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We investigate the thermal-electric instability that arises in a metal as a result of Joule heating of 
the sample when the conductivity of the metal is a monotonically decreasing function of tempera- 
ture. The structure of the moving thermal-electric domains that arise spontaneously in this situa- 
tion is studied and the dependence of their parameters on the physical characteristics of the metal 
is determined. In particular, the speed of the thermal-electric domains is found to be proportional 
to the thermal emf coefficient of the metal. A classification is made of the possible types of I-V 
characteristics of the metal in the case of "cyclic" domains, which occur in ring-shaped samples 
when an electric field is inductively excited in the sample. The existence of turbulent regimes is 
shown to be possible in principle. Criteria are found for the stability of thermal-electric domains 
and the boundaries of the stability regions are plotted with sample-length and as the coordinates. 
An adiabatic approach is developed which makes possible a complete study of the kinetics of 
small-amplitude thermal-electric domains. 

51. FORMULATION OF PROBLEM 

In the physics of semiconductors the Gunn effect' is 
well known. This is the spontaneous appearance of (moving) 
electric domains that are formed in the region of electric 
fields $? where the I-V characteristic of a semiconductor is 
N-shaped. In our paper2 we showed that electric-domain in- 
stability due to an N-type I-V characteristic is also possible 
in normal metals (at low temperatures). This effect differs 
from its semiconductor analog not only by the existence of 
an N-type I-V characteristic, but also in that the electrical 
instability in a metal always takes place at very low electric 
fields under conditions of local electrical neutrality of the 
sample. 

In Ref. 2 two types of mechanisms for the formation of 
N-type I-V characteristics in a metal were described. Mecha- 
nisms of one type obtain under conditions of coherent mag- 
netic b reakd~wn.~  The anomalous sensitivity of the electron 
dynamics of the magnetic breakdown to weak electric fields 
is based on this type of mechanism. The other type of mecha- 
nism has a macroscopic character: the N-shaped I-V charac- 
teristic is caused by the electric current heating the sample to 
a temperature at which the resistance is mainly determined 
by the electron-phonon interaction and therefore increases 
with 8. The resulting "thermal-electric" instability that 
arises (already observed e~perimentally~-~) is the subject of 
this paper. We examine here the structure and dynamics of 
thermal-electric domains in metal samples that are so thin 
that nonuniformities in the temperature distribution over 
their cross section can be neglected. 

At a uniform distribution of temperature T along the 
sample the dependence of T o n  $? is determined from the 
heat-balance condition: 

jZ=d-'q ( T ) ,  j=o ( T ) B ,  (1) 

ple. From (1) it follows immediately that the differential con- 
ductivity dj/d$? is negative if the sample is heated to a tem- 
perature where 

d(oq) ldT<O.  (2) 

Thus, the basic properties of the physical system we are 
studying are determined by the behavior of the function 
x ( T )  = a(T)q(T). In a metal this function, as a rule, is N- 
shaped" (Fig. 1). In such a case, the maximum point T, of 
this function (see Fig. 1) is always in the low temperature 
region where the electron-impurity relaxation time tei and 
the electron-phonon relaxation time t,, cc T -' are of the 
same order of magnitude. Because the heat outflow q(T)  in- 

wherej is the current along the sample, a ( T )  is the electrical FIG. 1 .  a) Thefunctionx ( T )  = o(T)q(T);  b) The potential energy W(TJ'). 
conductivity at a given temperature, q(T) is the heat flow per The extrema of  the potential energy are located at the ~o in t s  T , ,  T,, and 

T,, where x ( T )  = dj2. The initial value of  the potential energy is chosen 
unit area of and is a geometric such that WIT,. i )  = 0. Here T- is the temDerature of  the thermostat and < -.<, 
to the ratio of the cross section.to the perimeter of the Sam- T, and T, are the extremal o f x  ( ~ j .  
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creases slowly with temperature T, the second rising portion 
of the function x ( T )  is located in the temperature range 
where the conductivity o (T)  approaches asymptotically the 
function T - ', i.e., the temperature TB oftheminimum ofthe 
functionx ( T )  is of the order of the Debye temperature TD of 
the conductor. For a metal with a resistance ratio R,,/ 
R,,, < lop2, the value of TA is - 10-30 K. The heat outflow 
corresponding to this TA is q- lo-' to 1 W/cm2, and the 
electric field is 65' - 10-5-10-6 CGS units, which is at least 
six orders of magnitude less than in semiconductors.' Such 
small values of 65' can be produced both in the usual experi- 
mental setup (with the sample connected into an electrical 
circuit with a voltage source), or with a contactless arrange- 
ment designed especially for metals. In the latter, the electric 
field is induced in a short-circuited sample by slow variation 
of the magnetic flux. As will be seen in the subsequent dis- 
cussion, the contactless experimental apparatus creates a 
number of novel physical situations that are not realized in 
the case of semiconductors. 

