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The electron structure of the bands made up in semimetals by atomicp states is determined for 
bismuth from experimental data on the carriers. A comparison is made with the results of optic 
measurements and pseudopotential calculations. Comparison of IV-VI semiconductors with bis- 
muth confirms the notion that they have a common cubic parent phase. 

1. INTRODUCTION were accurate within the framework of the approximation 

A general approach that relates the electron and employed. It was also necessary to introduce some changes. 

phonon properties of IV-VI semiconductors, as well as of 
group V semimetals, with the features of their crystal struc- 
ture was developed in Refs. 1 and 2. The theory is based on 
an idea advanced in Ref. 3 that the space lattice of a group-V 
semimetal can be obtained from a simple cubic one by a small 
shift of alternating layers of atoms located in planes perpen- 
dicular to the trigonal axis (doubling of the period), followed 
by rhombohedral deformation of the two resultant sublat- 
tices. The role of the small perturbation is played in IV-VI 
semiconductors by the ionicity difference between the atoms 
A and B. 

In Ref. 3 were considered the vicinities of those Bril- 
louin-zone points where band extrema can arise after the 
doubling of the period, and only a term that is doubly degen- 
erate at these points was taken into account. Considerations 
connected with band filling, however, point out the need of 
allowing for one more closely located term. In addition, in a 
number of cases, for example in arsenic, the band extrema 
are displaced from symmetric points. 

To cope with these difficulties, a tight-binding method 
was used in Ref. 2. This method makes it possible to take into 
account in the simplest manner the translational symmetry 
of the cyrstals. In contrast to pseudopotential calculations, 
that require a large volume of computer calculations and are 
not accurate enough (the effective masses calculated in Ref. 
4 for bismuth differ from the measured ones by a factor of 
three), the results were obtained in analytic form. They are 
expressed in terms of several constants that have the mean- 
ing of overlap integrals. 

In the present paper we obtain, by comparison with the 
experimental data, the parameters of the theory for bismuth. 
It is found that those parameters that bismuth has in com- 
mon with IV-VI semiconductors coincide. This coincidence 
should be regarded as proof of the validity of the premise 
that they have a common cubic parent phase. The shape of 
the Fermi surface in the vicinity of the points T and L is 
obtained and the agreement between the calculated and ob- 
served extremal sections and cyclotron masses is shown. The 
parameters obtained are used to calculate the electron spec- 
trum for the principal directions in the Brillouin zone and to 
interpret the optical-transition lines observed in the interval 
0.7-4.5 eV. Since the comparison with the experimental data 
was accurate to within several percent, we needed, in con- 
trast to Ref. 2, expressions for the observable quantities that 

2. EFFECTIVE HAMILTONIAN. SPECTRUM AT SYMMETRIC 
POINTS 

According to Ref. 2 the Hamiltonian of a group-V semi- 
metal is of the form 

where all the quantities are 6 X 6 matrices in the coordinate 
(x ,  y,z) and spin indices). The matrices 8, xv, 2, and ii are 
diagonal in spin (we do not write out the corresponding unit 
matrix), and take in terms of the coordinate indices the form 

u,,=u*s,+u2 ( s ~ + s , ) ,  uzv=u3 (s ,+sy) ,  (2) 

where s, = sin k, a, c, = cos k, a, etc.; a is the period of the 
cubic parent phase. In (2), go, and 6, are the overlap integrals 
with the atoms in the first coordinate sphere in the cube, 
while vO, v,,  and v2 are the overlap integrals in the second 
sphere. For a reason discussed in detail below, account is 
taken also of an overlap integral 7, in the third sphere. The 
quantities u and E describe respectively the doubling of the 
period and the rhombohedral d%formation. 

The spin-orbit interaction A has the matrix elements 

A,,=-iAo,/3, (3) 

where uZ is a Pauli matrix. The remaining nonzero elements 
are obtained from (2) and (3) by cyclic permutation of the 
indices. 

In addition to (1) we shall use also another form of the 
Hamiltonian: 

which is obtained by the unitary transformation 

where i. is a 6 x 6 matrix with diagonal elements c = (1 + i)/ 
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2. The representation (4) is convenient for the analysis of the 
spectrum in the vicinity of points Tand L (the Brillouin zone 
is shown in Fig. I), since at these points themselves 
6 = E l  = 2, = 7j2 = 0, and in their vicinities the off-diagonal 
blocks of the matrix (4) can be regarded as a perturbation 

A 

V=kp, (5) 
proportional to a small deviation of the quasimomentum k. 

