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We consider the problem of the stability of solitary waves in a collisionless plasma. Using the 
Zakharov set of equations which describes the interaction between Langmuir and ion-sound 
waves in the "hydrodynamic limit" we show the stability of solitons under one-dimensional 
perturbations. However, the solitons turn out to be unstable against three-dimensional perturba- 
tions. We obtain estimates for the growth rate and the spatial dimensions of this instability. 

INTRODUCTION 

It is well known that localized regions of strong Lang- 
muir oscillations-standing or travelling plasma solitons- 
can exist in a collisionless plasma. In these regions the plas- 
ma density is lowered and they are essentially resonators for 
plasma waves. We shall consider one-dimensional solitons 
which were, apparently, first considered in 1963 by Gure- 
vich and PitaevskiY.' A number of subsequent papers have 
been devoted to the study of the stability of different kinds of 
plasma solitons. One should note that the study of the stabil- 
ity of solitons is of great importance for plasma physics: one 
can use stable solitons as building blocks to construct strong 
turbulence models, while the instability indicates that the 
turbulence is not the usual kind and that Langmuir collapse 
plays an important role. For instance, in 1973 Zakharov and 
Rubenchik2 showed that a standing plasma soliton was un- 
stable against three-dimensional long-wavelength perturba- 
tions. This result was later generalized by Degtyarev, Zak- 
harov, and R ~ d a k o v . ~  We note that these s t u d i e ~ ~ , ~  were 
carried out in the "static limit" approximation, i.e., under 
the assumption that the mean square ion thermal velocity u, 
was larger than the hydrodynamic velocity u, i.e., u,)u (for 
details see Ref. 4). In 1975 a paper by Schmidt5 appeared in 
which the instability of solitons moving with an arbitrary 
velocity in the "hydrodynamic limit" (u,(u) was proven. 
However, this result encountered serious objections because 
of the incorrect use in Ref. 5 of an approximate method. For 
instance, in Infeld and Rowland's 1977 paper6 it was shown 
that the result of Ref. 5 can not guarantee several necessary 
"compatibility conditions" which in the linear formulation 
are exact properties of this problem. Hojo7 in 1978 showed 
that Schmidt's assumptions (in Ref. 5 the stability of large 
amplitude solitons which are physically not described by the 
initial equations were studied, and perturbations with an 
electrostatic field strength which did not satisfy the condi- 
tion curl E = 0 were considered) were unphysical. Further 
using various modifications of the multiple scale method the 
authors of Refs. 6 ,7 came to the conclusion that the plasma 
soliton was stable against long-wavelength perturbations. 

One should, however, note that the equations describ- 
ing solitons with small amplitudes and with small propaga- 
tion velocities are asymptotically equivalent in the hydrody- 
namic and the static limits (we shall explain this in what 

follows). In that sense the results of Infeld and Rowlands and 
of Hojo contradict the conclusion about the instability of a 
standing plasma soliton reached in Refs. 2, 3. Later Laedke 
and S p a t ~ c h e k ~ . ~  showed the instability of a standing plasma 
soliton directly in the hydrodynamic limit.'' We note also 
the numerical experiment by Pereira et al.lo showing the 
qualitative presence of an instability without, however, con- 
firming quantitatively any of the above-mentioned theoreti- 
cal calculations. The reasons for these discrepancies were 
indicated in the paper by Wardrop and ter Haar" which was 
devoted to the study of the stability of solitons in the frame- 
work of a somewhat different system of equations. In fact, in 
Ref. 6 the stability of a soliton was proven relative to only a 
narrow class of perturbations and the author of Ref. 7 used 
an incorrect approximation method. As to the numerical 
calculation of Ref. 10, the reason for the lack of agreement 
between the the value of the instability growth rate and the 
results of theoretical papers was an inadequate choice of the 
initial conditions for the perturbations (for details see Ref. 
11). 

We discuss briefly the methodological side of the prob- 
lem. In Refs. 8, 9 an unwieldy formal method was used 
which is based upon the exact relation between the eigen- 
functions of the corresponding boundary value problem and 
the extremals of a certain functional. However, the magni- 
tude of the instability growth rate must be guessed by substi- 
tuting test functions into that functional. Moreover, this 
method gives little information about the nature of the insta- 
bility which makes it difficult to compare it with the results 
obtained in the framework of other methods. The variational 
method used in Ref. 3 was discussed in detail in Ref. 12. In 
this paper it was shown that the application of that method 
to the problem of the stability of stationary states within the 
framework of the nonlinear Schroedinger equation and of 
the Kadomtsev-Petiviashvili equation can lead to incorrect 
results. Further the authors of Ref. 12 reach a conclusion 
about the limited applicability of this approach to the prob- 
lem of soliton stability. As to the approach used in Ref. 11 
(which is an improved variant of the method of Ref. 7) it does 
not always give good agreement with the results from the 
Zakharov-Rubenchik method2 which in some sense is rigor- 
ous. Namely, in the framework of the procedure adopted in 
Ref. 2 one can successively calculate exact values of the coef- 
ficients of Taylor expansions of the eigenfunctions and the 
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dispersive dependences of the corresponding boundary val- 
ue problem in the vicinity of the point k = 0 (k is the wave- 
vector of the waves of the perturbation). This advantage is 
also common to the methods proposed by Han13 and by 
Janssen and Ra~mussen '~ which are close to that of Ref. 2. 

