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Some properties of the production of periodic evaporation-damage structures on conductor sur- 
faces by laser radiation are considered theoretically. The nonlinear state of the process, during 
which an important role is played by the interaction of surface plasma waves in scattering from a 
periodic profile, is investigated. It is shown that, depending on the incidence angle and on the 
laser-radiation polarization, the amplitudes of the periodic profile can vary during its formation 
both monotonically and nonmonotonically with time. The case of a TE-polarized wave of laser 
radiation is considered and the phase trajectories of the periodic profiles are determined for this 
case. 

I. INTRODUCTION 

Numerous experiments have shown (see Ref. 1) that 
high-power laser radiation produces on metal and semicon- 
ductor surfaces periodic damage structures with periods of 
the order of the radiation wavelength. The periods of the 
structures are determined by the geometry of the experiment 
and are practically independent of the characteristics of the 
material. This has led to the conclusion2 that the structures 
are due to excitation of surface plasma waves (SPW) whose 
interference with the incident irradiation wave causes spatial 
modulation of the energy released from the surface. The pe- 
riodic structures can develop via various physical mecha- 
n i s m ~ , ~  one of which is surface evaporation. It was shown in 
Ref. 4 that a plane metal or semiconductor surface-evapora- 
tion front is unstable to the periodic perturbation due to the 
SPW excitation, and the corresponding growth rates were 
obtained. 

Emel'yanov and semi no go^^,^ have also confined their 
investigations to the instability properties of the growth 
rates and of the ensuing geometric characteristics of the 
structures. It is known, however, that the pertubations grow 
at an exponential rate only during the initial, i.e., nonlinear, 
stage of the unstable process. 

We consider here theoretically the succeeding stage of 
the process, whose character determines the nonlinear phe- 
nomena. We shall be interested in that stage during which an 
important role is played by electrodynamic nonlinearities 
due to renormalization of the resonance relative to the SPW 
through scattering by periodic surface distortions. We as- 
sume, as in Ref. 4, that the periodic structure are produced 
by surface evaporation, which we shall describe by using the 
model developed in Ref. 7. 

2. ENERGY RELEASED WHEN LIGHT IS INCIDENT ON A 
CONDUCTING SURFACE HAVING A PERIODIC PROFILE 

Resonant excitation of SPW by light incident on a con- 
ductor surface with a periodic profile leads to a considerable 
increase of the absorption,' and in turn to the onset of posi- 
tive feedback and hence of periodic damage structures. The 
resonance condition for a plane monochromatic wave corre- 
sponds to a continuous set of wave vectors g of the periodic 

structures. Since the time evolution of the structure forma- 
tion is initially exponential, and in view of the smallness of 
the priming fluctuations the typical arguments of the expon- 
ential~ are large compared with unity, the only significant 
vectors g among all that satisfy the resonance condition will 
be those corresponding to relative maxima of the instability 
growth rates. We denote by (g, J the corresponding set of 
discrete wave vectors. Owing to the fast growth of the expon- 
ential~, a substantial role is played in the entire picture of the 
process only by vicinities of the wave vectors near the values 
g,. On this basis, we represent the real structure of the sur- 
face as a superposition of a finite number of periodic har- 
monics. We shall call this description the discrete-mode ap- 
proximation. 

Since the absorbed energy is quadratic in the fields pro- 
duced in the material, the expression for the energy release 
will contain, besides the periodic components corresponding 
to the wave vectors g,, also harmonics with difference vec- 
tors g, - gj , which will generate corresponding harmonics 
in the surface structure. It will be shown below that the set of 
wave vectors contains one pair of vectors that differ only in 
sign: g = g+ and g = g- = .- g+. The fact that a surface 
distortion belongs to one and the same harmonic (degener- 
acy) makes these vectors exclusive and in need of special 
treatment. With this taken into account, we specify the equa- 
tion for the sample surface at an instant of time t in  the form 

z=z,  ( r ,  t ) ,  

Z ,  ( r ,  t )  =a ( t )  f1/, { Efbi ( t )  s i @ ' + L  bij ( t )  eigllr+c.c.} , 

Here z = (n.r) and (g, .n) = 0, where n is an inward unit vec- 
tor normal to the initially unperturbed (flat) surface. The 
prime on the sign of summation over i means that the terms 
with i = + and i = - are taken with half the weight, since 
they repeat in the complex-conjugate expression: 
b -  ( t ) = b ;  ( t ) .  