Expressions (2) are written in the rectangular basis a: 
k,, ky and k, are orthogonal coordinates in it. The transi- 
tion to the real deformed lattice with basis a; is effected with 
the aid of the strain tensor E,,, (Ref. 5, p. 38 1 of Russ. origi- 
nal): 

aif  = (Gij+cij) a,', (6) 

where E,, = 0 and E~~~ = 0.02 for bismuth, and the corre- 
sponding a = 3.289 A. These values were obtained from the 
known period a, = 4.746 A and the angle a = 5719' 
between the elementary lattice vectors with the aid of the 
formulas 

Conversion to the deformed basis means the substitution 
k,+k, + E,, (ky + k,) in Eqs. (2) with cyclic permutation 
of the indices for the two other projections. 

We consider the most interesting points r, T, and L of 
the Brillouin zone. 

Point r--center of zone. Here li = 0 and the eigenval- 
ues of the matrix in the upper left corner of (1) give the terms 
of the odd states 

I',,-=bI- bz+A/3, 

I',-(I, 2 )  =,bl+b2/2-A/6+ [ (bz+A)2+8b22] lh/2, (8) 
where b ,=6 ,+26,  + T ,  + 2 ~ , ,  ~ = E , + ~ E ~ + E Z .  The 
even states are obtained from this by reversing the signs of& 
61, El, and E2. 

Point T-the cubic coordinates of this points are 

(l,l,l)77/2a. The odd levels T,, T, (1,2) are given by the 
same formulas (8), in which b, and b, are replaced respective- 
ly by 

C I = U ~ + ~ U Z ,  cz=qof eoS2us. (9) 

It is known that a hole extremum is located at the point 
T. The effective masses mll and m, longitudinal and trans- 
verse relative to the trigonal axis, defined in the usual man- 
ner: 

w=w ( T )  -kl12/2ml,-k,2/2m,, (10) 

were measured for this extremum together with the spin 
splitting factor y = ]w , /w ,  1, which is the ratio of the spin 
and cyclotron splittings w, and w, in a magnetic field for the 
case when the field is parallel to the trigonal axis. A contri- 
bution to the effective masses is made by second order of 
perturbation theory in V [Eq. (5), and also by the quadratic 
terms of the expansion of the trigonometric functions in li 
and 7j [see (2) and (4)]. For the level T,, we obtain 

where 

A = V , ~ { F ~ [ T ~ ~ - - T ~ +  ( I ) ]  -l+s"' [T45--To+ ( 2 )  I - ' I ,  
B = V ~ { ~ " ~ [ T ~ ~ - - T ~ ~  ( 1 )  1-'+E2 [TLs--2'6' ( 2 ) 1  -'I,  

C = ~ V V ~ ~ " E { [ T ~ ~ - - T , +  ( I ) ]  -'-[T45--Ta+ ( 2 ) ] - ' } ,  (12) 

and for the level T, '(1): 

-1/2mll= ( p ~ s " + p ~ ~ C " ) ~  [TB- ( 1 ) - T o + ( l )  I-' 

+ ( ~ s C " - ~ ~ S C ) ~ [ T ~ -  ( 1 )  

- T , + ( 2 ) ]  -'+a+$ ( 3 2 - I ) ,  

-1/2m,=A+B+1a~+$ ( 3 2 - I ) ,  

y=IA-B-c2/2mol IA+B 

+ a l + $  (3cz - I )  1 -', 

where 

A= [ ( S V ) ~ + ( C V ~ ) ~ ]  [ T o - ( 1 )  -T45+] -', 

B = V ~ ~ { ( C ~ - - ~ S ) ~ [ T ~ -  ( 1 )  -TB+ ( I )  I-' 

In these expressions, the term with the electron mass m, 
takes into account the magnetic moment of the p state; the 
following notation was introduced: 

FIG. 1. 
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To obtain 5 and Z. it is necessary to reverse the signs of u,,  u,, 
and u, in the expressions fors and c. The same substitution in 
(1 1) and (13) yields the masses and the y factor for the even 
terms. 