The stability of solitons against one-dimensional per- 
turbations was discussed in Refs. 15 to 17. In the static limit 
the one-dimensional evolution equations for the solitary 
wave reduce to the nonlinear Schroedinger equation which 
is integrable by the inverse scattering method;15 such soli- 
tons are absolutely stable (i.e., stable against perturbations of 
any amplitude). Using equations close to the equations of the 
hydrodynamic limit it was shown in Ref. 16 that the solitons 
are stable against infinitesimal perturbations, while in Ref. 
17 the absolute stability of standing solitons in the hydrody- 
namic approximation was proved. 

The present paper is devoted to a study of the stability of 
plasma solitons against one- and three-dimensional pertur- 
bations in the hydrodynamic limit. We prove the absolute 
stability of solitary waves of any amplitude and propagation 
speed against one-dimensional perturbations. For the three- 
dimensional problem we use the Zakharov-Rubenchik 
method to evaluate and analyze the dispersion relation for 
unstable transverse perturbations of the soliton front. We 
discuss the nature of the instability and obtain estimates for 
its growth rate and spatial scale. The results obtained agree 
for the particular case of a small-amplitude soliton with the 
conclusions of Ref. 2. 

1. BASIC EQUATIONS. STATIONARY SOLUTIONS 

To describe the interaction of Langmuir waves and low- 
frequency oscillations of the ion density we shall use the di- 
mensionless set of Zakharov equations (see Ref. 4) for the 
relative deviation of the ion density from its equilibrium val- 
ue, n = &/no, and the complex potential Y of the electric 
field of the Langmuir wave: 

The spatial coordinates (x,r, ) = (x,y,z) are here made dimen- 
sionless by dividing by the Debye radius r,, and the time t by 
dividing by the time scale for ion-sound waves, r,/c,, where 
c, is the ion sound speed. The dimensionless constant a is 
given by (m/Mi) '12,  where m and Mi are the electron and ion 
masses. The real potential of the electric field Y can, in di- 
mensional variables, be evaluated from the formula 

where w, is the electron plasma frequency, T, and q the 
electron temperature and charge. The set of Eqs. (1) is valid 
for conditions of weak nonlinearity and small ion thermal 
velocity. We note that both unknown functions are assumed 
to be smoothly varying and small in magnitude (which 
means weak nonlinearity and dispersion): 

One can find a detailed discussion of all restrictions imposed 
upon the solution of Eqs. (1) and on the plasma parameters in 

Ref. 4. 
The set (1) has a solitary-wave stationary solution: 

n (5, r,, t) =n(E), E=x-ct, 

Y (x, rlr t) =Y ( E )  exp [ i  (Qt-xr,)  I ,  x= (0, x,, x,)  , 

where n(6 ) and Y (g ) satisfy ordinary differential equations 

( 1 - c 2 ) n + x Z I Y  12+lY'12=0, (24 

[- (28aQ+3xZ)  Y ' - 2 a i c Y " f  3'4'"'-nY'] ' 

- x 2  [- ( 2 a 8 + 3 x y  Y 

- 2 a i c Y ' + 3 Y " - n Y  ] =O (2b) 

and the boundary conditions that as 6-t + a ,  n-0, Y-0. 
We introduce the characteristic longitudinal scale 1 of the 
soliton field and distinguish two limiting cases: xl) 1 and 
x = 0. Neglecting the last term in (2a) when xl) 1 and the 
first group of terms in the square brackets in (2b) we have 

n=2h ch-2 (E /1 ) ,  (34 

Y =2x-' (hp)'" ch-' ( g l l )  exp ( i a c z / 3 ) .  (3'3) 

Here 

12=3/h, h=2aQ+3x2+a2c2/3>0, 2p=1-c2>0. 

The solution (3) is a Langmuir wave with wavevector (ad 
3,x), trapped in a region of ion depletion and moving in a 
transverse direction, whileA is proportional to the nonlinear 
correction to the Langmuir frequency fl of the wave. 

