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We calculate the transverse impedance of 'He for a general form of thef-function with a large 
number of harmonics. We study the anomalies of the impedance which are connected with the 
pressure threshold for the propagation of transverse zero sound. We determine close to the 
threshold the anomalous temperature dependence and the magnetic-field dependence of the real 
and the imaginary parts of the impedance for a zero-sound propagation speed close to the Fermi 
speed. We discuss the possibility of explaining the observed low-temperature high-frequency 
anomaly of the impedance on the basis of an additional relaxation mechanism connected with the 
emission of zero-sound quanta when quasiparticles collide. 

1. INTRODUCTION 

One of the most striking quantum features of normal 
liquid 3He is the possibility1 of the propagation of weakly 
damped high-frequency oscillations of the transverse-sound 
wave-kind which do not exist in ordinary liquids. Experi- 
mental work in this field reduces b a ~ i c a l l y * ~  to a measure- 
ment of the transverse impedance of 3He. Any theoretical 
description of the propagation of transverse zero sound must 
thus be accompanied by the calculation of the transverse 
impedance. 

The transverse impedance contains contributions both 
from the transverse zero sound and from the usual quasipar- 
ticles in 3He and a determination of the parameters of the 
zero-sound spectrum is then possible only through a quanti- 
tative comparison of the experimental data with theory. Un- 
fortunately, the contributions from the transverse zero 
sound and from the free quasi-particles to the impedance Z 
are of the same order of magnitude and are as a rule charac- 
terized by the same temperature and frequency dependence. 
In fact, the dependence of Z on the frequency w and the 
temperature Tis determined for T<TF (TF is the degeneracy 
temperature) solely by the value of the parameter wr (T a 1/ 
T 2  is a characteristic relaxation time). The interpretation of 
the experimental data on the transverse impedance on the 
basis of some approximate theoretical model is thus some- 
what arbitrary and does not always lead to a reliable result. 
When we evaluate the transverse impedance of 3He we 
usually restrict our~elves,~- '~ because of technical difficul- 
ties, to taking into account merely two harmonics of the Fer- 
mi-liquid function, equating all other harmonics to zero the 
collision integral in the T-approximation; is used for the de- 
termination of the damping. We show in the present paper 
that in a certain range of pressures the transverse impedance 
has singularities which lead to quite specific dependences of 
Z on the temperature and on the external magnetic field H.  
This may facilitate the identification of the transverse zero 
sound. All calculations are performed in a general form 
without choosing a particular form of the Fermi-liquid func- 
tion. However, the analysis of the obtained general expres- 
sion for the impedance is relatively simple only near the sin- 
gularit y. 

According to the experimental data the propagation of 
transverse zero sound is apparently impossible at low pres- 
sures (the wave propagation velocity c turns out to be less 
than the Fermi velocity u,). The existence of zero sound 
turns out to be possible only starting from some threshold 
pressure of the order of 8 atm. For pressures close to the 
threshold pressure the wave velocity is close to v, and there 
occurs in the theory a natural small parameter (c - uF)/ 
vF < 1. Taking such a small parameter into account leads to 
the appearance of anomalies in Z (T,H) and facilitates the 
analyzing of the general expression for the impedance with 
an arbitrary f-function. An important circumstance is then 
the fact that close to the threshold even at low temperatures 
T<TF the set of quasiparticles moving in phase with the 
zero-sound wave and given by the value 

may turn out not to be small and it is necessary to take into 
account the collisionless damping of the zero sound.14 

In the next section of the paper we obtain for w r + ~  an 
expression for Z at arbitrary form of the f-function, while in 
the vicinity of the singularity we separate explicitly the 
anomalous temperature dependences of I m Z ( T )  and 
Re Z ( T  ). These results can easily be generalized to the case of 
an external magnetic field as the results turn out to be sensi- 
tive to a weak field only close to the singularity. Correspond- 
ingly we determine in the third section the function Z (H,T). 
In the fourth section we generalize the expression for Z for 
arbitraryf-functions to the case of finite wr. In the last sec- 
tion of the paper we discuss the possibility of explaining the 
experimentally observed low-temperature, high-frequency 
anomaly of the impedance at high pressures on the basis of 
taking into account the mechanism proposed by Landau' for 
the damping of zero sound, connected with the emission of 
zero-sound quanta in quasiparticle collisions. 