Point L-its cubic coordinates are ( - l , l ,  l).rr/2a. The 
evenlevelsL +(l),L +(2),L +(3), whicharedoubly degenerate 
in spin, are defined by the cubic equation 

where 
a=-Sp w, 

The column eigenvector corresponding to the level 
L +(n) and to the "up" spin contains three nonzero elements: 

where Nn is determined by the normalization condition 

Corresponding to the "down" spin is the complex-conjugate 
column cz . The odd eigenfunction Z., and the correspond- 
ing levels L -(n) are obtained by substituting u+ - u in ( 16). 

It is known that at the point L there are two close levels 
of opposite parity, L +(2), and L -(2) in our notation, and the 
distance between them 

is small both compared with the Fermi energy and with the 
remaining energy gaps. Therefore the k-p expansion in the 
vicinity of the point L should be carried out jointly for both 
bands. 

The matrix elements that connect these two spin-degen- 
erate bands can be written in the form of a 2 x 2 matrix: 

where the 1 axis is chosen along a twofold symmetry axis of 
the point L, the 3 axis coincides with the T L  direction, i.e., 
with a threefold axis in the cubic lattice, and the 2 axis is 
perpendicular to 1 and 3. The matrix elements vjn, (we shall 
need hereafter not only vj2, ) are obtained in two steps. First, 
we expand the off-diagonal blocks of (4) in powers of k in the 
vicinity of the point L and find the explicit form of the per- 
turbation (5). Second, we transform to the eigenfunctions c, 
and Z,, and separate those matrix elements that connect the 
levels L + (n) and L -(m). We get 

The effective Hamiltonian of the two-band approxima- 
tion is 

and the energy origin is halfway between L +(2) and L -(2). 
For the spectrum we obtain the Kane equation 

the application of which to electrons is bismuth is attributed 
to Lax. One of the principal values of the quadratic form It 
that depends on k,  and k,  turns out to be small. Small E ,  and 
E~ were therefore retained in v,, alongside the large lo and 
6,. This is why the term with 7, was retained in the Hamil- 
tonian (1). Added to the term ~ , / 2  is the contribution of the 
second-order perturbation theory V (5): 

and also the quadratic terms in the expansion of the trigono- 
metric functions from li and 7j (2): 

H ~ ' ~ ~ = ~ ~ [ D ( ~ ~ ~ ~ ( ~ + c ~ ~ ~ ) / ~ + E c ~ ~ ~ + F c ~ ~  Re 4 6  

+ Gc,, Im ci2/3 .2'"] ,  (22) 
where 

D=- (qo+us) (21i2+ki2) +qi (2112+21i12-ki2) 

+q2 (21i2+ 6L1l2-ki2) 

-u1 (112-122+k12/2) -UZ (31i2-L~z+3ki2/2),  

E= (qofu3-u i /2 )  (L2+k12 /2 )  +qilllZ+qZ (1i12+122-k12/2) 
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We combine (21) and (22) to form 

and denote the corresponding term added to - ~ , / 2  in (19) 
by p H , .  

The left-hand side of (20) takes thus the form 

If the right-hand side is left unchanged, we obtain the Cohen 
e q ~ a t i o n . ~  Since, however, (24) contains terms of fourth or- 
der in k, we must add terms of the same order also to the first 
part of (20). They appear above all as a contribution of third- 
order perturbation theory in V (5) to t and v (the general form 
of the third-order correction in the degenerate case is given 
in Ref. 5, p. 179), and the higher-order terms of the expan- 
sion of the trigonometric functions turn out here to be less 
significant. We denote this contribution by 

and obtain ultimately the dispersion equation 

( E , / ~ + H , - o )  ( - ~ , / 2 - H , - o )  

=Qliki~Qzzkz2+2Qz~l~zk3+Q33k3ZfP ( k 4 ) .  (26) 
Some coefficients of (26) were determined by McClure 

and Choi7 by comparison with experimental data. In our 
case all the a, Q and P in (26) are not independent, and are 
uniquely expressed in terms of the parameters of the Hamil- 
tonian (1). To find them we present expressions for the ex- 
perimental quantities. The most extensive and accurate in- 
formation is available at present on the cyclotron masses and 
areas of the extremal cross sections.' 