The entire following treatment pertains to the experi- 
mental case where the voltage is specified (thermal-electric 
domain is unstable if dc is used), i.e., we assume that in the 
contactless case we can neglect the inductive effect of the 
sample on the source of the alternating magnetic field, while 
in the case of a sample that is connected to an external circuit 
we can neglect the resistance of the circuit compared with 
that of the sample. Using the known relation (see e.g., Ref. 7) 
between the electric field 65'(x,t ) in the sample and the tem- 
perature T(x,t ), where x is the coordinate along the sample 
and t is the time, and taking it into account that T (x,t ) satis- 
fies the equation of continuity of heat flow from the sources, 
we obtain the following system of basic equations of the 
problem: 

\ - I  

f (T, j)=-j2(t)p(T)+d-'q(T); j(t)  <p>=U/L. 

Here j(t ) is the sample current, which is independent of x 
because of the condition of local electrical neutrality, C,(T) 
is the heat capacity of the metal per unit volume, a ( T )  is the 
thermal emf coefficient, x ( T )  is the thermal conductivity, 
p (T )  = o-'(T), Uis the applied voltage, and L is the length of 
the sample. Here and subsequently, the brackets (.--) indi- 
cate an average over x along the whole sample. The function 
f (Tj)  is the heat dissipation per unit length in the sample. 

In the contactless case we must supplement the system 
(3) with the periodicity condition T(x + L,t ) = T(x,t ). How- 
ever, if the sample is connected to an external circuit, the 
boundary condition is the continuity of the heat flux at both 
ends of the sample. We shall not write down the expression 
for this condition, since ifL is sufficiently large, the thermal- 
electric domains have the same structure independently of 
the means of producing the electric field in the sample. On 
the other hand, in the case of comparatively short samples, 
the new, contactless experimental apparatus is of greater 
physical interest. We shall, therefore, limit the further dis- 
cussion to an analysis of the contactless situation. 

52. THERMAL-ELECTRIC DOMAIN STRUCTURE AND 
DYNAMIC I-V CHARACTERISTIC 

The system of equations of the problem always has the 
steady-state homogeneous solution 

T(x, t )  --To(U), j ( t )  =jO(U) =o(TO) UIL, f (TO, jO) =O. 

(4) 
The last equation in (4) is identical to the energy balance 
condition (1). Ifat the point T = To(U) thederivative f '=x '/ 
(od ) (here and subsequently, a prime denotes differentiation 
with respect to T) ,  then, as can be seen from (3), the uniform 
temperature and electric field distribution is stable (in the 
smal1)forany samplelengthl. However, whenx '(To(U)) < 0, 
(where TA < T,(U) < TB ; see Fig. I), the homogeneous solu- 
tion (4) is stable only for L less than some critical length. 

'I* 
LC, (To) = 2 ~  (-xc~d/~') T=To. ( 5 )  

For L >Lc,(U) the uniform temperature distribution be- 
comes unstable against fluctuations constituting an arbi- 
trary sum of harmonics A ,  (t )exp(i2mx/L ) (n = + 1, 
+ 2...) with In1 < L /LC,. A fluctuation with In I > L /LC, or 

n = 0 (uniform fluctuation) does not destroy the stability of 
solution (4). 

In the range of parameters L >LC, ( U )  a "cyclical" ther- 
mal-electric domain, moving with constant velocity s, can be 
stable: 

T (x, t) =V (x-st, id), v (x) 'V (x+L), 

jd(U) =(UIL) (P(Y) )-I, (6)  

where Y(X) satisfies the equation of motion of a particle of 
variable mass x(v) acted on by a potential force f (Y j) and a 
friction force proportional to dv/dx: 

(here x is the "time" and Y is the "coordinate" of the parti- 
cle). Postponing the proof of thermal-electric domain insta- 
bility to Sec. 3, we proceed to determine the domain velocity 
s and investigate the dynamic I-V characteristic j, ( U )  corre- 
sponding to the domain regime. 

In Eq. (7) the role of the particle "energy" is assumed by 
the quantity 

E (x) ='/,xZ (v) (dvldx) '+ W (v, jd) (8) 

where the "potential energy" is 

(the form of W(T)  is shown in Fig. 1). The change of energy 
with "time" is governed by the action of the "friction force": 

dE/dx=-x (v) (C, (v) S-jdv (daldv) ) (dvldx) '. (10) 

The velocity s of a cyclic domain is found from the condition 
that the total change of energy E (x) in a "period" L vanish: 

As can be seen from (1 l), the velocity of a thermal-electric 
domain is s-ja/C,, which is in agreement with the esti- 
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mates given in Ref. 2. For a given U, Eq. (7) determines one 
or more cyclic domains (6). 

The ratio of the "friction" force in Eq. (7) to the "iner- 
tial" term for any value of L is a quantity of the order 

where Lo is the characteristic value of LC, and E~ is the char- 
acteristic Fermi energy. From this it follows that the func- 
tion v(x) satisfies an "energy" conservation law 

with an accuracy to small corrections - kTD /E, In this 
approximation the domain velocity s is given by the formula 

Vrnat 

s=jd I T a J  ( T )  [E- W ( T ,  j d )  1" d~ / 
Vmln 

vmat 

I C.(T) [E-W(T,jd) I" dT. ( 14) 
vmm 

where the limits of integration v,,, and v,,, , the minimum 
and maximum temperatures of a cyclic domain, are the real 
roots of the equation W(vjd ) = E. 

