplification) by the nonresonant fields but also to a change 
which they bring about in the resonant acceleration (14). 
The most convenient way to separate the effects is to turn to 
a kinetic description of the process. 

g4. KINETIC DESCRIPTION 

We now consider the problem from the standpoint of a 
kinetic description. Introducing the average part 0, and the 
fluctuational part Sfp of the particle distribution, 
f, = 0, + Sf,, we find it convenient to consider the initial- 
value problem in which the fields E and E, are turned on at 
t = 0. We can then write 

x exp ( - io f t+ i  (k+kr )  r )  dk dk' 

The second term in ( 19) can be found from the first term in 
( 19) by making the interchanges E,-E and k,-k: 
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a 
- 6fk (t) + i  (kv) 6fk (t) =- ( ~ k  (t) A) ' ~ ( ~ 1  a t m 

d 
- 1 jdk. {(Ek.(f)  -) Sfk-k.(t) 

m dv 

' - ((El.  (t) ;) 6h-k (t) ) } 

Here we have used only a spatial Fourier expansion for Sf,. 
Actually, the quasilinear equation ( 15) can be derived in the 
case in which there is only a resonant field (E,+O, E = 0 )  
by taking into account only the first term on the right side of 
(23), replacing E by E,, solving (23) with the initial condi- 
tion Sfp = 0 at t = 0, substituting the solution into the sec- 
ond term in (22), and taking the asymptotic limit t + ~  with 
the help of ( 13 ) . In the ordinary derivation of ( 15) we find, 
instead of a 6-function, 

The pole A+ + 0 is traversed by Landau's rule. All that we 
achieve through this derivation of the quasilinear equation is 
to prove Landau's rule. The same method will be used in 
calculating the additional terms which arise from the nonre- 
sonant fields, in which there are singularities of higher order 
( 1/fli and l/flA ) , so we need to rigorously prove our meth- 
od for treating them. 

The method is the same as was used above for a test 
particle: an expansion in the fields E and E,, with terms up to 
order I E I and 1 Eel being retained. This calculation makes it 
possible to identify those effects which describe the changes 
in the absorption of the resonant fields and which do not 
result from the absorption (or amplification) of nonreson- 
ant fields. 

Omitting the lengthy calculations, which are carried 
out by the method described above, which involve an expan- 
sion in the fields E and E,, and which are the assumption 
that only the resonance fl, = 0 occurs (the resonances 
f l  = 0 and f l  = no do not occur), we write the final result: 

dm, dm d o  dQ a@ -=(*IEo> dt + (AE> +($IE 02,E2 + (AE # ,Eo% 

(24) 
where (d@p/dt)Eo2 is a quasilinear collision integral de- 
scribes by ( 15 ) , (d@, /dt) E 2  is a collision integral of nonre- 
sonant fields which is linear in IE 1 2 ,  (d@, /dt) Eo2, ,> is a col- 
lision integral describing the change in the absorption of the 
resonant fields due to the effect of the nonresonant fields, 
and (d@, /dt) E2, E02 is a collision integral describing the ab- 
sorption (or amplification) of nonresonant fields due to the 
presence of the resonance fields (this is the effect which we 
wish to examine). Since the fields E are nonresonant, the 
quantity (d@,/dt).? is determined exclusively by the time 
variation of the particle distribution: 

dm I E I  I a am, (;i;l),=f s-$(kv)n.(kdv)tdk (25) 

(for simplicity here we are considering a spatially homogen- 

eous particle distribution). A corresponding term with 
d@, /dt is also present in (dQp /dt) E02, but it can give rise 
only to effects of order E:, in which we are not interested 
here. For the resonant field we thus restrict the discussion to 
the quasilinear expression ( 15 ) . Further calculations lead to 

We stress that both terms in (26) are the same as those 
found in Ref. 4 [Eqs. (23b) and (23c) of Ref. 4; there is a 
misprinted sign in (23c); in (23a), 1/(R - a,) can be re- 
placed by l/fl  to the accuracy of this treatment] if we as- 
sume 

1 1 
Im- =-n6 (Q,), Im -2= n6' (9,) , 

Q O  Qo 

This result corresponds to a generalized Landau rule for in- 
tegrating around a pole in all the last relations: l/R,+l/ 
(fl ,+iA), A++O. 

Proof that it is in fact (26) which describes the change 
in the absorption of the resonant field can be found by com- 
paring the rate of energy absorption found from (26) with 
that found from the relation 

where ~k is the linear dielectric constant, and ~t is the non- 
linear dielectric constant (proportional to lE 12). The first 
term in (27) gives the quasilinear absorption found from 
( 15), while the second term gives the absorption found from 
(26). 

The corrections to the acceleration by the resonant 
fields found from (25) deserve a more detailed study. These 
corrections are important when @, must be expressed in 
terms of the initial distribution @:', as is necessary for a 
comparison with the results of the preceding section. The 
accuracy of this treatment, we can find d@,/dt from the 
quasilinear term in this term. We then find an additional 
effect proportional to 1 E, / and IEko ': 

Finally, if there were no resonant field, (25) would reduce to 
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or, with an accuracy sufficient for our purposes, 

Substituting (3 1 ) into quasilinear term ( 15 ), we find an ad- 
ditional term proportional to IEko l 2  and lE, 1 2 :  

In the two terms in (26) we can replace @, by @?'. 
The change in the particle distribution can thus be ex- 

pressed in terms of the initial distribution as follows: 

K - k , -  - (kko d ( ( ",,)[ ' ~ ~ ' ~ ( ~ o ) + ~ ~ ~ ~ ( Q o ) ] ( ~ o ~ )  2 8  

1 1  a + ( k ,  d) d v 6 ( Q o )  ( k $ )  v (k") z ( k z ) }  0;) dko dk. 

(33) 
This relation can be used to find the average change in the 
energy of the particles which results from the change in the 
rate of resonant acceleration [we are considering all the 
terms in (33) except the first]: 

( r )  

As we mentioned earlier, this expression does not include the 
work associated with the absorption of the nonresonant 
field. These effects are described by the last term in (24). A 
calculation yields 

which is essentially the same as the result of Ref. 4. That it is 
this term which is associated with the absorption of the non- 
resonant field can be seen from the expression for the imagi- 
nary part of the nonlinear dielectric constant found in Ref. 4: 

The rate of energy dissipation is determined by 
1 - - J im ekNw 1 E, 1 ' d k ,  (37) 

4n 

where the nonlinear dielectric constant &?is proportional to 
1 E,I '. From (36) we find the dissipation rate corresponding 
to (35). The change in the energy of the particles associated 
with the absorption of the nonresonant field, (35), is 

x I ~ , 1 2 d k d k o { -  [ 1 2 ( k k o ) '  ko2Q" + 12 ( k k , )  kO2Q5 ( k v )  1 

Adding (38) to (34), we find a result which agrees exactly 
with (2 1 ) . This completes the proof of the assertions above. 

These calculations provide a physical interpretation of 
the nonlinear absorption of nonresonant fields. In our case, 
it is sufficient to use equations in which all the terms in (24) 
are taken into account. However, the nonlinear absorption 
of nonresonant waves will be most obvious in the case in 
which the particle distribution is (at least in a first approxi- 
mation) in a steady state for some reason or other. 

I wish to thank V. L. Ginzburg and A. A. Rukhadze for 
several useful comments. 
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