To this end we transfer all the terms with to the right- 
hand side of (26). The coefficients of the quadratic terms turn 
out then to depend on the energy variable w .  For example 

4 3 3 = Q 3 3 +  [ ( ~ + E g / 2 )  ~ 3 3 ' -  ( W - E , / ~ )  a 3 3 V ] / 2 m 0 .  (27) 
The coefficients P acquire an increment connected with a: 

~ ~ ~ ~ ~ = P ~ ~ ~ ~ + t l ~ ~ ~ a ~ ~ ' / 4 m ~ ~ .  (28) 
By rotating the coordinates in the 23 plane through the angle 
P? 

tg 2 c p = q z 3 /  ( q 3 s - q z z ) ,  (29) 

we refer the form bilinear in k ,  and k,  to the principal axes. 
We denote the principal axes gap by qj, , qf, , qf, =q,,, with 

where the z, axis is chosen in the elongation direction of the 
equal-energy surface (26). It is known from experiment that 

all the q; are positive and that q, /qy - 0.1; for brevity, here- 
after x ,  y,,z-+x, y,z. 

The terms with p are relatively small. All except p ,  
(since the characteristic value k, -w/q,  is large) can be re- 
garded as small when the sections and masses are calculated. 
The area of the central intersection by the plane k, = 0 will 
be designated as S, , and the two other principal sections as 
Sy and S, . It can be easily seen that the coefficients with odd 
numbers of z enter quadratically. Omitting them, we get 

4 

wherep are taken in dimensionless form: 

P a 6 r a ' p a s r a  ( 0 Z - ~ s Z / 4 )  l q a q 6 q ~ q b .  (32) 
The upper limitz, is determined from the conditionf(z,) = 0, 
and it is known from experiment that there exists onez,. The 
integral (3 1 )  is expressed in terms of complete elliptic inte- 
grals of the first and second kind. 

The cyclotron mass is determined from the formula 

mx = z;; dk,  1 a o l d k ,  1 -', 
I f 

where the derivative must be calculated with the aid of (26), 
with allowance for the dependence of the small coefficient q, 
on w. We obtain 

I (02-"')"" w=- 
9.0 4 d o '  

Actually, the corrections that distinguish Q from q (27) are 
small, and the angle of inclination of the "ellipsoid" (29) 
changes little with changing Fermi energy o. Therefore w 
can be calculated with good accuracy by using expression 
(27) transformed to the rotated axes. It yields 

The section Sy and the mass my are obtained from (3 1)  
and (33) by the obvious permutation of the indices, while the 
section S,, the mass m,,  and the ellipsoid volume V, are 
written out explicitly: 
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If the dimensionless coefficient p, is also small compared 
with unity, Eqs. (3 1) and (33) become simpler in analogy with 
(35) and (36). For example, 

3. COMPARISON WITH EXPERIMENT 

Our problem is to determine the parameters of the Ha- 
miltonian (1) from experimentally known data on the Fermi 
surface in bismuth. The hole section is well described by the 
quadratic approximation (10) (see ~del'man's review8). The 
measured cyclotron masses, which are connected with the 
effective masses by the relations 

m3=mlr mi,  2= (mllm,)"2 

(the subscripts 1,2, and 3 correspond to the direction of the 
magnetic field relative to the symmetry axes of the point T), 
and also the extremal sections and the y factor, are given in 
the third column of Table I. Also given is the Fermi energy 
reckoned from the bottom of the zone and calculated from 
the measured m and S with the aid of the formula 
E: = S/2n-m. 

The experimental data on the electronic section are also 
gathered in the third column of Table I. The angle 8 of incli- 
nation of the ellipsoid to the basal plane is given besides the 
cross sections and the masses for the three principal direc- 
tions. The angle g, (29) is measured from the TL direction 
and is connected with 8 by the relation 

~cp=0-90"+arccos '/3=-13.090. (39) 

Table I gives also the values of the gap E,, obtained in Ref. 9 
by extrapolating the data on the semiconducting Bi-Sb alloys 
with low antimony density. We agree to choose the sign of 
the gap in the following manner. It is known from experi- 
ment that the coefficients a:, and a:: of the quadratic forms 
H, and H, [see (23)] in terms of the principal axes (29) of the 
ellipsoid are of like sign and can be regarded as positive if the 
supscripts c and v in (26) are suitably chosen. The signs of E, 

is then also uniquely determined: at E, > 0 the band higher in 
energy at the point L is the one (L +(2) in our notation) for 
which the quadratic form H, has a positive coefficient a:,. 