The dependence of the voltage on the current U = Ud (j) 
in the domain regime can, with the accuracy cited above, be 
found from the solution to the system of equations 

j) 

E ( E ,  j )  x ( T )  [ E - W ( T ,  j )  ]-I" dT=L, (15) 
Vmtn(i1 

wherez (E j) is the "period of motion" of a nonlinear oscilla- 
tor with energy E. The solutions of the system of equations 
(15) and (16), E = Ed (U,L ) andj = jd (U,L ), are, respectively, 
the "energy" of a domain and the current in the domain 
regime. 

To investigate the dynamic I-V characteristic we exa- 

mine first the family of level curves Z (Ej) = const in the 
plane of the variables (Ej). According to (13) this family lies 
within the "domain" region bounded by the curves of the 
potential-energy maxima (see Fig. 1) E = W,,, (j) 
= W(T,,, (j) j) and the straight line E = W(T2(j) j ) = O  (these 
lines are designated I, 11, and I11 in Fig. 2a). For 
W - E-4 ,  the periodZ (E j) goes logarithmically to infin- 
ity. The regions 0 < E( Wo = min W,,, (j) correspond to do- 
mains of small amplitude that vanishes on the straight line 
E = 0. As E-+O the extremal temperatures v,, and v,,, in 
(15) and (16) converge to T2(j) and the period Z (Ej) ap- 
proaches the value Lc,(j) that coincides with the critical 
length (5) at the point T = T,(j). In the general case the func- 
tion Z (E j) can have extrema within the domain region. Sim- 
ple topological considerations show that among the con- 
stant-value level curves there are self-intersecting 
separatrices that divide the entire domain region into a num- 
ber of subregions of two types: the "a-type" subregion con- 
tains level curves whose ends lie on the line E = 0 (so-called 
a lines) and the ",%type" subregion contains closed level 
curves (so called 0 lines). The a type of subregion always 
borders on the bounding curves E = W,(j) and E = W,(j) 
(lines I and 111 in Fig. 2a). Thus, in the general case the lines 

(Ej) = L consist of several isolated a and 0 branches. An 
example of the division of the domain region into a and /3 
subregions is shown in Fig. 2a. 

By means of the mapping U = e ( ~ j )  defined by (16), 
each branch of a contour line generates the corresponding 
branch of the dynamic I-V characteristic in the U-j plane. In 
this mapping, the ends of the a branches lie on the static I-V 
characteristicj = jo(U) corresponding to a uniform tempera- 
ture distribution. The differential resistance dud  /dj of the 
dynamic I-V characteristic is expressed directly in terms of 
the derivatives of the functions and (Eqs. (15) and (16)): 
pd-dud/&= (0, Z} I,%', { } 2 ' - '  (1 7) 

where the symbols f H and fj here and below denote, respec- 
tively, partial derivatives with respect to "energy" and cur- 
rent. In formula (17) the "energy" E of a domain is defined 
by the relation L = Z (Ej).  

FIG. 2. a) Domain region in the plane of the parameters domain "energy" E and domain currentj. Curves I1 andJII are defined in the text. Curves Ca 
and Cb map out the lines with dud /dj = 0. The lines where dud  /dj = m aredenoted by points. The contour line L (Ej) = L having a self-intersection 
(separatrix) is indicated by the dashes. The point 0 is the extremal point of L (Ej). The point C corresponds to the critical value j,, of the current for 
which the potential maxima W,(i) and W,(i) coincide. The area within the curve Cab is the region of instability. b) Example of a dynamic I-V 
characteristic having several independent branches (indicated by the heavy lines.) The light solid line indicates the stable segment of the static I-V 
characteristic. The segments of instability of the uniform distribution are indicated by the dashed lines. 
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The positions of the a and P branches corresponding to 
a given value of L, relative to each other and to the static I-V 
characteristic, can be arbitrary. Moreover, the branches of 
the dynamic I-V characteristic can have self-intersections. 
For this to occur, there must exist special values of L and U 
for whichx k = oE = 0 (x = L, 0 = U). At values ofL cor- 
responding to the separatrices of the domain region, the dif- 
ferent branches of the dynamic I-V characteristic come to- 
gether such that the points of juncture correspond to the 
points of self-intersection of the separatrix, where Z j = 2 k 
= 0. According to (17),pd (i) = 0 on the line ( 2 ,  ) = 0. The 
extrema of the I-V characteristic correspond to the lines L 
= 0. An example of a dynamic I-V characteristic having a 

and f l  branches is shown in Fig. 2b. 
Let us consider in more detail the behavior of the dy- 

namic I-V characteristic in the following limiting cases: a) 
small-amplitude domains, which are formed at 

q=  (L-LC, ( j ) )  /L-E/W,KI; 

b) domains which are formed in the limit when the charac- 
teristic critical length is LO(L. 

In case a), to find the dynamic I-V characteristic we can 
expand in powers of E( Wo in Eqs. (15)-(17) and consider 
only the first nonvanishing approximation. Because E is a 
positive quantity, small-amplitude domains exist only in the 
semi-infinite interval of current, where 
li, - j ) ( Z j , Z ~ ) ~ ~ = ~ , ~ = ~ , > O . T h e e n d p o i n t j ,  =j,(L)ofthe 
interval is determined by the equality LC, (i, ) = L, (where 
LC, li, )=Z (Oj ,  )). At this point Ud (i, ) = Uoli, (L ))=U, 
(where Uo(i) is the function that is the inverse of the static I-V 
characteristic) and Ed (U,L ) = 0. 

