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A study is made of the production of electron-positron plasma in the vacuum state ("breakdown" 
of the vacuum) in the presence of an inhomogeneous electric field and a strong curvilinear 
magnetic field. Such conditions are encountered in the magnetosphere of a rotating neutron star. 
A general system of kinetic equations is derived for the electrons, positrons, and y photons in the 
curvilinear magnetic field with allowance for the production of electron-positron pairs and the 
emission of curvature and synchrotron photons. The conditions of occurrence of "breakdown" 
are determined, and the threshold value of the jump in the value of the electric field at the surface 
of the star is found. The process of multiplication of particles in the magnetosphere is investigat- 
ed, and the distribution functions of the electrons, positrons, and photons are found. The extinc- 
tion limit of pulsars is determined. It is shown that the theory is in agreement with observational 
data. 

In Ref. 1, Beskin and the present authors investigated 
the electrodynamics of a pulsar magnetosphere filled with an 
electron-positron plasma of fairly high density. It was shown 
that a region is formed in the magnetosphere in which the 
magnetic field lines do not close. Along them flow electric 
currents jll that have a major influence on the processes in 
the magnetosphere, determining the spindown of the neu- 
tron star and the pulsar activity. The longitudinal currents 
jIl arise only if near the surface of the star there is a strong 
longitudinal electric field producing a potential difference 

rp=cp,[ 1- (~-il12/i,2)1'2], jc=S2B cos ~ / 2 n ,  

C ~ , = B S ~ ~ R ~  cos x/2c2 

between the surface of the star and the magnetosphere. Here, 
R is the radius of the neutron star, B  is the magnetic field at 
its surface, R is the star's rotational angular frequency, andx 
is the angle between the magnetic axis of the star and R. 
Under conditions typical of pulsars, R - lo6 cm, B -  10'' G, 
R- 10 sec-', and jll - 10' A/cm2, the jump in the potential 
is very large, p- 1013 V, and the electric field, which has a 
component along the magnetic field, reaches E- lo9 V/cm. 

The plasma is carried outside the magnetosphere along 
the open field lines. It must therefore be continuously pro- 
duced near the surface of the star. Production of electron- 
positron plasma through direct "breakdown" of the vacuum 
by the existing electric field is impossible-it would require 
too strong fields, E Z 1016 V/cm. However, if in the vacuum 
there is also a sufficiently strong curvilinear magnetic field 
the situation is radically altered and "breakdown" can occur 
in a much weaker electric field. Such a mechanism of elec- 
tron-positron plasma generation was suggested by Sturrock2 
and developed by Ruderman and S~ther land .~  Further de- 
tails were elaborated by Tademaru4 and  other^.^ The essence 
of the mechanism is the acquisition by the electrons and po- 
sitrons of a high energy in the electric field ( l ) at the surface 
of the star. Moving along the field lines of the curvilinear 
magnetic field, they radiate so-called curvature photons, 

whose energy is sufficient to create electron-positron pairs in 
the magnetic field. Newly created particles of opposite sign, 
trapped in the electric field ( 1 ) and moving in the opposite 
direction to the radiating particles, also acquire a high ener- 
gy and can themselves, radiating curvature photons, pro- 
duce pairs. There is a chain reaction which multiplies the 
electrons, positrons, and y photons. The multiplication coef- 
ficient is increased by the fact that particles produced in a 
high Landau level in the magnetic field radiate synchrotron 
radiation-"synchrophotons," which can also produce 
pairs. 

The main features of the kinetics of this vacuum "break- 
down" mechanism are determined by the fact that it takes 
place in the curvilinear magnetic field. It is essential to note 
that only in such a field are curvature photons emitted. The 
curvilinearity of the field is no less important for the genera- 
tion of the electron-positron pairs; for pair production is pos- 
sible only if a photon intersects the magnetic field lines. But a 
curvature photon is emitted along the motion of the particle, 
i.e., along the magnetic field line, and it is only the curving of 
the magnetic field which makes it begin to intersect the field 
and gradually reach the critical angle for production, which 
depends on the photon energy and the strength of the mag- 
netic field." 

The aim of this paper is to construct a consistent kinetic 
theory of the generation of electron-positron plasma in a 
pulsar magnetosphere. In Sec. 1, we derive a general system 
of kinetic equations for the electrons, positrons, and photons 
in the curvilinear magnetic field and the inhomogeneous 
electric field. Allowance is made for production of electron- 
positron pairs, emission of curvature photons, and emission 
of synchrophotons by the produced particles. In Sec. 2, we 
determine the conditions of breakdown and find the thresh- 
old value of the jump p, in the electric field at the surface of 
the star. In Sec. 3, we investigate particle multiplication in 
the magnetosphere, and we determine the electron and posi- 
tron distribution functions and also the spectrum, direction- 
ality, and intensity of the y radiation that is produced. 
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51. BASIC EQUATIONS 

We shall describe the generation and motion of elec- 
tron-positron plasma and high-energy photons in the pulsar 
magnetosphere by the kinetic equations 

