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We show that situations are possible in a number of cases when the dispersion coefficient in a 
Taylor series expansion of the frequency in the wavenumber becomes in the long-wavelength 
approximation nearly zero (for instance, for gravitational-capillary waves in shallow water or 
oblique magnetosonic waves in a cold plasma). When constructing the evolution equation which 
describes the dynamics of weakly nonlinear perturbations it is necessary in that case to retain the 
next dispersion term, which corresponds to taking into account higher powers in the expansion of 
the dispersion equation in powers of the wavenumber. The most typical equation for such cases 
when one has multidimensional perturbations in media with a quadratic nonlinearity which move 
at small angles to a chosen x-axis is the generalization of the well known Kadomtsev-Petviashvili 
equation2. Using numerical calculations we find stationary solutions of this equation in the form 
of two-dimensional multisolitons which exhibit damped oscillatory asymptotic behavior along 
the direction of motion at large distances from the peaks. It is shown that the amplitudes of the 
solitons must be larger than some threshold level determined by the parameters of the equation. 
We give estimates of the characteristic amplitudes and velocities of the solitons for waves on 
water. 

1. There exists a large number of examples of various 
media which in the long-wavelength limit have a typical 
"Korteweg" dispersion: w = cok + pk  3,  where w is the fre- 
quency of a monochromatic wave and k the wavenumber. 
When a quadratic nonlinearity is present in the medium, 
small-amplitilde plane perturbations in this case are de- 
scribed by the Korteweg-de Vries (KdV) equation,' and 
weakly non-one-dimensional perturbations by the Kadomt- 
sev-Petviashvili (KP) equatioa2 It was shown in Refs. 3, 4 
that the KP equation with positive dispersion has solutions 
in the form of two-dimensional pulses localized in all coordi- 
nates: algebraic solitons with power-law asymptotic behav- 
ior far from the peak. 

Often, however, there occur situations in which ex- 
panding the dispersion equation in a Taylor series as k-+O 
shows the coefficient fl to be anomalously small. For in- 
stance, for gravitational-capillary waves on shallow water' 

where c, = (gH)IJ2; g is the gravitational acceleration; H i s  
the depth of the fluid; cr is the surface tension coefficient; and 
p is the density of the fluid. It is clear from this expression 
that when H = ( 3 0 / ~ ~ ) " ~  the dispersion parameter ,B van- 
ishes (for pure water the corresponding value of the depth is 
0.48 cm). A similar situation occurs for magnetosonic waves 
in a cold plasma:' P-cot28 - me /mi, where me, mi are, 
respectively, the electron and ion masses; 6' is the angle 
between the direction of wave propagation and that of the 
external magnetic field. When 6' = arctan(mi/m,)li2 we 
have p = 0. The vanishing of the dispersion parameter P 
does not mean that the dispersion in the medium has com- 
pletely disappeared, but simply that in that case it is neces- 
sary to retain the next term in the Taylor series expansion in 

k of the complete dispersion equation. As a rule, the next 
term turns out to be proportional to k 5 .  Plane, weakly non- 
linear perturbations for anomalously small values of p are 
described by the generalized KdV equation5s6 

For multi dimensional perturbations in the KP approxima- 
tion (i.e., assuming the characteristic scale of changes in the 
field along y to be much larger than the corresponding scale 
along x )  one can obtain a two-dimensionally generalized 
analog of Eq. (1). In the frame of reference moving along the 
x-axis with a velocity co the corresponding equation has the 
form 

The problem of the existence of two-dimensional stationary 
solutions of this equation and their structure is of interest. 

2. It is impossible to find an analytical solution of Eq. (2) 
and we therefore used the numerical method for finding sta- 
tionary solutions proposed by PetviashvilL3 First of all, we 
rewrite Eq. (2) in dimensionless form: 

where 

In those formulae the upper sign occurs when V >  0 and the 
lower sign when V <  0; moreover, y and Vmust have differ- 
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FIG. 1. Qualitative form of the dispersion curve when the dispersion 
changes its character. When E > 0 there appears a point of inflection. 

ent signs. We then Fourier transform Eq. (3) in the variables 
6 and 7 and write down the basic formula for the iteration 
process for the numerical search for stationary solutions (see 
Ref. 3): 

The tilde indicates here the Fourier transform of the corr- 
sponding function; p is an arbitrary real number selected 

empirically to optimize the rate of convergence of the iter- 
ation process (in our calculationsp = 2); 

w 

' / z  k, ' fn24 dkt dk,  
- w  

As a start one can use here an average smooth two-dimen- 
sional function with a single maximum. One sees easily that 
the iteration processes is not well defined if the denominator 
in Eq. (4) vanishes for finite values of k g ,  k ,  . This situation 
will occur when we choose the upper sign in Eqs. (3), (4), i.e., 
when V> 0. We shall therefore in what follows assume that 
V <  0, and, hence that y > 0. The positive value of y corre- 
sponds to a positive dispersion in the short-wavelength re- 
gion. It is necessary to impose yet another restriction on the 
magnitude of the parameter E in order that the polynomial in 
kc in the denominator of Eq. (4) not have real roots for 
kc > 0. If E < 0 ( B >  0) this condition is certainly satisfied. 
One easily checks that it is also satisfied when E < 2. This 
imposes a restriction on the soliton velocity V: the condition 