2. TRANSVERSE IMPEDANCE AS wr-m. 

To determine the transverse impedance as ~ T + W  we 
shall solve the collisionless kinetic equation by the Wiener- 
Hopf method using a calculation scheme close to that in 
Refs. 5 to 7. A principal differences lies in the fact that we 
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shall give the discussion for a general form of the Fermi- 
liquid function and shall not restrict ourselves to merely the 
first harmonics. The main difficulty is then connected with 
the fact that as the result of the factorization of the nonde- 
generate kernel of the integral equation the kinetic equation 
reduces to an infinite set of equations for which there does 
not exist a consistent general way of solving it by the Wiener- 
Hopf method. However, one can in this case succeed to con- 
struct a recurrence procedure for reducing this set to a single 
equation and the analysis of its features can be done relative- 
ly easily and one can now use for its solution the Wiener- 
Hopf method. 

Another feature of the calculations performed here is 
that we take into account the possibility that the system may 
be close to the threshold for propagation of transverse zero 
sound: 

Far from the threshold (1) the temperature dependence of 
the impedance is as or+ CC, connected only with a small 
temperature spread of the quasi-particle equilibrium distri- 
bution function no(&) and reduces to a small correction of the 
order ( T  /TF)'< 1 which we shall neglect. Close to the thresh- 
old (1) there occurs an anomalous temperature dependence 
connected with the appearance of singular integrals of the 
kind14 

where E and v are the quasi-particle energy and velocity 
while f is some smooth function. When condition (1) holds, 
when 1 - x -a the real part of the integrals (2) are of the 
order allnla/ I %a and the imaginary part is determined by 
exp( - aTF/T).  This means that in all expression, apart 
from the integrals (2) close to the threshold ( I ) ,  one can al- 
ways assume that dn,Jd& = - S(E - E,) and close to the 
threshold we must use a more exact expression for the equi- 
librium distribution function when evaluating the imaginary 
parts of (2). Moreover, even in the integrals (2) when condi- 
tion (1) holds, if we neglect contributions of order a in com- 
parison with a In a we can, for any smooth function f in (2), 
replace& by E, in the argument. Far from the threshold f (E )  is 
also changed to f(&,) as in that case always ano/ 
a& = - S(& - E ~ ) .  

The kinetic equation for quasiparticles with a general 
form of f-function is an integrodifferential equation with a 
nondegenerate kernel. An expansion of the f-function in Le- 
gendre polynomials reduces this equation to an infinite set of 
integral equations with degenerate kernels. A Laplace trans- 
formation transforms this set to a set of linear functional 
equations. We reduce this set to a single functional equation 
with singularities determined by integrals of the type (2). The 
formal solution of this equation is easily obtained by the 
Wiener-Hopf method. Far from the threshold a direct use of 
this solution is very difficult since the higher harmonics of 
thef-function are not known at the present time and we shall 
show that the higher harmonics make an appreciable contri- 
bution to Z. However, if condition (1) holds the obtained 

solution can be used for a comparison with experiments 
thanks to its anomalous temperature dependence. 

We shall evaluate the transverse impedance Z of the 
half-space z > 0 of normal liquid 3He for oscillations excited 
by transverse oscillations (in thex-direction) of the boundary 
plane z = 0 with a frequency o and a velocity u (u, = u, 
= 0, u, =u). The linearized collisionless kinetic equation 

has the form 

a al~o  
-io8n+u COS 0 dz  -{bn - -5 de f (p, p') bn' dr'} -0, 

where Sn(p,z) is the deviation of the quasi-particle distribu- 
tion function from the equilibrium one no(&), Sn' = Sn(pl,z), 
d T  = 2d 3p/2?rfi)3, 6' is the angle between the momentum p 
and the z-axis, f (p,pl) is the Fermi-liquid function averaged 
over spins, while the time-dependence is given by the factor 
exp( - iot ). 