Here, F,i (y, r, t )  is the distribution function of the elec- 
trons and positrons with respect to the longitudinal energy 
y = [ l  + ( p , , / m ~ ) ~ ] " ~ .  We have taken into account the 
fact that the spread with respect to the transverse momenta 
p, is unimportant, since in the strong magnetic field of the 
pulsar all particles are effectively in the zeroth Landau level. 
The factor and index (T = sign (pl, .B) = + 1 characterizes 
the direction of the longitudinal momentum relative to the 
magnetic field. Further, $ = eq, /mc2 is the dimensionless 
potential of the electric field. The operator S (F $ ) describes 
the scattering of the electrons and positrons when they emit 
photons, and QN the production of electron-positron pairs 
by high-energy photons. Finally, N(k, r, t)  is the distribu- 
tion function of the photons with respect to the momenta k, 
the operator QF describes the production of photons by fast 
electrons and positrons, Qs the generation of synchropho- 
tons, and D the annihilation of photons as a result of pair 
production. 

We now obtain explicit expressions for the operators S, 
QN, QF, Qs, D just defined in Eqs. (2 )  and (3).  The emis- 
sion of curvature photons by the electrons and positrons is 
due to their motion along the curvilinear magnetic field. In 
this case, the probability of emission of a photon with mo- 
mentum k (by k it is convenient to understand the wave 
number nondimensionalized by division by the Compton 
wavelength a = Wmc) from a charged particle with energy 
y depends on the radius of curvaturep of the magnetic field 
line and is determined by the expression7 

Here, a = 1/137 is the fine structure constant, and 
rn 

where K, ( x )  is a modified Bessel function of the second 
kind. We give expressions which will be helpful in what fol- 
lows: 

The complete form of this function is given in Ref. 8. Using 

the probability density P(k, y)  (4),  we can easily obtain an 
expression for the total number of photons produced per 
unit time by the fast electrons and positrons: 

m m 

B 
q , = ~ d y [ ~ . + ( y ) + ~ . - ( y ) ] ~ ~ ( k , y ) 6 ( k - B o l ~ ) d ~ .  I J (7)  

We have here used the fact that the curvature photon moves 
in the same direction as the particle which produces it. 

The emission of the curvature photons leads to scatter- 
ing of the particles. The motion being one-dimensional, the 
scattering operator has the general form 

m 

S= 3 { F ( y ) P ( y ,  k ) - F ( y + k ) P ( y + k , k ) ) d k .  (8 
0 

Assuming that the energy of the radiated photons is small 
compared with the energy of the particles, kgy, we can ex- 
pand (8)  in powers of k. Restricting ourselves, as usual, to 
the leading terms of the expansion, we obtain 

It can be seen that the expansion (9)  is actually in powers of 
i y 2 /  P. In a pulsar magnetosphere, the condition a y2/ p g  1 
is always well satisfied. 

The probability of production of an electron-positron 
pair in unit time by a photon with momentum k moving in 
the magnetic field B is given by9 

) ~ [ / c / s i n ~ ~ - ~ o ] .  x 
3kB. I sin 8 1 (10) 

Here, 0 is the angle between k and B, and O ( x )  is the Heavi- 
side step function, 

The expression ( 10) is valid when 

k B ~ l s i n  P1<1, i.e., k K  ( a p l ~ B , ) ' " ,  [see (35) 1, (1  1) 

when the probability of production is exponentially small. 
Further, k,, in ( 10) is the minimum value of the component 
of the photon momentum orthogonal to B at which pair pro- 
duction is still possible. It can be readily determined from 
the laws of conservation of energy and of the longitudinal 
component of the momentum in production in not too 
strong magnetic fields (B ,  5 0.1 ), when the electron and 
positron are produced with almost equal transverse mo- 
menta.'' Then the energy yo of the particles produced and 
the angle Obetween the direction of their momentum and the 
direction of the magnetic field are 

It can be seen that production is possible only if k sin2 0>4, 
and this determines k,, in ( 10) : 

When k, - 2)B0, the electron and positron produced are in 
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high Landau levels. Emitting synchrotron radiation, they 
undergo a transition to a lower level. Under pulsar magneto- 
sphere conditions, the de-excitation time T is very short, 

so that the synchrophoton production process takes place 
almost simultaneously with the production of the pair and at 
the same point of space. Moreover, in the process of emitting 
synchrophotons the particle does not change its longitudinal 
velocity, i.e., 

where y is the longitudinal energy of the particle after de- 
excitation. It follows from ( 14) and ( 12) that 

Thus, the number of electron-positron pairs produced per 
unit time by the photons is given by 

1 
I sin p 1 

where the production probability W(k) is determined in ac- 
cordance with ( 10) and ( 13). 

We now determine the number of synchrophotons gen- 
erated. We use the fact that under the conditions Bo 5 0.1 the 
radiation process can be treated ~lassically.'~ Therefore, the 
power radiated in the interval of wavelengths dk is (see Ref. 
8, $74) 

where the function @ ( z )  is determined in accordance with 
( 5 ) and ( 6 ) .  The distribution with respect to k of the emitted 
synchrophotons is therefore determined by 

1 dZ d t  aI'3 cB0 k d t  
G ( k )  =- cft - -. 