We assume hereafter that the characteristic absolute 
amplitudes of the periodic components b- lb, I are small 
compared with the incident-radiation wavelength, so that 
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we have the inequality 

in which w is the frequency of the incident radiation and c is 
the speed of light. 

To solve the electrodynamic problem of the field distri- 
bution upon incidence of a plane monochromatic radiation 
wave on a conducting surface specified by Eq. (2. l), we use 
the Leontovich boundary condition (see Ref. 9): 

5 { E-m ( m ~ )  -i - [m x rot E] } = 0, k  z = z . ( r , t )  
(2.3) 

in which E = E, + El is the sum of electric field intensity 
vectors of the incident and reflected radiation waves, m is the 
normal to the surface (2. l), and c = c (w) is the surface im- 
pedance. We recall that the condition (2.3) can be used in 
place of complete system of boundary conditions only if the 
following inequalities are satisfied: 

where R is the minimum curvature radius of the surface. The 
first inequality of (2.4) limits the incident-radiation frequen- 
cy, requiring that it be small compared with the frequency of 
the bulk plasma oscillations. Since Ig, I -k, we get, taking 
(2.1) into account, the estimate (kR ) -  ' - bk. The second ine- 
quality of (2.4) reduces therefore to the condition 16 Ibk( 1, 
which is certainly satisfied in view of (2.2) and of the first 
inequality of (2.4). When we expand later in powers of the 
parameter bk, we shall neglect, in comparison, those powers 
of gbk whose inclusion takes us outside the Leontovich ap- 
proximation. 

We write the electric field vector of the incident plane 
monochromatic light wave in the form 

Eo ( r ,  t )  = [Eo,e, ( k )  +Eope, ( k )  ] e' (kc-"t )  
' (2.5) 

e . ( k )  = [ n k l / l  [ n k l  I, e p ( k )  =[ [ n k l k l l l  [ [ n k l k l  I. 

Here Eop and E ,  are the projections of the wave amplitude 
on the polarization directions in the incident plane and in the 
plane normal to it (T, and TM polarizations), 
k = q + nk cos 8 is the wave vector of the incident wave, 
(qn)  = 0, q= 1 q 1 = k sin 8, and 8 is the incidence angle. The 
field intensity of the wave reflected from the surface (2.1) can 
be represented in the form 

E, ( r ,  t )  = [ E , .  ( K )  e .  ( K )  +Elp ( K )  e p  (10 I ei(K"-" , (2.6) 

here (K)  is a system of wave vectors defined by the equations 

and li are integers. The polarization vectors e, and ep in (2.6) 
are defined in (2.5). 

Substitution of (2.5) and (2.6) in the boundary condition 
(2.3) and expansion of the latter in the set of functions 
exp(iQ.r) reduces the problem to an infinite system of alge- 
braic equations in the amplitudes E (K) and E ,, (K). In the 
zeroth order in the small parameter bk the solution of the 
system is described by the known Fresnel formulas9 for the 

reflection of radiation from a flat surface. 
In first order in bk, the solution contains terms 

a bke, (K) x exp[i(K.r - wt )]/B (Q), in which 
B ( Q ) = g  + W , , Q = q + g , , ~ r Q = q + g ~ . A d i s t i n g u i s h -  
ing feature of such terms is that they contain denominators 
B (Q) that can have at I Q ( z k an absolute value much smaller 
than unity (resonance situation). The equation B (Q) = 0 in 
k = W/C determines the well-known spectrum and damping 
of the PSW on a flat surface. Naturally, the resonance is 
preserved in the exact solution, but undergoes a rescaling 
whose role increases with increasing parameter bk. The res- 
caling describes the frequency shift and the additional SPW 
damping, which are due to the periodic profile of the surface. 
The smallness of the SPW damping (the sharpness of the 
resonance) makes the rescaling of the resonance, as the bk 
parameter increases, substantial long before the condition 
(2.2) is violated. In this situation it is not legitimate to use for 
the solution of the problem a finite expansion in powers of 
the parameter bk. 