We have thus at out disposal 12 independent experi- 
mental quantities: from among the data that determine the 
dimensions of the Fermi surface we can specify, besides the 
three electron sections, the Fermi energy E: of the holes or 
else the condition that the electron and hole densities are 
equal. The parameters of the Hamiltonian (1) were obtained 
by finding the minimum of the function 

f=C ( y t h e o r l ~ e x p  - I )  '3 (40) 
where ut,,,, and ye,, are the calculated and experimental 
values of any one of the foregoing 12 quantities ( y was cho- 
sen to be tan 2p (29) in place of 8 ). The first attempt to solve 
the problem has shown that, first, at the point r the valence 
band and the conduction band are not far from the Fermi 
level, and carriers can appear in the vicinity of this point at 
definite values of the parameters; second, the spin-orbit cou- 
pling A can vary in the interval 1.6 + 0.3 eV without sub- 
stantial deterioration of the agreement with experiment. We 
have therefore taken into consideration the results of optical 
measurements, 'o.'l according to which the gap in r amounts 
to 0.7 1 eV, and in addition we put A = 1.61 eV, a value taken 
from cal~ulations'~ for the free atom. It is known that the 
spin-orbit interaction is determined by small distances in the 
atom, and A should not change when a crystal is considered. 

We present below the set of parameters (in eV) of the 
Hamiltonian (I), obtained as a result of the descirbed opti- 
mization: 

A P o  E i  ~2 TI: 
1,610 3,389 -1,053 0,149 4,092 

TABLE I. Carrier parameters in bismuth. 

Carriers I Parameters I Experiment Present wort I 141 I 1131 

Holes 

Electrons 

Note. The values of m are given in units of m,, Sare in units of gZ.cm2/s2, E in MeV, and 6 in 
deg. The experimental values of E, were taken from Ref. 9, and all others from Ref. 8. 
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TABLE 11. Parameters of two-band approximation in L. 

The values of vo, q, ,  and&,, which are not listed here have 
little effect on the known experimental data and are subject 
to large uncertainties. All that can be indicated are the ap- 
proximations v o ~ O . O 1  eV, e2 ~ 0 . 1  eV, and I - (v l  ( -0.05 
eV. If these parameters are set equal to zero, we obtain for 
the observable quantities the values listed in the fourth col- 
umn of Table I. Nonzero vo, vl ,  and E, yield the some- 
what better values my = 0.098m0 and 0 = 7.63", which 
hardly change the remaining quantities. 

We note that we have left out of (I), from the very begin- 
ning, one more overlap integral with the third coordination 
sphere, which makes a contribution of the form v4c, cy c, to 
the diagonal matrix element. It does not manifest itself at the 
points T and L, since it is of third order in k here, and at the 
point r it is a small increment compared with 6. 

It is of interest to compare the presented set of param- 
eters of the Hamiltonian ( 1 )  with the corresponding values 
for IV-VI semiconductors. It was observed in Ref. 1 that lo 
does not depend on the chemical composition and varies 
with the lattice period as 

Parameters I Present work 1 171 ( 1'31 1 l l3l  

Eo [eV] =3.725-1.40 (a-3,00 A). 

Substituting here the value a = 3.289 corresonding to bis- 

0,496 
0,441 
0,0391 
0,80 
2,78 - 
- 
- 
- 
- 

+5,4 
18,7 

Qx 
Qu 
Qz 

azzC 
a,:" 
ayzC 
auzV 
Pxzz z 

P u v z  
P z z z z  

&g 
&ae 

muth, we obtain <, = 3.32 eV, which is close to that given 
above. With respect to the remaining parameters it is known 
that - 0.85 eV independently of a and of the composi- 
tion, and all the 7 are close to 0.1 in absolute value. 

The last two columns of Table I contain the results of 
the pseudopotential calculations. Compared with Ref. 4, ac- 
count was taken in Ref. 13 of pseudopotential screening. 
This yielded better values of the cyclotron masses, but the 
lower valence levels agree less with experiment. 