In the Appendix it is shown that the differential resis- 
tance @L ) at the limit pointj, of the dynamic I-V character- 
istic vanishes for at least two values of L, L = La and 
L = L, . For values of L close to L,,, and of current close to 
ja,, = je (La,, ), the function Ud (i) is parabolic. This means 
that there exists a small emf interval from U, to U, + A U 
(where A U cc (L - La,, )2) in which two small-amplitude do- 
mains, of energy E ,+ and E , differing by - L - L,, corre- 
spond to each value of U. 

Let us turn now to case b) (L>Lo). Since the period 
Z (Ej) of the nonlinear oscillator (see (1 5)) diverges logarith- 
mically as E-min W ,,, (i) (where W,,, are the maxima of the 
"potential" energy W(Tj)), in the limit L>Lo the "energy 
E = E (Lj) of a domain must differ from mini W,, W,) by an 
exponentially small amount. If the current j is not too close 
to the critical current jc for which Wl(jc) = W,(ic), then, 
with accuracy exponential in the parameter L /Lo> 1, the 
thermal-electric domain is described by the soliton solution, 
vs,, (x) of Eq. (13), corresponding to the "energy" 
E = min(Wl(i), W3(i)). As x- + CQ the function v,,, coin- 
cides with the temperature of the least of the maxima; it 
differs substantially from a constant value in the region 
-Lo. The dynamic I-V characteristic corresponding to this 
soliton coincides, to within -Lo/L( 1, with one of the rising 
segments of the static I-V characteristic (for jc <j<j,  with 
the left segment, and for j, < j  <jc with the right segment; 
see Fig. 3). The transition between the segments takes place 

FIG. 3. I-V characteristic for L>L,. The dashes indicate the regions of 
instability of the dynamic and static I-V characteristics. The light solid 
lines are the stable segments of the static I-V characteristic and the heavy 
solid lines are the stable segments of the dynamic I-V characteristic. The 
quantity j, is the critical current corresponding to the point c of Fig. 2a. 

in a very narrow current interval that contains the point jc 
(see Fig. 3). It is not difficult to obtain from (15) and (16) the 
equation for the behavior of the dynamic I-V characteristic 
over the entire region / j - jc I q', if one takes into account 
that the temperatures vmi, and v,,, are close to the maxima 
ofthe "potential" W(T),  i.e., TI and T,, respectively. After a 
simple calculation we obtain 

where p,,, =p(T,, ,  ), A ,,, = f '(TI,, , jc) and the constants 
J,,, ,  are -j, . Equation (18) gives the dynamic I-V character- 
istic in implicit form. It can be seen from (18) that for all 
values U of the emf in the interval U, < U< U,, (where 
U, = jcplL and U,, = jcp3L ), except for a small region near 
the ends of the interval, the current j coincides with jc to an 
accuracy exponential in the parameter L /Lo. Near the 
points U, and U,, there is a sharp transition from the nearly 
horizontal segment of the dynamic I-V characteristic to the 
rising segments mentioned above (see Fig. 3). The values of 
current 

i=iI=ic[l+ (p3-pl)lpihtL1, j=iII=i,[ I+ ( P ~ - - P ~ ) / P ~ ~ ~ L I ,  

(19) 
which differ from the critical current by the amount -jc (Lo/ 
L ), correspond to the points of the I-V characteristic having 
a vertical tangent. 

The fact, mentioned above, that the current is indepen- 
dent oftheemfin theinterval [U, , U,, 1, comesabout because 
in this region the domain structure undergoes a substantial 
modification. The point is that in the limit as L-+CC and at 
j = jc Eq. (13) with "energy" E = W,(ic ) = W,li, ) has two 
domain-wall type solutions: 

, , 

lim 0, (x) =Ti,=T, ( I , ) ,  lim 0, (2) =T3,=T3 ( j c ) ,  
x++m x+-m 

where the parameters x , are arbitrary (x - < x  + ) and the 
function 0, (x) varies from TI to T, in an interval -L. For a 
current close to jc a thermal-electric domain appears as two 
coupled domain walls v - and v + ; it has a trapezoidal shape 
and consists of two planar segments with temperatures that 
differ from T,(i) and T,(i) by an amount - - jc I. In the 
narrow transition regions of width -Lo the thermal-electric 
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domain coincides, t o  the same accuracy, with 8 ,f (x - x + ) 
and 8; (x - x - ). For this reason a variation of the emf 
causes a change mainly only in the lengths of the planar 
segments, L, = x + - x - andL,, = L - ( x +  - x - ) ,  of 
the trapezoidal domain. The dependence of L , and L ,, on U 
can be easily found directly from (6) by neglecting the contri- 
bution of the transition region in the total potential drop in 
the sample: 

LI=(U-UI)lj,(ps-pi), L I I=(U-U~~) / j c (p i -p s ) .  (21) 

In this approximation these formulas are applicable in the 
entire range of Uwhere L ,,,, 20, i.e., in the interval [U, , U,, 1. 
The velocity s of a trapezoidal domain is, with accuracy ex- 
ponential in L d L ,  independent of the length of the planar 
segments and can be expressed directly in terms of the char- 
acteristics of the sample (in formula (14) one should setj  = jc 
and W= Wc=W,(ic) = W3(ic)). 