An analysis of the system of equations for the amplitude 
E , , ,  (K), which follows from the condition (2.3), shows that 
the resonant contributions to the nonresonant harmonics of 
the reflected field (which correspond to Q #q + g, ) appear 
in higher orders of perturbation theory and thus contain, 
compared with the resonant harmonics (Q, = q + g,) and 
additional power of the small parameter bk, whose exponent 
is equal to the minimum number of steps (as measured by the 
vectors g, and g,,) that separate a given vector Q from its 
nearest neighbor Q,. This allows us to express, accurate to 
small quantities of order - bk ), the solution (2.6) in the form 

1-5 cos 8 
Ei ( r ,  t )  = {[- I+c cos 8 Eo,e, (KO) 

+ ( ( E , ,  I '+ / f l o p  I ') l2Z B,ep  ( K , )  eLhtr } e ' ~ k " n ( t ' - w t J  . (2.8) 

Here 

r'=r-nu ( t )  , K,=cl-nk cos 8, K,=q+gi-nkW,+q . 
The term proportional to exp(iK,rf) in (2.8) corresponds to a 
wave reflected from a plane surface. Substitution of (2.8) and 
(2.5) in (2.3) and projection of the latter on the resonance 
harmonics (the functions ep (K, ) eKi') leads to the sought sys- 
tem of equations for the resonance amplitudes 8, in (2.8): 

,aij B , 8 i = i b i k A  (ai )  -ix bijk sin Zi, 
i 

x [ E o p  ( C O S  a<-sin 0)  -Eos cos 0 sin a ; ] .  

Here aii = a, - aj , and ai is the angle between the vectors 
q + g, and q. 

The second term on the right in the system (2.9) for gi 
describes the interaction between the resonant modes, and 
leads to rescaling, in this case of order bk, of the resonant 
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denominators B,. A rescaling of higher order of smallness 
[ - (bk )2] appears when there is only one resonant harmonic.' 
This rescaling is due to the interaction of the resonant har- 
monic and the nonresonant harmonics that are located one 
step away from it; the latter harmonics must be taken into 
account in this case. 

We proceed now directly to calculate of the energy re- 
lease @(r) determined by the energy absorbed per unit vol- 
ume and per unit time and averaged over the temporal peri- 
od of the radiation. We note that under conditions when the 
Leontovich approximation can be used the electric and mag- 
netic field-intensity vectors inside the sample reduce to their 
components tangential to the surface, and differ from their 
values on the surface by an additional factor 
exp[i(z - z. (r))k /c]. Taking into account in the expression 
for the energy flux density [Eq. (87.4) of Ref. 91 and the ener- 
gy-continuity equation, we get therefore 

c ~ b '  @ = -  I [n rot El I :=,,e-""-'.', 
8n k2 

(2.10) 
p=2k Im <-', <'=Re 5.  

Substituting here Eqs. (2.8) and (2.5) and neglecting small 
corrections -bk and 19 I ,  we arrive at the following equa- 
tions for the energy release: 

@ (r)  = { @ .  + k , e l g i v  + C @ t l e i g ~ ~ r + -  c. l} e - ~ ( ~ - ~ + ) ;  

@,='12GA'(a,)si,  i++, -; (2.13) 

@+=!/ ,$(A ' (a_)8_+A(a-)8-*) ,  = * (2.14) 

@ij='/&$ cos ~ i ~ & ' i & ' ~ * ;  (2.15) 

A (a , )  = 
1 

[ E o p  cos ai-En, cos 0 sin at]. 
( I Eos 1 '+ 1 Eop 1') 'I2 

(2.17) 