2nIsin p ]  ksmc' dkdp  (2n)' Lk3 (kB )dB 

(18) 

The derivative dt /dD can be found from the dynamics of the 
change in the energy yo and the angle 8 of the particle in the 
radiation process; for it follows from (17) and (14) that 

d0 -- -cot 0 1 dyo - 
dt yo(yo2-1) dt ' 

Since the radiation is concentrated near the generators of the 
"velocity cone" of the relativistic particle, = 8. 

Substituting in ( 18) (dB /dt) -' from ( 19), we obtain 

3 1 
k ,  = - Bo / sin P I cosz ( - - sin2 p)  

2 Y" 

We have here used the fact that the distribution of the emit- 
ted synchrophotons depends, by virtue of Eqs. (12) and 
( 15), on the wave vector k' of the photon that produced the 

pair: 

Finally, the number of synchrophotons produced per unit 
time is determined by 

3" 
=- 1 J W ( k ' ) N ( k J )  @ (klk ,)  

(23~)' k3Bo I sin p ( (sin"'-sin2 p) " 

The quantity D, which describes the annihilation of the pho- 
tons when they produce electron-positron pairs, is evidently 
equal to 

D= W (k)  N ( k )  . (21) 

Thus, the system of kinetic equations (2)  and ( 3 )  is 
closed by the expressions (7),  (9),  ( 16), (20), and (21), 
which describe the scattering and production of the elec- 
trons, positrons, and photons. The equations are valid under 
the conditions 

which in a pulsar magnetosphere, where 

p=7.107P'" cm, P G l  sec, y - l o 7 ,  k-10" (23) 

are always well satisfied. 
The (hydrodynamic) motion of the electrons and posi- 

trons across the magnetic field lines can be taken into ac- 
count in the same way as in Ref. 1. However, for our problem 
it is only distances r - R not too far from the pulsar surface, 

for which the transverse drift of the particles is   light,^' that 
are important. 

The change in the magnetic field due to the currents 
flowing in the pulsar magnetosphere can be ignored' under 
the conditions (24). Therefore only the Poisson equation for 
the longitudinal electric field in the rotating plasma is im- 
portant; it has the form 

$=eqlmc2, n,=BQ cos ~/2nec=B,Q cos x/2nacXz. (25) 

Here n, is the corotation charge den~ity,~. '  andx  is the angle 
between the rotation axis and the axis of the star's magnetic 
field, which is all that follows will be assumed to be a dipole 
field. 

This process of plasma production takes place in a re- 
gion that begins at the surface of the star and ends at compar- 
atively large heights z 5 R. Accordingly, the boundary con- 
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ditions for the kinetic equations (2) and (3)  and the Poisson 
equation (25) must be specified on the surface z = 0 and at 
zSR .  Atz=O, 

F1* (1, t ,  rl ,  z=0) =K* (F-,+, F-,-, N(- ' )  I,=o; 
(26) 

N ( + ) ( k ,  t, rl, ~ = 0 )  =KN(FI1+, F-l-, N ( - ) )  i r e o .  
To be specific, we have here assumed that the vector B is 
directed from the surface of the star. Accordingly, the func- 
tions F ,+ and N'+'  describe the particles and photons mov- 
ing away from the surface, and F 2 ,  and N'-' those moving 
toward it. The coefficients of multiplication of the particles, 
K* , and of the photons, KN, on the surface of the star are in 
the general case linear operators. 

At large distances z 2 R the plasma escapes from the 
star, i.e., 

tions in p are appreciable: p = ( 16Rc/9fh f ) ' I 2  (f  is a di- 
mensionless coordinate in the magnetic plane measured 
from the axis of the magnetic dipole). Introducing also the 
vertical coordinatez, we represent the magnetic field B in the 
double layer in the form 

B,=B,=const, B,=B,z/p, B,=O, p=p (f). 

Such a representation is valid when 

Under the conditions of the double layer, the photon 
distribution function N(k, r, t )  takes the form N(k, k f, z,ft 
sin k, , t ) .  We have here separated the magnitude of the wave 
vector, k -- 1 k, I, and the transverse component, k -B, 
since under the conditions (12) in which we are interested 
sin 04 1 always. It is convenient to introduce the component 
of the wave vector transverse with respect to the magnetic 
field B: At the same time, the potential of the electric field tends to a 

constant value $, determined by the condition of quasineu- 
trality: 

m Equation (3) for the photon distribution function then takes 
the form (in passing to the new variables, we have also nor- 
malized the function N in such a way that the product Nd k 
remains invariant) 

(PI+-Fl-) d ~ = n . ( l - P ) ' ~ ,  i=jll/jc. (28) 
1 

The existence of the appreciable potential difference 
( 1 ) between the surface of the star and the magnetosphere 
leads to the natural formation of a layer near the surface in 
which there is a strong electric field. This layer is analogous 
to the ordinary Langmuir double layer at the surface of bo- 
dies in a plasma. We shall therefore call it the double layer 
(in pulsar literature, it is frequently called the "vacuum 
gapw3). It is in the double layer that the particles acquire the 
high energy needed for the emission of curvature photons 
capable of generating electron-positron pairs. It is therefore 
natural to consider separately the double layer region, which 
determines the conditions of occurrence of the "break- 
down," and the quasineutral plasma region, where the effec- 
tive particle multiplication occurs. 