To conclude this seciton we shall estimate the basic pa- 
rameters of a thermal-electric domain. When L is of the or- 
der of the spatial scale Lo, the characteristic temperature of a 
domain, as follows from the form ofx ( T )  (see Sec. I), is of the 
order of the Debye temperature, the length is 

Lg- (2n) 'dTDx ( T D )  ( T D )  , 
s-a(TD) [ q  ( T D )  0 ( T D )  ]'"C,-'(TD) d-'", (22) 

and the time for the instability to develop is 

T - ~ T D C , ( T D )  / q  ( T D ) .  

From this it can be seen that as the characteristic thickness d 
of the sample decreases the spatial and time scales Lo and .T 
decrease in proportion to d, while the domain velocity s in- 
creases as d -'I2. For a heat outflow q(TD ) -  1W/cm2 and 
d - lop2 cm we have T- 1 sec, Lo- 1 cm and s- lo-' to 
lop2  cm/sec. The estimate for the velocity s agrees with the 
experimental data of Ref. 6. 

In the limit L)Lo, according to the above discussion, 
the thermal electric domain consists of two planar segments 
with sharply differing temperatures, TI - TA ~ 4 . 2  K and 
T3 - TB - TD )TA (see Fig. 1). However, the main contribu- 
tion to the velocity s, as is seen from formula (14), is made by 
the high-temperature region. Since the critical current is 
jc -jB , the estimate fors given above is also valid in this case. 

As follows from the preceding estimates, the velocity of 
a thermal-electric domain increases with the thermal emf 
coefficient a. In this respect principal interest attaches to 
quasi-one-dimensional metal conductors8 having a thermal 
emf that is three orders of magnitude greater than ordinary 
metals with low anisotropies. Another interesting aspect of 
thermal-electric instabilities in quasi-one-dimensional con- 
ductors is the low sensitivity of the moving thermal-electric 
domains to the thickness of the sample. This latter feature is 
due to the fact that in a quasi-one-dimensional conductor the 
direction of the current is fixed with high precision. 

It is interesting to note that because the thermal con- 
ductivity transverse to a quasi-one-dimensional conductor 
filaments is relatively low, the transverse dimensions of the 
region that governs the development of the thermal-electric 
instability turns out to be substantially less than the thick- 
ness of the sample. 

In the presence of a strong magnetic field such that 
aHti,  4 1 (where a, is the cyclotron frequency), the I-V 
characteristics of metals of conductivity a - ~ ~ / ( f 2 , ~ ) ~  has, 
at T = T ($)  - TA , an S-shaped segment (here - 
t -'-ti; ' + t & ' (T)  and a, is the conductivity at H = 0). 
On this segment the thermal-electric instability leads not to 
the formation of thermal-electric domains, but to a pinching 
of the current across the sample. 

§3. THERMAL-ELECTRIC DOMAIN STABILITY 

To investigate the stability of thermal-electric domains, 
we introduce the dimensionless variable p = 2 ~ x / L  and 
write Eq. (3) in the form 

dT 2n j ( t )  Ta' dT 
C,-f - 

d t L dT 

where T (p,t ) = T ( p  + 2 ~ , t  ). The operation (.-), denotes 
an average over  henceforth we shall omit the subscript p 
on the angle brackets). 

We represent the temperature distribution in the sam- 
ple in the form of a sum 

T(cp, t )  =0 (TI +x-'(O ( c p )  )01 ( c p ,  t ) ,  (25) 

where 0 (9)-if ( L p / 2 ~ )  is a thermal-electric domain (6) and 
x-'Ol is a small correction. After substituting (25) in (23) we 
obtain the following linearized equation for 8,: 

a0,lat+p ( c p )  Aei=2jp ( 0 )  B (cp)ii ( t )  . (26) 

Here the Hermitian operator is 

and j ,  is a small, time-dependent increment to the current: 

In writing down the linearized equation (26) we have intro- 
duced as the independent parameters the "energy" B of a 
domain and the currentjin the domain regime (see (15) and 
(16)) instead of the sample length L and the emf U. In addi- 
tion, we have dropped the small term proportional to 6 (see 
(12)), which only weakly changes the positions of the stability 
boundaries of the thermal-electric domains in the space of 
the parameters of the problem. With the same degree of ac- 
curacy we can assume that the function 8 (p) = 8 (p + 277) 
that enters into (26)-(28) is governed by the reduced time- 
independent equation 

which, when integrated with account taken of the 2~-period- 
icity of 0 (p), leads to a conservation law with the "energy" E 
equal to 
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Let us write 8,(p,t ) in the form of an expansion 

!here $, ^are the eigenfunctions of the operator 
Hg = f l  (p )H, which satisfies the Sturm-Liouville equation 