- V <  V  ,,,,,, = - B '/4y must be satisfied, i.e., the soliton ve- 
locity must be less than the minimum phase velocity of the 

FIG. 2. Two-dimensional soliton for E = 0: a: gen- 
eral form; b: main cross sections along the motion 
(solid curve) and at right angles to the motion 
(dashed curve). 
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linear perturbations. We depict in Fig. 1 the qualitative 
shape of the dispersion curve in the rest frame for the case 
considered. The soliton velocity must lie in the hatched re- 
gion under the dispersion curve. Such a situation occurs for 
surface waves on water for depths H 2 0.5 cm. In that case, if 
u(x,y,t ) describes the change in the mean level of the liquid 
we have in Eq. (2) 

the expressions for co and p were given earlier. 
3. When E = 0 the structure of the two-dimensional so- 

litons, found numerically, qualitatively does not differ from 
the algebraic KP solitons3s4 (Fig. 2). The two-dimensional 
solitons, depending on the sign of a, have both positive and 
negative polarity in the original variables u(x,y,t ). For in- 
stance, on the surface of a liquid they are depressions. When 
E > 0, for instance, when the depth of the liquid is increased 
from the value H = (3~/'g)"~, there appears on the disper- 
sion curve a point of inflection (see Fig. 1). As a result of this 
the structure of the solitons also changes: they decrease 
monotonically as before from a maximum to zero in the 
transverse direction, but along the direction of the motion 
they alternate in sign (Fig. 3). We note that the one-dimen- 
sional solitons described by Eq. (1) have a similar struc- 
t ~ r e . ~ . ~  When E increase the number of oscillations on their 
tails increases so that gradually the solitons become more 
and more like high-frequency wavetrains, i.e., envelope two- 
dimensional solitons. There thus occurs a smooth transition 
from the "video-pulse" KP solitons to the "radio-pulse" en- 
velope solitons. Thanks to the fact that the velocity of these 
solitons must be less than the minimum phase velocity of the 

FIG. 3. Two-dimensional soliton for E = 1.9: a: 
general form; b: main cross-sections along the mo- 
tion (solid curve) and at right angles to the motion 
(dashed curve). 

linear perturbations, their amplitude which is porportional 
to their velocity must be larger than some threshold value. 
For surface waves this threshold value of the amplitude of 
the solitons is determined by the depth of the liquid. 

In Fig. 4 we have depicted the dimensionless soliton 
amplitude as a function of the parameter E obtained by 
means of numerical calculations. For water waves we give 
here the minimum soliton amplitude as function of the depth 
of the liquid (Hand u in mm): 

H : 5  6 7 8 9 1 0  
urn,=: 0,013 0,l 0,19 0.28 0,36 0.44 

For a depth H = 1 cm the soliton velocity does not exceed 
28.5 cm/s. For an amplitude u = 0.125 mm the characteris- 
tic size of the soliton in the longitudinal direction is 25 cm 
and in the transverse direction 55 cm. The wavelength of the 
coverage equals 5.3 cm. 

The presence of local field minima in the structure of 
the solitons enables us to conjecture that Eq. (2) may have 
complicated multisoliton solutions which form either excit- 
ed or stationary bound - states. The search for stationary 

FIG. 4. The dimensionless amplitude of the soliton as function of the 
parameter E .  
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multisolitons can be carried out using the same numerical 
procedure as was used for the calculations of individual soli- 
tons. As initial function for the iteration process (4) we used a 
superposition of smooth two-dimensional functions with 
peaks separated from one another along the 6-axis by a dis- 
tance co. For small lo the iteration process converged to the 
already known individual solitons. Starting from some val- 
ues of 6, we obtained bisolitons (Fig. 5). The structure of the 
field of the latter far from their peak is qualitatively similar 
to the structure of the field of an individual soliton. It is thus 
natural to expect that in the framework of Eq. (3) there may 
also exist more complicated stationary formations, namely, 
multisolitons. However, a numerical search for them in- 
volves great difficulties, because for this one needs to expand 
appreciably the volume of the operational memory, increase 
the time of the calculation, and also "guess" more accurately 
the initial function since otherwise the iteration process (4) 

may lead to some simpler, already known solution. 
In conclusion we note that an experimental verification 

of the existence of the two-dimensional structures described 
here is of interest. In our opinion, the simplest would be to 
observe them in laboratory troughs on liquid surfaces. 
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