* 1 

We have here used the fact that under the conditions (30) 
displacement with respect to f is unimportant, so that f 
occurs in Eq. (33 ) only as a parameter through p = p ( f ) . 
We have also noted that the mean free path for pair produc- 
tion by the synchrophotons is appreciably greater than for 
the bulk photons; therefore, the part played by the synchro- 
photons in the double layer is unimportant, and they can be 
ignored. Initially, we also ignore the flux of y photons 
knocked out from the surface of the star, i.e., we assume that 
KN = 0 in the boundary conditions (26). Then the steady 
solution of Eq. (33) can be written in the form 

02. THE DOUBLE LAYER 

The double layer is a region near the surface of the star 
in which there is a strong electric field. The characteristic 
length-the thickness L of the double layer--can be readily 
estimated on the basis of the Poisson equation (25). Consid- 
ering the direction z along the normal to the layer and bear- 
ing in mind that the plasma density in the layer is low, we 
find from (25) that 

4 PY ) ~ ( k ,  y, z, sign k,) = P z  j c i y ~ *  ( y ,  o, z - --- o 
3cBok + 3 IiB, 

where 
I u 

Here, $ = ep /mc2 is the dimensionless potential difference 
( 1 ) between the star and the magnetosphere. 

The radius of curvature p (22) of the magnetic field 
lines is always much greater than the characteristic length L: 

Over a distance of order L along a field line the radius of 
curvature hardly changes, i.e., for each field line in the dou- 
ble layer it can be regarded as constant. But in the direction 
orthogonal to the field lines, in the magnetic plane, the varia- Here, z, > L is the value of the coordinate z at which the 
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boundary condition (27) is satisfied. Thus, we see that the 
photon distribution function at the point z is determined by 
the distribution of the positrons and electrons at the point 
z' = z - (4py/3kBo)u, where the photons were emitted. In 
addition, from the point of emission z' to z the photon distri- 
bution function is broadened monotonically with respect to 
the transverse momenta y, this being described by the factor 
C(Z)  defined in (36). 

Substituting the function N (34) in Eq. (2),  we obtain 
closed equations for the particle distribution functions, 
which under steady conditions take the form 

These equations can be greatly simplified. First, the diffu- 
sion spreading Ay of the energy distribution function, de- 
scribed by the second term in the expression (9) for S, de- 
pends on the distance z from the surface, 

and at scales of the order of the thickness L (29) of the 
double layer it is negligible under the ordinary pulsar condi- 
tions (23). Equally unimportant is the energy spread due to 
the particle production QN : 

3 X 
A y p ,  e,=---y2, &,<<I. 

4 P 
Thus, in the zeroth approximation in the small parameters&, 
and E,  the energy of the particles in the double layer is com- 
pletely determined by the action of the electric field and the 
deceleration (first term in S ) .  This means that the energy 
distribution functions of the particles have the form 

F*=n+ ( z )  6 (y-yi' ( z )  ) . (38) 

Then, from the kinetic equation (37), taking into account 
(38) and (9),  we find 

n- ( z )  =n- (z,) yi- ( ( y , - ) ' - I )  -'", 

Note that, as will be shown below, the second term in (40) is 
not important under the conditions actually found in pul- 
sars. 

In (40), to be specific, we have assumed that the poten- 
tial of the surface of the star with respect to the plasma is 
positive: $o > 0; this corresponds to n, > 0, i.e., Baa< 0. In 
this case, the positrons are accelerated by the field in the 
direction of the magnetosphere, and the electrons toward the 
star, and this is taken into account in Eqs. (39). In the oppo- 
site case, B*fl> 0, we have 

n- (z) =n- (0) 7,-( (7'-) '-1) -*, 
n + ( ~ )  =n+(z,) yi+ ((y,+)'-1) -%. (41 

It is important to emphasize that the particle density 
n-(z, in Eq. (39) [and accordingly n+(z, ) in (41)] is 
the density of the particles that are produced near the point 
z, and, under the influence of the electric field, change the 
direction of their velocity (for these a <  0). To determine 
this quantity, it is necessary to know the distribution func- 
tion ofthese particles to an accuracy by/$,=:&,. In addition, 
the function I(y, k = 4yy/3Bo) ( 35), which describes the 
distribution of the curvature photons with respect to the an- 
gles y, can be conveniently approximated with good accura- 
cy by a step function: 

Z(y, k=4yy/3Bo) =O (A-'-y), A='/, In(3%apBo/21'J2~y2). 