The subscript Y = 0, 1,2, ... enumerates the eigenvalues A, in 
ascending order. Substituting (3 1) into (26) and carrying out 
a Laplace transformation with respect to t, and then after 
carrying out a series of calculation~taking~nto account that 
the Hermitian conjugate operator H + = Hfl (p ) has the ei- 
genfunctions qv = f l  - '$, we find 

where j,(p) is the Laplace transform of the function j,(t ), 

and a, (0) is the initial value of a,(t ). It can be seen from 
expression (33) that for stability ofthe domain distribution in 
the small it is necessary and sufficient that the function 

have no zeros in the half-plane R e p  > 0. 
To analyze the behavior of Q (p) we use a well known 

theorem on the number of zeros of the eigenfunctions of the 
Sturm-Liouville operator with periodic boundary condi- 
t i o n ~ . ~  According to this theorem, $,(p) (the ground state) 
has no zeros while the remaining $, (p) are grouped in pairs: 
for Y = (2k - 1) and 2k the number of zeros of $,(p) is 2k. 
On the other hand, from the translational symmetry of the 
time-independent equ2tion (29) it follows that the eigenfunc- 
tions of the operator Hg include the function 

corresponding to the eigenvalue A, = 0. Since 6 (p) has only 
two extrema, the minimal eigenvalue A, is necessarily nega- 
tive while the eigenvalued, = 0 has the index Y = 1 or 2. All 
the constants A ,  (see (34)) as well as the eigenfunctions $, (p) 
are real, with A, = 0 corresponding to the ground state $,, 
which has no zeros, while A, = 0 corresponds to the func- 
tion $, = @ (p) (Y = 1 or 2). The last equality means that the 
function Q (p) has at Rep  > 0 only one (two) singularities at 
thepointsp = - A, (p = - A ,  forA, = 0). It isalso essential 
that A, be positive, because in the contrary case the function 
Q (p) would have a zero at some pointp > - A, and the ther- 
mal-electric domain would be unstable. The rest of the A, in 
the general case are arbitrary within the limits of the inequa- 
lity 

which follows from the fact that p, p', and C, are positive. 
It is possible to draw some general conclusions concern- 

ing the location of the regions of stability of thermal-electric 
domains in the plane of the parameters (E,:) if we note that 
the number of zeros of the function Q (p) in the half-plane Re 
p > 0 changes by unity if the quantity 

(formula (37) is derived in the Appendix) changes sign, while 
the number of singularities of Q (p) (for Re p > 0) remains 
unchanged. According to (37) and (17), Q (0) is reflected at 0 
and w , respectively, in the lines 

and 

The number of zeros of Q (p) for Rep  > 0 changes, however, 
only upon crossing the line (38). Actually, differentiating Eq. 
(29) with resEct to E and keeping in mind the definition of 
the operator H (27), we see that at ;(Ei) = 0, not only the 
function @ (p) but also the function $(p) = x(8 )(a8 /aE ) I7 
corresponds to the eigenvalue A, = 0. Upon displacement 
from the line (39), the twofold degeneracy of the level A, = 0 
is lifted and the number of positive singular points of Q (p) 
(i.e., negative&) increases (decreases) by one. In the general 
case this does not change the number of zeros of Q (p) in the 
region R e p  > 0 and does not affect the stability of the ther- 
mal-electric domain. 

Thus, we arrive at the conclusion that the region of un- 
stable thermal-electric domains is adjacent to the line (38) in 
the plane of the parameters (Ei) on at least one side. Conse- 
quently, at least one of the dynamic I-V characteristic 
branches which come together at the point with the vertical 
tangent must be unstable. The extremal points of the dynam- 
ic I-V characteristic, however, as regards thermal-electric 
domain instability are not distinguished in any way. 

Equation (38), generally speaking, defines several iso- 
lated curves in the (EJ plane. In particular, as follows from 
the analysis presented in Sec. 2, two - lines (38) must terminate 
at the point E = W,(j, ) = W3(j3), j = j, . In addition, accord- 
ing to the discussion of small-amplitude domains in Sec. 2, 
two lines (38) must terminate on the straight l inez = 0 at the 
points (0, j, ) and (0, j, ). An example of a possible arrange- 
ment of the regions of stability of thermal-electric domains is 
shown in Fig. 2. 

Of course, the number of zeros of the function Q (p) in 
the half-plane Rep  > 0 can change not only when the func- 
tion Q (0) vanishes. For example, in the case A ,  < 0 the zeros 
of Q (p) (for Re p > 0) appear (or disappear) also when the 
coefficient A, changes sign. In the general case the positions 
of the stable and unstable segments of the dynamic I-V char- 
acteristic are quite arbitrary. In particular, it can happen 
that for a given U there are only unstable segments of the 
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static and dynamic I-V characteristics. In this case, clearly, a 
non-steady-state turbulent situation arises in the system. 