When x = 0 the profile n(6)  of the ion density is the 
same as the profile (3a), while the field strength E of the 
Langmuir wave is given by the formula 

We shall call the subsonic (Icl < 1) solitons which are de- 
scribed by Eqs. (3) and (4), respectively, quasiplanar and 
planar. We note that the planar soliton in contrast to the 
quasiplanar one contains a drop in potential, i.e., 
Y ( w ) # Y (  - a). 

When describing the nonstationary evolution of a qua- 
siplanar soliton we can simplify Eq. (lb). Making the substi- 
tution 

Y = % - I $  exp [ - - i (3x2t /2a+xr, ) ]  

and expanding in the small parameter (xl ) - 2  we get 

2 a i ~ ~ - - B i ( x ,  V,$) +3A$-n$=0, 1 V Y  1 1  $ 1 .  ( 5 )  

We note that in the one-dimensional case Eq. (5) is formally 
(i.e., by renaming the unknown function, Y-E = lyx) the 
same as Eq. (lb). 

Note that when one studies the stability of a small-am- 
plitude soliton with a small propagation speed (/Z<a2, Icl< 1) 
one can in Eq. ( la)  neglect the term n,, (see Ref. 4). Substitut- 
ing n -- - I VY 1' into ( lb)  we get an equation which is the 
same as the dimensionless equation in the static limit [one 
can justify this procedure by carrying out a rigorous asymp- 
totic analysis of Eqs. (I)]. The results obtained in the hydro- 
dynamic approximation in the limit of small soliton ampli- 
tudes must thus be the same or must be asymptotically 
equivalent to the results of Ref. 2. 
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2. STABILITY OF SOLITONS AGAINST ONE-DIMENSIONAL 
PERTURBATIONS 

In the one-dimensional geometry Eqs. (1) take a very 
simple form: 

The quantity u can here be understood to be the hydrody- 
namic ion velocity. The set of Eqs. (6) conserves four inte- 
grals of motion which have a physical meaning-the mass 
M, the plasmon number N (wave action), the momentum I ,  
and the energy H: 

We note that in the expression for the momentum I the 
term I, = Judx has been dropped (bear in mind that the total 
dimensionless ion density is n,,, = 1 + n). This is allowed 
because I, is also an integral of the motion which has, how- 
ever, no special physical meaning. 

One can write Eqs. (6) in Hamiltonian form: 

We note also that the stationary Eqs. (2) (when x = 0) can be 
written in the form 

This way of writing them means that all stationary solutions 
of the set (6) which decrease as x-t f w are also stationary 
points of the Hamiltonian for fixed I and N. In that case the 
parameters c and f2 have the meaning of Lagrangian multi- 
pliers. 

To prove the stability of the soliton we use directly Lya- 
punov's theorem which is often applied for the solution of 
such problems (see, e.g., Refs. 18, 19), namely, if we show 
that one of the integrals of motion is bounded (from above or 
below) for fixed values of the others, the solution of the origi- 
nal equations which achieves this extremum [in the present 
case which satisfies condition (7) or, what comes to the same 
thing, Eqs. (2) for x = 0] is then stable. We show that the 
Hamiltonian is bounded from below for fixed momentum 
and plasmon number. To do this we at once drop the first 
(clearly positive) term in the expression for H: 

where P, 3, and J are, respectively, the other terms. The 
only possible negative term is 3. Using the Holder inequa- 
lity we find a lower limit for it: 

Using then the obvious inequality 

and applying the Holder inequality once again we have 

92- [2PN ( N J )  '"1 I", 
HZP/2-2'"N"P'"J"'+312-N3/12. 

We have thus proved an even stronger statement: the Hamil- 
tonian is bounded from below already for fixed plasmon 
number N and arbitrary momentum P. 

3. SOLITON INSTABILITY AGAINST THREE-DIMENSIONAL 
PERTURBATIONS 

The problem of the three-dimensional stability of both 
kinds of solitons reduces to analysis of the spectra of compli- 
cated non-Hermitean operators of very high order. In the 
general case such a problem is insoluble analytically. We use 
an approximate method based on Zel'dovich and Barenb- 
latt's approachz0 to a study of combusion waves and formu- 
lated in a universal form by Zakharov and Rubenchik.' The 
method consists in an expansion of the eigenvalues and ei- 
genfunctions of the operators studied in powers of the wave- 
vector of the perturbation in the long-wavelength approxi- 
mation. The calculations then simplify considerably thanks 
to a knowledge of neutrally stable modes corresponding to 
small variations in the form of the soliton as a whole. We 
consider first a planar soliton. 