We note that in view of the isotropy of the SPW disper- 
sion law, the resonance condition for the resonant harmonic 
(g = g+, g-) leads to the requirement /q  + g+ I = Iq - g+ I, 
which means that the vectors q and g+ are mutually perpen- 
dicular. For this reason and as a result of the equalities 
1 q + g i / ~ k , a n d q = k s i n 8 w e h a v e ,  

3. EVAPORATION WITH PERIODIC FRONT 

Assuming that the laser intensity is in the range in 
which the processes that occur in the gas phase do not influ- 
ence the evaporation," we use the formulation of Ref. 7 for 
the problem of the motion of an evaporation front. It reduces 
to the heat-conduction equation with appropriate boundary 
conditions 

Here c, is the specific heat per unit volume, x is the thermal 
conductivity coefficient, A W the jump of the enthalpy den- 
sity on the phase boundary, v(r, t ) the velocity of the evapora- 
tion at the surface point r, U the activation energy (of the 
order of several eV), co a constant of the order of the speed of 
sound in the condensed phase, and the asterisk indicates that 
the argument of r pertains to the sample boundary. 

When account is taken of the structure of Eq. (2.11) for 
the energy release @(r), the temperature function can be 
written as 

(3.4) 
The symbol I takes on here and elsewhere the value i or i j  
(i >j). Substitution of (3.4) in Eqs. (3.1)-(3.3) and expansion 
of the latter in terms of harmonics exp(ig, .r) leads to a system 
of differential equations and to boundary conditions in 
which the unknowns To and T, are entangled with each oth- 
er. With account taken of the inequalities bk, Bi ( 1 and upon 
satisfaction of the condition 

UAW. v 7C -- < I ,  x=-, 
cPT*~ l gl l x C P  

the system indicated becomes formally disentangled, with 
the part pertaining to To (6, t ) reduced to the one-dimension- 
a1 problem of evaporation1' with an energy release given by 
Eq. (2.12), while the equations and boundary conditions for 
the remaining T, (5, t ) take the form 

( a ~ , i a ~ )  E=~=O,  
U 

(3.7) 
db! 

-= uo - T I  (0) ,  vo=cn exp (-U/To (0) ). (3.8) 
d t  To2 (0) 

We shall be interested hereafter in processes that take 
place in times (reckoned from the start of the laser-pulse 
action) that are sufficient for the heat to propagate over dis- 
tances that are larger with the characteristic dimension 
Ig, I -' of Eq. (3.6), i.e., t >  ( X  g:)-'. We assume also that the 
periodic energy-release components @, , which depend on 
the time via the quantities %',, satisfy the condition of slow 
variation in the time scale (dX)-'. In this case we can ne- 
glect in (3.6) the time derivatives so that its solution, with 
boundary condition (3.7) and with allowance for the inequa- 
lity /g, I/p- 16 1/24l, becomes 

Taking into consideration expressions (2.12-2.14) and the 
system (2.9), we find from the condition (3.8) and with 
allowance for expression (3.9) and for the ensuing heat-con- 
duction equation, that the required slow rate of change of @, 
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is achieved under the inequality k 
-A (a,) (A' (a,) 8++A (a-) 8-') 
lg+l 

Substituting (2.13) and (2.14) in (3.9) and next (3.9) in 
(3.8) we get the equation of motion for the dimensionless 
amplitudes 6, = b, k of the periodic structure 

d6, 
-= 

k 
F - (A' (a,) 8++A (a-) 8-') ; 

dt lg+l  

dgij  1 k - F- cos aij8i8j'. 
d t  2 1 gij I 

The quantity F in these equations has the dimension of reci- 
procal time and is defined as 

4. STEADY-STATE EVAPORATION REGIMES 

From the set of differential equations (3.11-3.13) to- 
gether with the algebraic system (2.9) we determine the time 
evolution of the periodic evaporation front. It must be borne 
in mind that the quantity F i n  (3.11)-(3.13) is a fluctuating 
function of the amplitudes b, via the solution of the evapora- 
tion problem with a plane front, since the corresponding 
expression (2.12) for the energy release a, contains the reso- 
nant fields g,. Even this alone makes it difficult to deter- 
mine analytically in general form the evolution of the ampli- 
tudes of the periodic profile. Nonetheless some 
characteristics and furthermore important features of the 
solutions can be fully explained. 