Substituting in the expression (37) for QN the distributions 
of the fast particles in the form (38) and (39), we obtain for 
the distribution functions of the produced particles at z -z, 

yl=y+yl' ( z ' )  -yl* ( z ) ,  x = ' / ~  (BOA)-'. (42) 

For particles produced at 2-0 we will accordingly have 

It can be seen from expressions (42) and (43) that ef- 
fective production of electron-positron pairs occurs over a 
scale hz small compared with the complete thickness L of 
the double layer: 

This means that the process of plasma multiplication in the 
layer is linear in nature. For each accelerated positron K, 
electrons are created and reflected backward by the electric 
field near the point z = z, : 

n- (z,) =K,n+ (0). (45 

Similarly, near the boundary of the star an electron acceler- 
ated by the field generates K, positrons. Then, using the 
boundary condition (26), we obtain 

where K + are the multiplication coefficients of particles due 
to knocking out of particles of the opposite sign from the 
surface of the star [see (26) 1. In (46), it is assumed that the 
energy of the particles that are knocked out is small com- 
pared with the energy of the particles incident on the surface. 
From (45) and (46), we obtain the following condition for 
the existence of a steady process of plasma generation: 
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KoK,=l, Km=l/Ko. (47) where z,,, (z, t) are the roots of the equation 
Expressions for the coefficients K,,, and K, can be ob- 

tained by integrating the distribution functions (42) and 
(43) of the secondary particles over the energy. The result is 

and t ,  is the value o f t  at which z, = z,. In (48) and (49), 
m 

4 p 2 ( y t C  ( t )  )k3x I}, (49) The values of this function are as follows: 
3i. (21 (z,, t )  - t )  I 

Equations (40) must be solved simultaneously with the 
Poisson equation (25), which, the double layer being as- 
sumed thin, takes the form 

The densities n+ and n- are expressed here in units of nc 
(25).  In accordance with (26) and (28), the boundary con- 
ditions for Eq. (5 1 ) are 

The last condition follows from the necessity of smooth 
matching of the potential in the double layer, { <{,, and in 
the quasineutral region { > {, (28 ) . Bearing in mind that by 
virtue of (44) the densities n+ and n- in the layer are con- 
stant, we can readily find the solution of Eq. (5 1 ) with the 
boundary conditions (52) : 

Here 

and $, is the potential difference between the star and the 
magnetosphere. The electron, n-,  and positron, n + ,  concen- 
trations can be conveniently expressed in terms of the cur- 
rent density i = j l l  / jc : 

For the thickness of the double layer, we then obtain 

Substituting this expression in (48) and (49),  we obtain 
from (47) with allowance for (46) an equation that deter- 
mines the threshold value $, of the field potential. 

The results of its solution are conveniently represented 
in the form 

&here b is a function of the dimensionless parameter d:  

The dependence of b on d for different values ofK * is shown 
in Fig. 1. It can be seen that in the range 10 5 d 5 30 of actual 
interest for pulsars b(d, K * ) varies little and does not differ 
strongly from its value when d> 1. The dependence of b on 
K *  for d>l is shown in the same figure. The numerical 
expressions for $, and z, have the form 

+o=l.llO'p:" (PB,, cos ~ ) - " ~ ( l - p i ) ' / ~ ( . A / 8 )  -'?b-"l; (55) 

Here $, = ep,,/mc2 is expressed in dimensional units, z, in 
cm, p, in lo7 cm, B,, in 1012 G, and 

2'17 p'li (BOA) -'IT 

$0 =F ( I - P ~ )  '/7b-'17, (53) FIG. 1. Graphofb (53) asafunctionoftheparameterd (54): 1) K* = 0, 1,117DL7 2 )  K* = 5,3) K* = 50. The insert shows b as a function o fK*  ford)  1. 
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It can be seen from (55) that for pulsars the characteristic 
"breakdown" potential, i.e., the potential needed for steady 
plasma generation, is p- lOI3 V, and the thickness of the 
double layer is L - lo2 m. Comparing the result (55) of the 
exact theory with the approximate estimate of $, obtained 
by Ruderman and Sutherland3 from the condition of pair 
generation, we see that the numerical coefficient has been 
~hanged .~ '  In addition, the expression (55) describes the in- 
fluence on the breakdown conditions of the interaction of the 
electrons and positrons with the pulsar surface: 
b = b(K * ). Note also that the influence of the y  photons 
knocked out of the surface [ K N  #O in (26) ] is in fact taken 
into account by the same dependence of b on K* ; for it is 
readily seen from (35) that when the photons are emitted 
from the surface at an arbitrary angle to the magnetic field 
they generate pairs near the surface (z 5 lo2-lo3 cm), and 
this leads merely to a change in the effective coefficient K * 
( K  = K  * + KN ) . The only exception is in the case of 
photons that are emitted exactly along the magnetic field, an 
improbable event. 