1. We introduce a simplified equation describing the 
instability of a planar soliton. To do this we differentiate ( lb)  
with respect to x and act upon it with the operator which is 
the inverse of the Laplacian. We use the symbolic formula 

which is valid when 8% 44,. The operator d ; ' is, as usual- 
ly, defined here by the equation 

Taking into account only the first corrections connected 
with spatial variations we get 

As before E is here the x-component of the field strength: 
!P = a;  'E. Changing to a system of coordinates moving 
along the x-axis with velocity c, viz. (x,r, ,t )-t({,r, ,t ), 
5 = x - ct, we linearize the set of Eqs. (la),  (8) on the back- 
ground of the solution (4): 

E(E, r,, t )  = [E'(E) +cp(E, r,, t )  +icpi(E, r,, t )  I e'"', 
n(E, r,, t ) = n ( E ) + w ( E ,  r,, t ) .  

Separating the imaginary and real parts in Eq. (8) we Fourier 
transform with respect to the time t and the transverse co- 
ordinates r,. Retaining for the Fourier transforms of p, p,, 
and w the same notation we have 
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where w and k are the parameters of the Fourier transforma- 
tion with respect to t and r,; A = 2a0 ,  ,u = (1 - c2)/2; the 
operators are given by 

In obtaining Eqs. (9) we put Im E (6) =:O. This is admissible 
when we consider solitons with not too small an amplitude 
for which I<(ac)-' or, equivalently, 

Indeed, neglecting in (2b) the term 2iacE1, we have when 
x = o  

2E=0, (1 1) 

and the electric field strength of a planar soliton is given by 
Eq. (4) with a c  = 0. We shall use the approximation (10) in 
all the calculations which follow. We note also that the pa- 
rameter a< l is the ratio of the time scales of the Langmuir 
and the ion-sound waves; its maximum value a,,, 
= 2.34x lop2 is reached for a hydrogen plasma. Inequality 

(10) therefore does not restrict our considerations too much, 
but it simplifies calculations considerably. Using (10) we ne- 
glect the second terms in (9a) and (9b); eliminating pl and 
dropping terms a k 4, we get 

E (Lrp+Ew) -4a202rp+kZ[ (ZP+PE) cp+ (PE+EG) w] =0, 

p.w-kErp+icodE-' w+'12 (02 -k2 )  dEE-2~-k2dtS-2E~p=0. 

(12) 
We expand the eigenfunctions and the dispersive de- 

pendence of the boundary value problem (12) in a power 
series of the wavenumber of the perturbation: 

In zeroth order of perturbation theory we have 

By virtue of the translational invariance of the original equa- 
tions we can put (we have introduced a factor c for the sake of 
convenience) 

Such a perturbation corresponds to a bending instability of 
the soliton front ("balloon" type instability). In first order of 
perturbation theory we get 

or, using (1 1) 

where v1 is a constant, determined below, while the factor 
- i is also introduced for the sake of convenience. The solu- 

tion of this set of equations can be found explicitly. Indeed, 
starting from Eqs. (2a) and (11) one can check through 
straightforward calculations that 

The even perturbations p, and w, describe a modulation of 
the soliton amplitude in the transverse direction-a "sau- 
sage" type instability. After a few transformations we get in 
the next order 

In order that the set (13) be soluble it is necessary that 
the vector of the right-hand sides be orthogonal to all eigen- 
functions of t)e operator adjoint to Y wi!h zero Qge_nvalue. 
As 2, and 2, are self-adjoint we have Y+ = Y l Y 0 ;  one 
can easily find the eigenfunctions of this operator: 

~ e r e i  - '  is the operator which is the inverse ofL. The con- 
dition that the right-hand side of (13) is orthogonal to the 
first eigenfunction of 2 is automatically satisfied, and the 
second eigenfunction gives a condition connecting w and 17 
(from now on we drop the index 1): 

- 4 a 2 0 Z < E ' ( ~ - ' ( E ' > + ( E I I  q E ' > + ( E ' l  G I ~ ' )  

Here 
m 

p=(nZ)  = 5 n2 d t .  
- m 

In the ca~culations we have used Eq. (1 11, the fact that the 
operator L is self-adjoint, ( f li Jg) = (glL I f ), and also the 
fact that n does not depend on p. 