The boundary conditions for the distribution function 
are that there be no perturbations for incoming particles as 
z--+ cc : 

n(cos 0<0, z-m) =0 (4) 

and that the reflection of the quasi-particles from the moving 
boundary z = 0 be diffuse: 

be = f (p, pl) Snl dr'. 

In fact, for a dissipative medium the boundary condition (4) 
can be replaced by 

The Fermi-liquid function f depends for an isotropic 
medium only on the quantities Ip/, (p'l, and the angle x 
between the vectors p and p': 

cos ~ = c o s  0 cos O1-tsin 0 sin 0' cos (cp-cp'), 

and the equations for oscillations with different azimuthal 
numbers separate. In that case the boundary condition (5) 
distinguishes only oscillations with azimuthal number 
m = 1. According to what we said above we must put 
(p(  = (p' 1 = pF in the argument off and use the normal ex- 
pansion in Legendre polynomials 

where according to the folding theorem 

PI (cos x) 
1 

with y = cos 8, y' = cos 6 '. After multiplication by q, and 
integration over p, Eq. (3)  becomes 
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dn 1 ano 1-1 
-ian,+vY -In, - -- 

dz 2s in0 de 
F k- 0 

X Z;pf1 ( y )  I de' dy'nIf sin WP,' ( y ' ) }  =O, 
1 (1+1) 

(6 )  q k ( ( ~ .  = ' { Y I  (x)-v1 ( 0 )  - X V I 1  ( 0 )  - . . . 
xk 

where we used the substitution 
cpo ( I )  =VI (21, cpk(0) =vt"' (O)/k!,  

Gn=sin 0 cos cpn, ( e ,  y, 2 ) .  

(12) 
It is convenient to introduce as new variables the functions 

where the constant coefficients A,, are determined by the 
recurrence relations 

21+1 1 1-r 1 
Ah,l+i=-- 

1 l+Fl/(21+1) 
Ah-,,! - - Ah,l-l> 

A,,=i, il,,=C., R,,(k>l- I) =O. (13) 
P 

QI  ( 2 )  = J de dyv sin 8P11 ( y )  In this way Eq. (9) ,  which can easily be transformed to the 

and make the substitution z+(iuF/w)z. Equation (6)  then form 

takes the form Fl/L (1+ I )  
P ~ ' ( Y )  

1 dn, Fl / l ( l+l)  v d 
v + ----- - 

2 sin 0 de I+F,l(21+1) d& dy, 
vlP:(y)+ - y-v=O, 

=-, j (1-y2) yv (z=O) 
UP az 

vF/v+xy (14) 

and the boundary condition (5) becomes 

v (y>O, z=0) =-pPudno/d~. 

(7)  turns out to be an equation for only the function v,(x).  
We can write the function P 1 P j/(xy + vF/v )  on the 

left-hand side of Eq. (14) in the form 
(8)  1 

As a result of Laplace transforming the functions v  and v, P1'Pl1 = I-y2 dP1 
xy+v,/v xy+vp/v dy k=O 

m 

v ( x )  = j e-xzv ( 2 )  dz 
(15) 

o where the functions R ,, (x )  and Z, (x)  are polynomials of de- 
gree I -- 1  in l/x. As a result the left-hand side of (14) takes 

Eq. (7)  reduces to the form 

, + f i l l  (L+ I )  2 
P ~ ' ( Y )  vl ( x )  

l l+Fl/ (21+1) vl{ -Rol + F ~ l ~ ( x ) }  , 

We multiply Eq. (9)  by sin OPj( y )  and integrate over d ~ d y .  Using the boundary condition (8)  we can write the right- 
As the coefficients in (9)  do not contain the singular integrals hand side of (14) in the form 
(2), there appears the following set of equations for the func- ( I -yz)  yv (z=O) an, pau( l -~ ' )  Y 
tions Y,  : de d y  

F1 
{1v1+1+~1+1~v1-1} - I d &  JdY 

21+ 1 v,/v+xy 

= J de dy sin ~ y ~ , ' ( y ) v ( z = ~ ) .  