It is also very important that the potential $, depends in 
accordance with (55) on the longitudinal current i. This 
means that, strictly speaking, (55) does not establish the 
value of the potential $,but the connection between $,and i. 
Another relationship between $, and i can be found from the 
dynamics of the current in the magnetosphere1 and has the 
form ( 1 ) . Thus, the exact values of the breakdown potential 
$, and the current i are found by simultaneous solution of 
Eqs. (1) and (55). The current i (  f )  is determined from 

1- (1-iZ)"* 
. = (~,85~:/' (f) P'v~B, ,~ '~  

( 4 - p i )  ''7 

and from this value of the current the potential $,( f )  is 
then determined. 

We emphasize that the potential $, found in this man- 
ner may not be achieved at all parameters of the pulsar. A 
restriction is associated with violation of the assumption 
that the double layer is thin, since the open field line region, 
which is where the double layer exists, covers only a polar 
cap of the pulsar4' measuring 

The solution obtained above is valid only if z, <Ro 
[here, f * ( x )  is a numerical parameter characterizing the 
polar cap1]. But ifz, approaches R, in magnitude, it is nec- 
essary to solve not Eq. (5 1 ) but the complete Poisson equa- 
tion (25). The corresponding solution shows that growth of 
the potential $, ceases when z, reaches the value R d p , ,  
wherep, ~ 2 . 4  is the first root of the zeroth Bessel function. 
The resulting restriction leads to the condition 

This condition determines the possibility of steady plasma 
generation in the magnetospheres of pulsars, i.e., determines 
their extinction limit. The extinction limit (56) is shown in 
Fig. 2, in which we also show all pulsars, their magnetic 

FIG. 2. Extinction boundary of pulsars in the (B,,, P) diagram with, to 
the left of it, the region of steady plasma generation. The black dots repre- 
sent "young" pulsars (Q< 1 ), the crosses "old" pulsars (Q> I ) ,  and the 
open circles represent pulsars having irregular emission.12 The broken 
line represents the limit 1L, = & ( 6 3 ) ,  to the right of which the energy 
released in the magnetosphere is small. 

fields B being given in accordance with the values currently 
adopted. ' "12 

It follows from comparison of (56) with the observed 
boundary of the pulsar distribution that b(K * ) ~ 0 . 2 5 ,  and 
this means that the mean coefficient of particle knockout 
from the surface is K  2 z 10'. 

A more detailed comparison of the theory with observa- 
tional data, which requires the particular structure of the 
current region (see Ref. 12), goes beyond the scope of the 
present paper. 

53. PLASMA MULTIPLICATION 

We have considered above the production of electrons 
and positrons in the double layer at the surface, z 5 z, , of the 
neutron star. In the quasineutral regionz > z, intense multi- 
plication of the electron-positron plasma occurs. The source 
of the multiplication is the stream of fast positrons (or elec- 
trons) accelerated in the double layer to energies y- lo7. 
These primary particles, moving along the field lines of the 
curvilinear magnetic field, radiate curvature photons, which 
produce the plasma. 

We consider therefore first of all the distribution func- 
tion F,(t, z, f ,  y )  of the primary particles. Its change due to 
scattering on emission of the curvature photons is described 
under steady conditions in accordance with (2)  and (9)  by 
the equation 

In accordance with (38),  the boundary conditions for Eq. 
(57) have the form 
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FIG. 3. Width of the distribution function (60) of the primary particles 
with respect to the energy as a function of the height above the pulsar 
surface q/q, ( 5 8 ) :  1 )  q, = 0.1,2) q, = 0.5, 3) q, = 2. 

where yo depends on the jump in the potential in accor- 
dance with (40); usually, yo = I$ol. 

It is convenient to introduce the dimensionless varia- 
bles 

z 

2 dz' 

' lo 

We have here noted that the radius of curvaturep(z) varies 
with z, and for Z/R ((c/Rfl) 'I3 

Then 

In accordance with (23), the parameter E is always small 
under pulsar conditions, E - This means that the diffu- 
sion broadening of the distribution function, -E'/', is small, 
so that the solution of Eq. (57) can be sought in the form 

Substituting (60) in (59), expanding in powers of &'I2, and 
retaining the leading terms E-' and &-'I2, we obtain 

where q, is the maximum value of q: 

2 aXRyo3 1 aXyo3Q 
qm = ?i2= Po -- 8 c f. 

The function A ( q  1, which describes the broadening of the 
distribution function Fa, is shown in Fig. 3 for different val- 
ues of the parameter 7,. It can be seen that initially the 
broadening increases with q, and therefore withz, in propor- 
tion to z'", but then reaches a maximum A,, after which it 
decreases. The maximal value A, is reached at the point i j  
and is 

It is important that at large values ofz, when the parameter q 
reaches the limiting value q, , the deceleration of the parti- 
cles ceases, and the distribution function acquires the steady 
form (60) with parameters F (qm ), A(qm ) givenby (61). It 
follows from this that the total energy expended by the pri- 
mary particles on radiating the curvature photons, 

depends strongly on the parameter 7,. For q, k 1, we have 
E-noyo. But ifq, (1, then E = noyoqm - y:. It can be seen 
directly from this that yo, i.e., the jump l$,I in the potential 
between the surface of the star and the magnetosphere, has a 
critical value I$, 1, determined by the condition q, -- 1/3: 

If I$ol> I $& I, an appreciable energy, of the order of the 
complete energy of the primary beam, is expended on plasma 
generation. But if I$,I < I$, I, the energy used on plasma 
generation decreases very rapidly, as (&,/$& )4, and as a 
result the generation process must be strongly suppressed 
even when $,,/I/& 5 0.3. The limit $, = $&, where $, is de- 
termined in accordance with ( 1 ) and (55), is shown in Fig. 2 
by the broken line (B12P -413 = 0.5). It can be seen that for 
$, < tlr, the number of observed pulsars is reduced. The rea- 
son for this is not the extinction of the pulsars but the de- 
crease of their radiation associated with the sharp decrease 
in the energy released in the magnetosphere. 