In the limit L>L,, as follows from the analysis given in 
Sec. 2, the operator V(p ) (see (27)) corresponding to a ther- 
mal-electric domain of the soliton form (i.e., to the branches 
of the dynamic I-V characteristic near the static characteris- 
tic, Fig. 3) is a system of periodically repeated potential wells 
of width -Lo spaced a distance -L apart. Here the eigen- 
valuesA,~oincide apgroximately with the eigenvalues of the 
operator Hg = f l  (p )H, which is obtained by replacing V (p ) 
with the potential of one of the wells. Consequently, all the 
A, except A, are non-negative, and now the necessary condi- 
tion for stability of a thermal-electric domain is that Q, be 
negative. As can be seen from (37), the condition is not satis- 
fied in this case, i.e., thermal-electric domains of the soliton 
type are unstable. 

In the case of trapezoidal thermal-electric domains cor- 
responding to the interval [U, , U,,] (see Fig. 3) the potential 
V (p )over the range of a single period has the following form: 
In the intervals [p - , p + ] and [p + , p - + 2n-1, (where 
p , = 2n-x * /L, see Sec. 2), except for a small neighborhood 
of their ends, the potential V (p ) is, respectively, 

v3=f'(T3,, i , ) l x  (T3e) >O and Vi=f'(T, , ,  j , ) /x  ( T i , )  >O. 

According to the discussion of Sec. 2, the temperature 
T,, - T, is much higher than the temperature T , ,  - T, , 
and the ratio is 

In the transition regions V(p ) is a set of potential wells with 
characteristic width 

and depth - V3> V,. Here the potential wells near the points 
p - and p + are symmetric relative to (p - - p + )/2. From 
this it follows that the structure of the spectrum ofA, and of 
the eigenfunctions $, is the following: the minimal eigenval- 
ue A, < 0 lies exponentially (in the parameter L,/L( 1) close 
to A ,  = 0, the eigenfunctions $, and $, are different from 
zero only in the transition regions noted above and, up to 
corrections that are exponentially small in the parameter 
L d L ,  are of the form 

where 6 (x) is domain-wall type of solution [Eqs. (20) and 
(21)l. All the rest of the eigenfunctions $, whose coefficients 
A, (see (34)) are not small differ from zero in the interval 
[p  + , p  - + 2 4 ,  where thetemperature6 ( p ) ~  T,, . Thecor- 
responding A, are positive. Summing the A, and taking it 
into account that Q (0) = - A,/JA,I, it is not difficult to con- 
clude that Q @) does not vanish in the half-plane Re p > 0. 
Consequently, trapezoidal domains are stable in the small. 

The stability of small-amplitude domains is investigat- 
ed in Sec. 4 within the framework of a general theory which 

describes the dynamics of their development. 
The entire discussion above has pertained to thermal- 

electric domains which correspond to a single revolution of a 
"particle" in a closed trajectory (1 3) in the phase plane 6,d6 / 
dx, i.e., the "period" Z (Ej) = L. In the case Z (Ej) = L /n 
(where n = 2, 3, ...), "multiple" thermal-electric domains, 
obtained by an n-fold repetition of the function 6 (x) (with 
period Z ), are also possible in principle. An analysis similar 
to that above shows that for all the multiple thermal-electric 
domains, the function Q @) is identical with the Q @) that 
corresponds to the case 2 = L. However, they are unstable 
for arbitrarily small sample nonuniformities and are there- 
fore of no interest to us. 

54. EVOLUTION OF SMALL-AMPLITUDE THERMAL- 
ELECTRIC DOMAINS 

In the case of small-amplitude thermal-electric do- 
mains (see Sec. 2) it proves possible not only to find criteria 
for stability of the thermal-electric domains in the small, but 
also to study the evolution of the thermal-electric domains 
for any initial conditions in which the characteristic tem- 
perature variation is comparable to the domain amplitude. 
The smallness of the parameter l;l(see Sec. 2) permits an ab- 
breviated description of domain instability; the essence of 
this description is the following. 

We represent the temperature distribution in the sam- 
ple as a sum T (p,t ) = Tj ( t  ) + IT (p,t ), where p is the dimen- 
sionless variable introduced in Sec. 3, and the increment - 
T(p,t )(T,. Expanding IT(p,t ) in a Fourier series 

where the frequency L! = s/L and s is the domain velocity, 
see (14), and substituting T = T, + "Tn Eqs. (23) and (24), we 
obtain for the amplitudes of the harmonics a system of non- 
linear differential equations of the form 

where the summation is over all the indices i,, ..., i, that sa- 
tisfy the condition il + i, + ... + i, = n, and the quantities t, 
and t, are defined, accurate to - ~ g ( l  (where 6 is the pa- 
rameter in (12)), by the equations 

All the functions of temperature in (41) and (42) are taken at 
the point T = T,(j(t )). The coefficients are F, -K ,  - I /  
(T;- 'to); their specific form is not essential for the subse- 
quent discussion. All the t, with n # + 1 (including n = 0) 
are negative and have a characteristic value -ro = (C, / 
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x)L a, the characteristic time of instability development. In 
contrast, t, is positive and large relative to the parameter 7 
namely, t, - ~ ~ / 7 > t , .  For this reason, the evolution of the 
Fourier coefficients A, (t ) is governed by two processes, a 
slow variation of the amplitudes A * , , which takes place 
over a time -t,, and a fast (in a time -rO) adjustment of the 
rest of the amplitudes towards the instantaneous values of 
A + ,. Thus for t > ~ ,  all the functions A, (t ) with n # + 1 
"forget" their original values and are expressed algebraical- 
ly in terms of A,(t ) and A,(t ). The functions A , , (t ) them- 
selves satisfy a system of two nonlinear first order differen- 
tial equations. It is not necessary to write down this system of 
equations, since the slow change of A , , (t ) with respect to 
the parameter 7<1 and the smallness of the parameter 
g-f2r0 mean that to find the solution of the system (23) and 
(24) for t)r0 we can develop an adiabatic perturbation the- 
ory, writing 