We note for this purpose that according to (2.9) and 
(3.11)-(3.13) the characteristic scale of the dimensionless 
amplitudes 6, and 6@ is the quantity IB, I - f '. Therefore, 
after a sufficiently long time, two different situations are pos- 
sible for any of the amplitudes h[: the amplitude 6, either 
remains finite (16, I 5 f '), or becomes large compared with f ' 
and continues to increase. We shall distinguish hereafter 
between the two situations by calling them, respectively, fin- 
ite and infinite motion. To establish the situation for a parti- 
cular amplitude 6[ we assume that some of the amplitudes 
correspond to the case of infinite motion. At a sufficiently 
long time we can then assume the left-hand side of (2.9) to be 
zero, after which it follows from an examination of (2.9) and 
(3.11)-(3.13) that g i  = const. Then %', = 0 corresponds to 
finite motion and g i  $0 to infinite motion. 

Taking the foregoing into account and combining Eqs. 
(2.9) and (3.1 1)-(3.13), we get 

k 
--- A (a_ )  (A' (a-18-+A(a+)8+*) 
lg-I 

-1x cos a-, I sin 71 18,~8-=0. 
4 j 

This system of equation reveals the substantial difference, 
with respect to formation of periodic structures, between the 
general case of elliptic polarization of the incident radiation 
and that of linear polarization. In the former case the pro- 
duct A (a, ) 7 *(aj) is, in accordance with the definition of its 
factors [see (2.9) and (2.17)], a complex quantity and as a 
result, as shown by analysis of the system (4.1)-(4.3), the 
evolution of all the harmonics for elliptically polarized light 
corresponds to finite motion. The situation is different in the 
case when the radiation is linearly polarized (A (a, F *(aj) is 
real), which we shall now consider in greater detail. 

We begin with finding the possible periodic structures. 
In accord with the meaning of the discrete-mode approxima- 
tion, the wave vectors g, are determined from the condition 
that the growth rate be a maximum during the initial stage of 
the periodic-structure formation. It follows from (2.9), 
(3.1 I), and (3.12) that at 16 (g, t ) 1 gf ' the time dependence of 
the periodic-profile amplitudes is of the form 

Hence, taking into account the expression for B (q + g) [see 
(2.9) and (2.7)] we find that the amplitudes 6 (g, t )as functions 
of the vector g have a maximum exponential growth with 
time under the following conditions 

2 [ A  ( a )  A* (a )  
d a 

1 ] =o.  
(l+sin2 0-2 sin 0 cos a)'" 

The condition (4.8) is mandatory only for nondegenerate 
modes. The degenerate one, in view of its inherent advantage 
R (g, ) = 2 Re R (g# g , ), is automatically one of the pre- 
ferred modes that correspond to a relative maximum of the 
degree of the exponential growth. 

We restrict ourselves now to incident radiation polar- 
ized perpendicular to the incidence plane, to which most 
present-day research into this topic is devoted. After substi- 
tuting the expressions forA (a) a n d 2  *(a) in (4.8) we find that 
for the TE wave (E,, = 0) it has only two solutions 
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sin 0 
A = arcsin [ i+sin2 e+ (1-sin2 8+sin6 0)'" ] . (4.9) 

We have thus alongside the doubly degenerate mode only 
four harmonics, corresponding to the amplitudes 6,, 62, 6+, 
6- = 6+* and to the resonant modes 8 , ,  8, ,  8 + ,  8-. In 
view of the equality 2 (a_) = - 2 (a,) that follows from 
(2.17), the system (4.1)-(4.3) leads to the relations 
8 - = - 8 + *, I 8,12 = 1 g2 1 ', in terms of which our system 
takes the form 

[8 c0s3 0-C18, 12+cos 0 cos 20(8+12]8+=0, 
(4.10) 

cosZ 0 cos2 A 
(l+sin2 0-2 sin 0 sin A) " 

-Clb+ 12+cos A cos 28 18,12 ]Q,=o. 

where 

0-A @+A 
C(8) = cos (0-A) sin - - cos (0+A) cos - 

2 2 

The solution of (4.10) is 

0, e<n/4; (4.1 1) 
l 2  l b + l z =  { 8 cos2 011 cos 20 1, B>n/4. 