We now consider the process of photon multiplication. 
The flux of primary particles gives curvature radiation 
whose spectrum No in the region of the magnetosphere not 
too far from the surface of the neutron star [condition (3  1 ) ] 
is described by the expression (34) obtained in the previous 
section. Substituting in it the distribution function (60) and 
integrating over y, we find 

It can be seen from this that the energy spectrum of the cur- 
vature photons is a power spectrum, No-k -'I3, up to 
kz0.3kC (5) .  For k > kc, the function No(k) decreases ex- 
ponentially. The distribution of the curvature photons with 
respect to the angles, or rather the variabley defined in (32), 
is constant for y < y* (k )  and decreases rapidly for y > y* 
with width Ay ~ y * ~ ,  where 

We have here used the fact that under the conditions (22) of 
interest here, Bo < 2A- '/3. 

The curvature photons generate electron-positron pairs 
and simultaneously synchrophotons. The photon mean free 
path I with respect to pair production can be determined 
from the condition lz4py*/3kBo (32) or 
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l=4p /3kBoA(k) .  (65) integrating over y' and f ' and remembering that the expo- 
nential contains a rapidly varying function, we obtain 

Synchrophoton multiplication is a cascade process. The 
m 

curvature photons generate pairs and synchrophotons of the 3 5 1 ~  1 J 2 ( ) { - first generation (N,). Their energy is A(k)  times lower than 
Qa = z- k 2 y  ( yz -gz )  %Q 

the energy of the curvature photons, and accordingly the 
6 " ' ~ k ' ~ B ,  

mean free path I given by (65) is A times greater. The first- Y~ 

generation synchrophotons also generate pairs and simulta- 
neously with them synchrophotons of the second generation u, 

N,, etc. Thus, the total distribution function N of the pho- 
tons can be represented in the form of a sum: 

3 
yt= ~ o ,  y 2 = ( $ y 2 + L B 2 ) * .  4  

N=No+Nl-I-Nz+ . . . . (66) 
Further, integrating Eq. (67) over y for constant first argu- 

Substituting the expansion (66) in Eqs. (3),  (7),  (20), and ment Ny in (69), we find the distribution function of the 
(21 ) and taking into account (33) and (34), we arrive at the synchrophotons for y < 3Bd2: 
following closed chain of time-independent equations for the Y 

synchrophotons: 

3'" a Matching of the functions (69) and (70) at y = 3Bd2 deter- 
=--- (67) mines the function NP in (69) : 

2"~  x k  - 
1 3" 1 

N: =-- 1 d k ' k r 2 N i - . ( k ' ) ~  ($), (71) 
~l~~~ k3 Ik /3Boo  k  

8 k  
where the expression Y(x) was determined in the previous 

x N ( k ' ,  y', $ , I )  dk' dy' dg', i=l ,  2, 3. . . . (68) section by Eq. (50), 

4  Here, as in (33), we have gone over to the angular variable y 
defined in (32) (we have assumed that sign k, > 0).  In addi- 
tion, since the synchrophotons are produced with all angles 
p with respect to the direction of the magnetic field with 
equal probability, the distribution function now also de- 
pends on the angle p. This dependence is taken into account 
in (67) by means of the quantity 6 = y sin p,  which is con- 
served in the photon motion and therefore occurs in Eq. 
(67) as a parameter. 

The first term on the right-hand side of Eq. (67) de- 
scribes the annihilation of the photons due to pair produc- 
tion; the second is the source of the synchrophotons and is 
determined by the photons of the previous generation. The 
curvature photons No (64) are the source of the first genera- 
tion of synchrophotons. It is not difficult to write down the 
general solution of the linear equation (67). In doing so, we 
must bear in mind that, as can be seen from (64), absorption 
of photons occurs only for y > 3Bd2; moreover, they are 
produced with the same angles P as the photons of the pre- 
vious generation that produce them, i.e., y-AP2. Then for 
fields not too weak, B,> 2AP2/3, the solution of Eq. (67) 
for y > 3Bd2 has the form 

Substituting (69) in the expression (68) for Qs and 

Since Y(x) decreases exponentially when x > 1, the solution 
of (71) can be represented to lowest order in the parameter 
a-' - A-' in the form of "steps": 

Here, the functions M y(x) with different i are related by the 
integral equation 

M: (x) = 1 M i l ,  ( y )  Y ( z )  , z>a-l, 
z Y Y 

where Mg corresponds to the distribution function of the 
curvature photons: ME = x4I3. The functions M y(x)/x3 are 
shown in Fig. 4. It can be seen that with increasing i the 
functions M y(x) become ever steeper and are concentrated 
near small x. This means that the spectrum of the synchro- 
photons is becoming softer. 