The most important parameters of the two-band ap- 
proximation (26) at the point L are listed in Table 11. The 
values of Refs. 7 and 9 were selected as to describe best the 
experimental data. The influence of the term with P,,,,, 
which compensates for the contribution of the product 
afzazz [see (28)], is quite unexpected. For any of the variants 
considered by us, in which account was taken also of vO, vl ,  
E, ,  E ~ ,  the dimensionless coefficient Ip, I < 0.03 [see (32)l; it 
is equal to 0.1 at P,,,, = 0 and at the same values of af, and 
a::. The two other coefficients, which characterize the devi- 
ation from the equal-energy surface from ellipsoidal, have 
valuespyyzz =: - 0.07,p,, --, - 0.01. As a result, each term 
of fourth order in k alters the principal sections and the 
masses by not more than 2%. This explains in fact why the 

TABLE 111. Frequencies of optical transitions in the 0.7-4.5 eV range. 

0,986 
0,744 
0,0744 
0,66 
1,15 - 
- 
- 
- 
- 

-9 
347 

0,905 
0,811 
0,0881 
0,359 
0,901 

-1,194 
-2,002 

1,076 
-7,591 
-0,106 

-11,3 
35,19 
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0,995 
0,748 
0,0704 
0,676 
0,735 - 

-0,145 
-15,9 
-17.0 - 
-11,4 

35.1 
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0,69 
0.78 0,72 0,81 
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420 
135 

transition 

Near r 
rrs+ -+ ra-(2) 
re+ (I) -+ re- (2) 

{ T45- -t Trs+ 
L- (2) -+ L+ (1) 
L+ (2) -+ L- (I) 

1,55 

2,10 

2,45 

2,96 
- 

4,70 

value 

0,58 
0,76 ( l )  
1,M 
1,13 (11) 
1,15 
133 

1,05 
1,35 

1,15 
- 

1,52 

2,lO 

2,45 

236 
4,05 
4,70 

1,47 

1,92 

ra+(1) -+ r4s- 
4,oo re+ (2) -+ re-  (4) 
4,38 



FIG. 2. 

$ectron Fermi surface is so highly ellipsoidal, as noted in 
Edel'man's re vie^.^ More noticeable (about 1 %) is the devi- 
ation of the spectrum from par%bolicity, due to the influence 
of the coefficients a:, and a:: on q, [see (27) and (34)] and are 
manifest in the cyclotron masses. 

The parameters of the Hamiltonian (1) were used in its 
exact computer diagonalization for the principal directions 
in the Brillouin zone. The electron spectrum obtained in six 
bands that are doubly degenerate in spin are shown in Fig. 2. 
It can be seen that the electrons are indeed in L and the holes 
in T (the term T& ), and there are no other carriers. 

We present the values (in eV) of the levels at the sym- 
metric points of the Brillouin zone (reckoned from the Fermi 
level): 

1,1455 T45+ 
0,8310 Ts- ( 1 )  
0,3906 Tat. ( l )  
0,0108 Tb5- 

-1,3668 Ta- (2) 
-1,7371 Taf (2 )  

1,2911 L - ( I )  
1,1198 L+ (1 )  

-0,0295 L- (2 )  
-0,0408 L+ (2 )  
-1,4960 L+ (3 )  
-1,5707 L- (3 )  

Compared with the pseudopotential calculations at Tand L, 
the sequence of the two lower levels is reversed. In all other 
respect the qualitative picture at T is similar, and at L the 
level L -(2) is lower than L +(2), unlike in Refs. 4 and 13. 

In Table I11 are compared the energies of the optical 
transitions in the interval 0.7-0.4 eV, observed and calculat- 
ed by us (the required polarization of the electric field is 
indicated in the parentheses). Our interpretation differs from 
that given in Refs. 10 and 11 on the basis of the calcuation of 
Ref. 4. For example, to singularity at 0.88 (0.80) eV is attri- 
buted in Ref. 10 to the T ,  T ,  transition (the calculated 
value4 is 0.915 eV), even though this transition is parity- 
forbidden. The transition at 1.35 eV is also explained, but the 
cause of the singularity observed approximately at 3.30 eV is 
not clear. The situation might be clarified by analysis of the 
polarization dependence, but no such measurements have 
been made. A remark made in Ref. 11, that its authors were 
unable to observe transitions connected with the point T, is 
puzzling, inasmuch as this point has the same symmetry as 
the point r, whose contribution was observed. An important 
role might be played also by an elucidation of the tempera- 
ture dependence, as well as by experiments on doped sma- 
ples, for in this case one can expect a substantial frequency 
shift of the transition connected with the Fermi level. 

The authors thank S. V. Repin for help with the com- 
puter calculations and A. A. Abrikosov for a discussion of 
the work. 
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