The function v,  (x )  does not have singularities as x-0. This 
0 

(1-ya) Y dn 
means that the quantities on the right-hand side of (10) are Q(x)=-  Jde dy vp/v+xy [v ( z=0)+ppu2] ,  (17) - 1 

d e 
equal to v,(0)[1 + F,/(21 + I)]-' and the set (17) has the 
form and Eq. ( 14) becomes 

Equations (1 1) allow us to express all functions v,  ( x )  in terms 4 PFU =--- 
of the function v , (x )  and its derivatives at the point x  = 0: 3 x 

[ I - u ( x )  l+Q(x) .  (18) 
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According to (12) the function 

can be written in the form 

( 2 )  =0* ( x ) v I  ( x )  +@z ( x ) ,  Y ( I )  =y 1 ( x ) v *  ( 5 )  +Y2 i x ) ,  
1 - 1  

and similarly for Y ,,, . In this notation Eq. (14) has the form 

We shall solve Eq. (21) by factorization using the Wie- 
ner-Hopf method. For a degenerate system the function 
and& is nonvanishing only in a narrow region around E,. 

We shall assume that for some O < s  < 1 - a the function 
= 0 for V/V, < S. The function U (x) in (16) then has no 

singularities in the range IRe(x)I < s .  In that case A (x) in (21) 
also has no singularities in that range as the divergence of the 
polynomials Y ,,, and @ asx-Ois unimportant, inasmuch 
as for x-0 we have 

Moreover, A (x-W) = 1 and the equation A (x) = 0 has, by 
assumption, a single solution x = x, determining the veloc- 
ity of zero-sound propagation Rex, = 1 - a. Accordingly 
the function 

G ( x )  =A ( x )  ( x Z - s Z ) /  (x2-xO2) (22) 

does not have any singularities in the range IRe(x)l < s  or 
zeroes; G ( w ) = 1. The function G factorizes in the usual 
way: 

f#+io. 

where the functions g,  are analytical in the half-planes 
+ Rex < s .  As a result of standard calculations (cf., e.g., 
Ref. 7) we get for g , the following expressions: 

g+ ( - x )  = l / g -  ( x )  , g- ( x )  =G-'"(2)  exp ( -xl ; )  , 
m 

ln A+ ( t )  -1n A- ( t )  
C ( x )  =- - 

2ni 
at, 

where the U, are the values of the function U(t ) in (16) 
above and below the cut along the real axis s  < t < w . 

Using (22) and (23) we can transform Eq. (2 1) to the form 

x+xo 1 
x+s g- 

The coefficients in (25) have singularities connected with the 
zeroes of @,(x). A simple analysis of Eqs. (lo), (12), (15), and 
(20) shows that 0 ,,, and Y ,,, are even functions (polynomi- 
als) of l/x and @, can be written in the form 

One can remove the singularities in (25) connected with the 
points x = xi by adding to the right- and left-hand sides of 
(25) pole terms 

and the singularities in the points x = - xi are removed by 
adding 

where 

In that case the singularities in the half-plane Re x < s  vanish 
on the right-hand side of (25), and those for Rex  > - s  on 
the left-hand side; the vanishing of the singularities in the 
range I Re x 1 < s  is connected with the fact that in that range 

and for IRe xi ( < s  

The function v ,  is analytical for Re x > 0 and thereby 
the whole of the left-hand side of (25), taking the addition of 
(26) and (27) into account, turns out to be analytical in the 
half-plane. The right-hand side is then analytical in the half- 
plane Rex  < s ,  as the function Q of (17) is analytical in the 
half-plane. As a result the analytical function which coin- 
cides the right-hand side of the equation for Rex  < s  and 
with left-hand side for Re x > s  turns out to be a constant. We 
determine the value of the constant in the point x = 0 and 
substitute it into Eqs. (25) to (27): 
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4 The momentum flux tensor is equal to 
vi (x) = 7 PFU 