As regards the dependence of N(k, y, z)  on the angle y 
and the coordinate z for y < 3Bd2, it is given by an expres- 
sion that follows from (70); 
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Substituting N from (69) and integrating, we obtain 

FIG. 4. The distribution functions of the curvature photons (64) and 
synchrophotons of different generations (72). The straight line 1 corre- 
sponds to the distribution of the curvature photons, -K - 5 1 3 ;  2 )  first 
generation synchrophotons z K - )  '; 3 )  second generation z K - ~ . '  ; 4) 
third generation Z K  - 5 .0  ; 5 ) fourth generation z K -  ' . ' .  

Thus, N varies smoothly in the region 0 < y < 2/aZ, remains 
constant for 2/a2 < y < y*, and then turns sharply at y > y*, 
since here strong absorption of photons due to pair produc- 
tion commences. 

It must be emphasized that the treatment has been giv- 
en here for small distances from the surface of the star: z(R. 
With increasing distance z 2 R, the magnetic field B, and the 
radius of curvature p begin to change appreciably: 

The decrease in the field and the increase in the radius of 
curvature lead to a cutoff of the photon spectrum at 
k = kmin < k c .  To find k,, , we determine the energy con- 
tained in the secondary plasma and the photons, and we 
equate it to the total energy (62) lost by the primary beam. 
We determine first the spectrum of the secondary electrons 
and positrons; it follows from (2) that 

It can be seen that the spectrum of the particles is similar to 
the spectrum of the photons, the only difference being in 
their exponents, which differ by unity-the particle spec- 
trum is harder. The first generation of particles 

has power spectrum y-213. It is easy to find the densities n? 
of these particles and their energy densities E : 

As regards the density of the curvature photons, it is of the 
order of the density of the first-generation electrons and po- 
sitrons, while the energy of the curvature radiation is a/B,A 
times less, in accordance with its steeper spectrum. How- 
ever, when the first generation of particles is produced, sec- 
ond-generation photons are produced, their energy lying in 
the interval 

Their energy density is 
9J?(5/3) an, E 2 -  

2 BO2A Y O ~ Q  ( F) , 
where 

Q (x) =3.93 1n (l/x) -19.35 (1-2'") 

It is easy to show that for the majority of pulsars the 
photon mean free path is too large for production of a third 
generation: I - La2 - R. Therefore, the production of synch- 
rophotons and particles in pulsars is usually limited to two 
generations. It is possible to find kmin by equating the energy 
of the second-generation photons to the total energy loss 
(62): 

It follows from this that for not too strong fields, 
B, < 0.8a'lZ = 0.07, 

The second-generation photons produce electrons and 
positrons of a second generation too, and their density is 

Here 

This makes it possible to determine an important parameter 
of the theory-the multiplicity of the secondary plasma (see 
Ref. 1):  
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where n -n,+ is the plasma concentration. It follows from 
(77) that for ordinary conditions in pulsars R - 10). 

Thus, the expressions (72)-(76) describe the concen- 
tration, energy, and distribution functions of the particles 
and photons in the plasma multiplied in the pulsar magneto- 
sphere. We note that the results of the theory agree qualita- 
tively with the numerical Monte Carlo calculations of plas- 
ma multiplication made by Daugherty and H a r d i ~ ~ g . ~  In 
addition, the currently available data of observations on the 
y fluxes from the two most active pulsars, Crab and Vela, in 
the energy range 10'-lo4 MeV (Refs. 13 and 14) permit 
them to be compared with the results of the theory [the ex- 
pressions (64) and (72) ]. The estimates obtained from the 
theory are found to agree well with the measured values. 
Detailed comparison of the theory with the observational 
data requires an extended analysis, which is beyond the 
scope of the present paper. 

We thank V. L. Ginzburg and V. S. Beskin for helpful 
discussions. 

"We do not consider here superstrong magnetic fields, B k B, = 4.43.1013 
G, in which the path of a photon may not be straight (see Ref. 6). 

2'Transverse drift may play a part in the motion of individual formations, 
for example, drifting subpulses." 

3'Note that the expressions (53)-(55) actually hold in stronger magnetic 
fields when the condition B, 5 0.1 of Eq. (22) is not satisfied. It is merely 
necessary to replace A in the expression by 2BC1/3, i.e., set x = 1, 
which alters the dependence of 4, on the magnetic field from the depen- 
dence (55) ( B  ti7 instead of B G1"). 

4'The polar cap is the region near the magnetic axis of the neutron star 
from which open magnetic field lines emanate, i.e., lines that intersect 
the "light surface." It is only along such lines in the pulsar magneto- 
sphere that longitudinal electric currents can flow.' 
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