The missing equation for cci and 77 follows from the con- 
dition that the right-hand side of the equations of the third 
approximation ~ u s t  be orthogonal to the first eigenfunction 
of the operator Y + .  After straightforward transformations 
we get 

whereN= (E2) .  
We consider the dispersion relations (14) for c - 1. They 

have four roots corresponding to two modes, one of which 
(the high-frequency one) corresponds to pure Langmuir os- 
cillations (w, -A lf2/a), the other (the low-frequency one) to 
ion-sound oscillations (w, - 1). Making appropriate approxi- 
mations in (14) and using inequality (10) (c.- 1, il%a2) we 
have 
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Performing the very time-consuming integration we get for 
the high-frequency mode 

oLZ=- [12-7b (3)] A/8a2(3cZ+ p) --0.9A/a2 (5c2+1), (16) 

and it is thus unstable [ f (x) is the Riemann zeta-function]. 
Similar calculations for the low-frequency mode give w: > 0. 
Estimates of the maximum instability growth rate and of the 
wavevector of the perturbation for which it occurs are of 
interest. To find this it is sufficient to note that for 
k s l  -'--A ' I 2  the frequency of the perturbing waves must 
tend to the frequency of free Langmuir waves, w, z - 3k 2/ 

2a and the perturbations become stable. One concludes that 
the maximum growth rate is reached for k - 1 '  and esti- 
mate its order of magnitude: 

which is the same as the estimate of the growth rate of the 
modulational instability of free Langmuir waves (we remind 
ourselves that il is proportional to the non-linear correction 
to the frequency of the Langmuir wave trapped in the soli- 
ton; see Ref. 21). We note also that when k(l -' the "hose" 
type interchange instability dominates and when k-I - ' the 
"sausage" type instability (modulational instability) domi- 
nates. This follows from the estimates 

k-1-', cpo-A<kq,-h"/a. 

The presence of a weak interchange instability of the 
soliton distinguishes this case from the soliton in the static 
limit. To all appearances it arise because of the inertial na- 
ture of the nonlinearity in Eqs. (1)-low-frequency changes 
in the plasma density do not manage to follow the fast oscil- 
lations of the electric field of the Langmuir wave when the 
soliton front is bent, which leads to an imbalance of the 
quantities n and E. We note also that the dispersion relation 
given by Eq. (17) differs considerably from Schmidt's r e ~ u l t . ~  

As c+O only the dispersive dependence of the stable 
low-frequency mode (1 5b) changes, while Eqs. (1 5a) and (16) 
remain valid, now even for solitons of arbitrary amplitude 
[inequality (10) is satisfied identically when c = 0] while the 
instability is purely modulational in character. Summariz- 
ing the results we write Eq. (17) in dimensional form: 

where 1 Eel is the dimensional amplitude of the electric field 
of the soliton. Equation (18) is valid for Z.-c,, 
1 ~ ~ ' , 1 ~ $  T2m/q2<M and when2 = 0for any valueof I&, (Z is 
the dimensional soliton speed). One must note that the dis- 
persion relation given by Eq. (1 5a) is the same for c = 0 as the 
result obtained in Ref. 2 for a soliton in the static limit due to 
stochastic effects in the whole range of soliton amplitudes 
(and not only whenil(a2 as might beexpected). This fact can 
be traced when one studied both problems directly using the 
eigenvalues for c = 0. 

As a result of the instability the soliton breaks up into 
collapsing blobs with transverse dimensions of the order of 

the longitudinal one which finally leads to the collapse of 
Langmuir waves (see Refs. 3, 4). 

2. The case of the quasiplanar soliton is physically less 
interesting and we shall not dwell on it in detail. Whenil$a2 
for perturbations moving in a direction at right angles to the 
wavevector x of the Langmuir wave (0 = .rr/2,0 is the angle 
between x and k) the high-frequency mode is unstable: 

When the angle 0 differs from the value 0 = 71/2 the low- 
frequency mode vanishes altogether-there are two branches 
of unstable high-frequency oscillations (we remember that 
%)A 

(mar+ 3% cos 0)z--6hp/ (5c2+1) (0, y,-hla, 
o I I Z - - 1 8 ~ 2  cos2 0 ( I - C ~ ) ~ / A ( ~ C ~ + I )  (0, ym-x. 

when A(a'I2, cf 0 the quasi-planar soliton is the usual en- 
velope soliton; this case was analyzed in Ref. 2. 

As a result of the instability a collapse of the envelopes 
of the blobs with monochromatic filling takes place which 
distinguishes this case from the case of the planar soliton in 
which the collapse strictly of Langmuir waves takes place. 
The qualitative nature of the instability is completely similar 
to that of the proceding case. 

We have thus established that although plasma solitons 
are stable against one-dimensional pertrubations they turn 
out to be unstable in the three-dimensional case. 

The author expresses his gratitude to V. E. Zakharov 
for useful discussions and to A. M. Rubenchik for critical 
remarks. 
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