P X P Z  a no a (z=o) - J m-{ sn cZ=o) - - 6. (z=o) } 
M de  

PF= =-j 
4nZh3 

d~ d y  ( 1 - y 2 )  yv (z=O),  (33) 

where M is the effective quasiparticle mass of 3He. We can 
determine the last integral in (33) from the first of Eqs. (10) 

1 xi+xo + Yii 0 2  withx-+O and it turns out to be equal to - v,(0)/(1 + F1/3). X-- 
g -  ( x - x i  ( x + x i )  g+< ( - 

AS a result we get from (3 1) to (33) 

Expression (28) is merely the purely formal solution of 
the kinetic equation, as the function O,(x) of (20) contains in 
it as parameters a linear combination of derivatives v\")(x) at 
the point x = 0. We determine the values of dnl (0) by differ- 
entiating (28) and solving the resultant set of linear equa- 
tions. As the structure of the functions p, of (12) is such that 

the corresponding set of equations for the dnl (0) has the form 
(k = 0; 1; 2 . . .) 

1 xi+x, dh 1 {$ PFu [ (x -x i )  g-i 

- Yii xi+s 
(x+x,) g,< ( zi+z, 

The parameters can tend to zero and the set (29) changes to 

N=pF3/3n2h3, (34) 

where N is the density of the 3He particles. 
Equation (34) enables us to determine the impedance 

Z (WT+ w ) taking any number of harmonics into account. 
The problem in that case in fact reduces to determining the 
roots xi of the equation @,(xi) = 0 for @,(x) of (20) and the 
rootx,of the equationd (x,) = 0 ford (x) of (21). However, it 
is difficult to use (34) directly, as we cannot from a compari- 
son with experimental data determine right away all param- 
eters F,,, which occur in (34). 

Far from threshold the impedance (34) is purely real as 
in that case 

(35) 

x, is real and all the roots xi come in complex conjugate 
pairs. Because of (35) there is then also no temperature de- 
pendence of Re Z. Close to the threshold la1 < 1 the situation 
changes. Instead of (35) we have ( I  1 - x i 4  1) 

while x,, at our accuracy ( In la ( ( )  1, is equal to (cf. Ref. 14). 

. . 

l+xo/xi  A i =  - B.  = 
Y i i  

7 1  (30) (37) 
Otig-i ( i + x o / x i )  @iig+i ' The appearance of an imaginary part for x, causes an appre- 

ciable imaginary part for Z and the temperature dependence 
and the solution of this set is equal to a (T)  leads to a temperature dependence of the phases 6 of 

(24). As the temperature correction to in (36) fast tends to 3 - (0) = - - ~ - i @ ~ = - 2 p , u C - ~ B - ~ R ,  zero far from the point x = 1 the phases f of (24) are given by 
2 the relation 

( ~ J I  
Y ( 0 )  { v ,  (0)), 2 { i }  Cis=Cs (xi )  7 (3 1) %(xi )  =%o(xi) +65 (TI / ( ~ , 2 - 1 )  

where 
where the functions C, (xi ) are given by Eq. (20). 

02 

We are interested in the transverse impedance Z which ~ < ( T ) = - ? J  d t  f ( t )  dQ/d t+  (In I I-t  1 + I )  & 

is connected by definition with the momentum flux tensor o 4 f' ( t )  +nZB2 

4, (z) through the relation 

1 z = --II,,(z=O). 
U 

m 

+ J d t  
(In1 1-t I + I )  ( t - l ) / t + f  ( t ) / t 2  

f' ( t )  +n2  ( t - 1 )  Z/t2 
3 
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FIG. 1 .  Plot of the function 6{ (a) of (38) for two values of the temperature: 
I) T/To=O.O1; 11) T/To=O.OO1. 