Only the degenerate mode at an incidence angle 6 > z-/4 is 
thus infinite. 

It must be noted that the growth rates of the degenerate 
mode and of modes 1 and 2 turn out to be equal if the inci- 
dence angle ranges from z-/3 to z-/2. The absolute maximum 
of the growth rate corresponds here to the degenerate mode 
at 6>6. ,  and to modes 1 and 2 to 6 < 6 , .  In view of the 
appreciable difference between the growth rates when the 
angle 6 is not too close to 6., the interaction between the 
degenerate mode, on the one hand, and modes 1 and 2, on the 
other, is shown by analysis to be negligibly small in the prin- 
cipal range of the variables. Therefore the general system of 
equations (3.1 1)-(3.13) and (2.9) breaks up into two subsys- - - -  
tems, on for b+, b-, b+ -, 8 +, 8- and the other for 6,, 6,, 
612, 81, $2. 

We start with the first of the system (those equations of 

FIG. 1. 

(2.9)- - and (311)-(3.13 which contain 
b+, b-, 6,-, 8 + ,  8-, with 6*,  , and 6*,, set equal to 
zero). Analysis do not depend on the time and that those 
quantities can be represented in the form 

cos 20 
( )  = 1 )  1 * 6,- ( t )  = 16,- (t) 1 cos 20 e2". (4.12) 

Here e, = Im In 6+(0) is the initial phase of the amplitude of 
the 6+(t ) profile. Taking (4.12) into account, after excluding 
the fields 8 + and 8 - from the subsystem of equations for 
6+, 6-, 6, -, 8 +, 8 - we arrive at a system of equations for 
the absolute values of the amplitudes: 

dlF+I -2F -- IA(a+) I Z  cos 20 
dt cos 0 

cos2 0) 

cos 20 x [b" + (5'- 6+- 1 cos 20 1 cos2 0 )  2 ]  -' , 

(4.13) 
dlF+-l 1 -- I cos 20 1 

dt -6FlA(a+)l  cosO lE+12  

This leads directly to the equation 

cos 20 
+ (5'- 16,- lKieT cos2 0) ' )  =o. 

whose solution, assuming that the inequalities 16, (0) I, 
16,-(0)l(fl hold, is 

1 cos 20 
- ~6+12cos20cos20+ (5'-16+-1 -- 
8 I cos 20 I 

By establishing the relation between 16, I and 16, - I, this 
equation specifies the trajectory for the process considered 
by us, that of formation of periodic structures. At 6 < z-/4 
this trajectory is a semi-ellipse in the (16, - 1, 16+1) plane, 
with vertical semi-axis (f '/cos 8 ) (8/cos 26 )'" and a hori- 
zontal semi-axis f '/cos26. At 8 = z-/4 the trajectory is 
straight vertical line drawn from the origin, and at 6 > z-/4 it 
is part of a hyperbola whose asymptote has an intercept f '/ 
cos26 on the abscissa axis and a slope cos 6 (8/lcos 26 1 ) ' "  
(see Fig. 1). 