A plot of the function Sc ( T )  is shown in Fig. 1, and 5, is the 
value of the phases as T+O. The impedance (34) then takes 
the form 

3 
= -P~NC~,-~B,~-~{R~+ [6b ( T )  +ixoN] (rk-Bkl-'b1mRm)), 

2 

(38) 

where we have introduced the notation 

h 

and ihe components of the vector R and of the matrices B 
and C must be evaluated at T = 0. Equations (36) to (38) also 
determine the anomalous temperature dependence of the 
real and imaginary parts of the impedance near the thresh- 
old. 

3. MAGNETIC ANOMALIES OF THE IMPEDANCE 

Far from the singular point (threshold), the effect of a 
magnetic field H on the transverse impedance Z is, like that 
on most of the other Fermi-liquid characteristics of normal 
3He, small because the parameter 

is small; here 0-0.08 mK/kOe is the magnetic moment of 
the 3He nucleus, Fg is the zeroth harmonic of the anti-sym- 
metric part of the Fermi-liquid function. All corrections to 
the impedance are then of the order of h and are hardly 
observable in realistically reachable fields. However, close to 
the singularity the magnetic-field dependence becomes im- 
portant as even a small shift in the Fermi velocities 

for particles with different spin orientations lead (in the a 
scale) to an appreciable shift of the poles of the singular inte- 
grals (2). There then appear in the problem instead of a two 
small parameters: 

The accuracy of the further calculations near the singu- 
larity will, as above, imply that Ilnla, II$1 and we shall 
neglect terms of order h as compared to h ln h. This 
 mean^'^,'^ that we can neglect all regular corrections in the 
magnetic field and restrict ourselves to taking the field into 
account only in the integrals (2), i.e., in fact, only in U(x) of 
(16). 

As a result the kinetic equation, the boundary condi- 
tion, and the calculation scheme are the same as in the pre- 
ceding section and the only difference is that in the expres- 
sion for U(x) of (16) we must make the change 

where n * and E , are the equilibrium distribution function 
and the energy of quasi-particles with different spin orienta- 
tions. This leads to a change in the functions f2 of (36): 

1 
Q (T, H )  = - 2 (Q++Q-), 

where x = xu, /v, and correspondingly to a change in 
x; of (37): 

Q+ (1-x+=a+) 8- (1-x-=a-) 
xoN (H, T) = - + 

4 Inla-1 

The temperature dependence and the magnetic-field depen- 
dence of the impedance are then determined by Eq. (38) with 
the substitution of (41) and (42) for (36) and (37). We note the 
vanishing of the coefficient a+ of (40) corresponds to the 
effect of the suppression of transverse zero sound by a weak 
magnetic field.14,15 

4. TRANSVERSE IMPEDANCE FOR FINITE 07.. 

The general expression (34) for the transverse imped- 
ance can easily be generalized also to the case of finite 
WT < a. If we take collisions into account the results become 
considerably more complicated although when we take a 
large number of harmonics into account the calculation 
scheme remains as before. 

On the right-hand side of the kinetic Eq. (3) we must add 
the collision integral I (n). One shows easily (cf. Refs. 6 and 
11) that if we take into account the conservation laws we can 
in the T-representation write I (n) in the form of the following 
expansion in harmonics: 

m 

Oii=Bn - 51 dI"6n1 XF,P, (oos y) 
as 1 = 2  
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where T[ = A, /T are the relaxation times for the various har- 
monics, T a 1/T ', while the constants AI are independent of 
the temperature. After integration over dp and the introduc- 
tion of the new variable n, from (6), the kinetic Eq. (3) with 
the right-hand side (43) becomes the equation (cf. (6)) 

J d & ' d ~ ' P i ' ( y ' )  sin O1n,'=o, (44) 

where by definition 2,-0. Moreover, as in the second sec- 
tion of this paper, we introduce the variable v and perform a 
Laplace transformation. The kinetic Eq. (44) is then easily 
brought to the form (9) accurate to a simple transformation: 

As a result the transverse impedance Zis  given as before 
by Eq. (34) also for finite w ~ ,  if we take into account the 
notation in (45). However, in this case the analysis of (34) is 
considerably more complex even when 07) 1, when 

(46) 

The imaginary part of Z arises both  fro^ the direct effect of 
complex corrections to Fl (the matrix C of (20), (3 1)) and as 
the result of the fact that the coefficients of the polynomial 
@, of (20) become complex and its roots xi are no longer 
complex conjugates when wr, 1 

Moreover, also important is the appearance in the phases 6 
[Eq. (24)] of an imaginary part connected with the presence 
of imaginary parts of the coefficients of the polynomials !PI 
and @, in (20) and the expressions for A * of (24): 

It is clear that when WT> 1, according to (46), the correction 
is of the order of l/w2? to the real part of the impedance and 
of the order l / w ~  to the imaginary part. 

Under the condition a > 0 the contribution to Im Z of 
the collisionless damping (37), (38) exceeds the collisional 
corrections l/wr at low temperatures [ln(TF/T) - Iln a I ) 11 
and at high frequencies: .liw - T. When a < 0 (but 1 lnla 1 1,l) 
the restrictions on frequency and temperature are no longer 
so rigid. The experimental separation of the collisionless 

contribution to Im Z is apparently simplest due to the anom- 
alous magnetic field dependence (42) in weak fields: in such 
fields the collisional correction to Z is not at all sensitive to 
the field. 

5. HIGH-FREQUENCY ANOMALY OF THE THE IMPEDANCE. 

Measurements of the transverse impedance4 revealed a 
hitherto unexplained low-temperature (high-frequency) 
anomaly. As such an anomaly was observed at high pres- 
sures when the transverse sound speed certainly consider- 
ably exceeds the Fermi velocity, this anomaly has no direct 
bearing the impedance threshold features discussed above. 
However, the fact that this anomaly is not present at pres- 
sures below 8 atm may be yet another confirmation of the 
fact that the singularity a = 0 indeed occurs at pressures of 
the order of 8 atm. 

According to (45) the temperature dependence of the 
impedance, apart from small corrections of the order (T/ 
TF)'4 1, is determined far from the threshold solely by the 
factor UT, i.e., by the temperature dependence of T. The data 
from Ref. 4 therefore indicate that the temperature depen- 
dence of T cannot be reduced to a simple factor 1/T2 but at 
low temperatures turns out to be a more complicated func- 
tion of the temperature. One must check whether the ob- 
served anomaly of Z is the manifestation of the additional 
low-temperature collisional absorption predicted by Lan- 
dau' according to which the characteristic damping time of 
zero sound is connected by the relation 

with the usual collisional relaxation time 7, ar l /T2. The ab- 
sence of such an anomaly at low pressures would then be 
understandable, for in that case zero sound cannot propa- 
gate at all and the dispersion (47) of T is then absent. 

In the experiments of Ref. 4 at the lowest temperatures 
3.6 mK the parameter ( l i w / 2 ~ T ) ~  was 5 X for frequen- 
cies of 30 MHz and 5 X at 10 MHz, so that the disper- 
sion of (47) of 7 at high frequencies is observable. However, it 
is so far impossible to state unequivocally that the observed 
anomaly is a reflection of the dispersion (47). According to 
(46) for large OT 

whereZ, = Z (WT--r cc )while y andx are some dimensionless 
coefficients which are independent of w ~ .  The tendency of Z 
to decrease with increasing w at constant WT is, indeed, ob- 
served experimentally. However, substitution of the values 
used in the experiments for the parameters in the expansion 
(48) of Re Z in l / w ~  (in this case WT- 5) leads to the value 
y- 100 for the coefficient y in (48). The cause of so large 
value of y is so far unclear. For a final answer to the question 
whether the observed anomaly can be explained on the basis 
of the dispersion (47) of T, additional measurements at large 
WT are necessary. 
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