The trajectories for the profile amplitudes 6,, 62, 
(second subsystem of the equations) are determined similar- 
ly. It turns out that 16,1 = 16,1 and the connection between 

and 1 6 ~ ~ 1  is 

'/rjE1lz cos 2A cos A (l+sin2 0-2 sin 0 sin A) '"  

Since it can be shown by using (4.9) that cos 2A > 0, Eq. (4.15) 
describes at all incidence angles an elliptic curve, so that the 
corresponding trajectory takes the form shown in Fig. la. 
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5. CONCLUSION 

In this section we discuss briefly the meaning of the 
approximation assumed and touch upon the connection 
between the results and experiment. One of the main as- 
sumptions was to replace the continuous distribution, in 
terms the wave vectors of the Fourier expansion for the am- 
plitude of the periodic distortion of the surface, by a discrete 
set of harmonics (the discrete-mode approximation). This 
replacement is permissible if the exponentially growing part 
of the amplitude profile (the initial evolution stage), 6-5. ', is 
significantly larger than the initial value 6 (0). It follows from 
(4.6)-(4.8) that the size of the two-dimensional region of the 
wave vectors g, where the surface-perturbations growth is 
unstable, is of the order of (5 15 'k ' for the nondegenerate 
modes and 15 ('4 ''k ' for the degenerate one. Therefore the 
effective value of the initial profile amplitude, corresponding 
to the indicated g-space region, is of the order of 
6 (0)-bok '[I5 15 ' f (g)]"' for the nondegenerate modes and 
6 (0) - bok ' 15 15 '[ f (g)I1/' for the degenerate one. Here bo is 
the characteristic value of the initial roughness amplitude, 
f (g) is the distribution function, normalized by the condition 
J d 'g f (g) = 1, of the squared absolute value of the Fourier 
component of the initial roughness amplitude. Using this 
estimate for 6 (0), condition 6 (O)& ' takes the form 

We see thus that if the characteristic scale of the argument of 
the function f (g) is g*)k, and if it is proportional to Igla at 
small Ig(, the condition for the validity of the discrete-mode 
approximation takes the form of the inequalities 

which are readily satisfied, for example at the values 
bo5 cm, g* 2 lo6 cm-I, 2r/k 2 lop4 cm, a > 1, 
4 ' 2  lo-', 15 1 -10-I. 

Two other approximations made by us reduce to the 
inequalities (3.5) and (3.10). It is shown in Ref. 11 that in the 
problem with a plane evaporation front the parameter v/ 
px - (v/IgIx) I Im 6 1/2 increases with increasing incident-ra- 
diation intensity, and in the range of problem parameters of 
interest it takes on values in the interval 10-3-10-1. The 
values of U and A W. /c, are in the range 1-3 eV. Assuming 
IIm 5 I - lo-', T .  -(3-5)10-I eV, and 4 ' 2 lo-' we find 
then that at not too high incident-radiation intensities the 
conditions (3.5) and (3.10) are both satisfied. 

One of the important features of the results of the pre- 
ceding section is the conclusion that if a TE wave is incident 
on a conductor at 6 < ?r/4 the absolute value of the ampli- 
tude 6, depends on 16, - I nonmonotonically. On the other 
hand, according to the second equation of (4.13), 16, - I is a 
non-decreasing function of time at all 8. Therefore the de- 
pendence of 16 + 1 on 16 + - ( obtained by us reflects also qual- 
itatively the dependence of 16+1 on the time. Reference 1 
cites experimental data on the diffractive intensity, corre- 
sponding to the amplitude b+, as a function of the number of 
laser pulses acting on a germanium surface. The experiment 
yielded a plot with a maximum. It is important that the inci- 
dence angle 6 in Ref. 1 was 28", i.e., 6 < n/4. One can there- 
fore speak of a qualitative agreement between our results and 
the experimental data of Ref. 1. A more detailed comparison 
of the theory with experiment will be made possible by data 
at incidence angles 8 > r/4, which will confirm experimen- 
tally the theoretical conclusion that the Ib+(t ) I  plot changes 
its character at 6 = ?r/4, and accordingly that the maximum 
observed on this plot at 8 < 7r/4 will vanish. A quantitative 
comparison will become possible once data are available on 
the dependence of the diffractive intensity of scattering with 
wave-vector transfers g+  and 2g+ on the number of laser 
pulses. 

In conclusion, the authors are deeply grateful to I. E. 
Dzyaloshinskii for a helpful discussion of the results. 
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