T(cp, t )  =e(cp-h(t), E ( t ) ,  j ( t )  )+% ( c p ,  t ) .  (43) 

Here 6 is a 2~-periodic function of p that satisfies the equa- 
tion obtained from (29) by the substitution 

B+E(t) ,  j+j ( t ) ,  (44) 

and the "energy" E (t  )is a slowly varying function oftime and 
is to be determined along with the phase shiftil (t ) (the rate of 
change of the latter is a g< 1). The quantity 6,(p,t) is a cor- 
rection that is small in the parameters { and 7. According to 
the definition of 6 and formula (24) the currentj(t ) in the first 
approximation in 7 and 6 is related to E (t ) by the relation 

u ( E ( t ) ,  j ( t )  ) l f ; ( E ( t ) ,  j ( t )  )=UIL, (45) 

wherez and e a r e  functions defined by Eqs. (15) and (16). 
The equations for E (t ) and il (t ) are obtained from the 

requirement that the ratio O,/max 18 - T, I be small. Writing 
6, = x- '(6 )A (p,t ) and substituting (43) in (23) we find in the 
first approximation in 7 and { 

where H is an operator that differs from the operator of (27) - -- 
by the replacement L (~j)-z (E (t ) d t  )). As follows from the 
discussion in Sec. 3, the equation HA = 0 has a nontrivial 
solution @ (p) = ~ ( 6  )(a6 /dp),,-. On theother hand, differen- 
tiating Eq. (29) with respect to the "energy", we have 

In the case we are studying, where the energy E is small, the 
right-hand expression of (47) is proportional to @, as can be 
seen from (30). However, the value of the function $ is pro- 
portional to 1 / n ,  as follows directly from the differenti- 
ation of Eq. (30) with respect to E. Therefore, as can be seen 
from (46), the correction to 6 is small in comparison with 6 if 

the right hand part of (46) is orthogonal not only to the func- 
tion @but also to $. After some simple calculations, carried 
out in the first approximation in 7 and taking (45) into ac- 
count, these two conditions lead to the equations 

dE/dt=E ( L - A ( E )  ) I d ,  A ( E ) = E ( E ,  j ( E )  ) ; (48) 

dh/dt=Q ( t ) ,  Q ( t )  =s ( t ) / L .  (49) 

The function j(E) = j(E; U, L ) is defined implicitly by Eq. 
(45),andthevelocitys(t ) = s(B (t ) j ( t  )), wheres(Ej)isthefunc- 
tion (14). The constant 

~=C,(T~)L$(i~)l(16x~x.(T~) )-to, 

where jo = jo(U,L ), To = To(U,L ) are, respectively, the cur- 
rent and the temperature of the uniform distribution for giv- 
en values of U and L. 

Equation (48) is easy to reduce to quadratures: 

where Eo is the value ofE (t )a t  t = 0. Equation (48) is applica- 
ble in the entire "energy" region O<E< Wo. It always has a 
stationary point E = 0 corresponding to a uniform tempera- 
ture distribution. The other stationary point of E (L,U), the 
zero of the function L - A (E ), is the "energy" of the ther- 
mal-electric domain. Because Eq. (45) goes over to the equa- 
tion U(Ej )  = U at A (E) = L, the region of parameters in 
which this second (nontrivial) zero occurs has already, in 
essence, been studied in Sec. 2 with the domain "energy" and 
domain current as variables. According to (48) the uniform 
state is stable at L < A  (O)=L,, Ij,(U,L )), which, of course, 
agrees with the results of Sec. 2. A small-amplitude domain 
is stable if 

where { u, 1 are the Poisson brackets of (17) for values of E 
and j that satisfy Eqs. (15) and (16). In this case, any initial 
distribution, including those arbitrarily close to a uniform 
distribution, will evolve as ~ + C O  to a thermal-electric do- 
main with E = E (U, L ). From this discussion it follows that 
the line (38) in the region of small E is the boundary of the 
thermal-electric domain stability region. If the inequality 
opposite to (5 1) is satisfied, then the domain is unstable and 
the uniform state (E = 0) is stable. In this case, all distribu- 
tions that occur in the limits t , ) t ) ~ ~ ,  after shortening the 
description, are divided into two classes. The states with 
Eo < E (where Eo > 0) are transformed in the limit as t-co 
into the uniform distribution. The "energies" of the states 
with Eo > E increase as an explosive instability: E (t,Eo) goes 
to infinity in a finite time 

to (E,)  = [TL/IL-L,,(U) I I ln [ E o / ( E o - ~ ) l  -4. 

In this case at t-to(Eo) a large-amplitude thermal-electric 
domain develops in the system or the system goes over into 
the turbulent regime (see Sec. 3). 

According to the results of Sec. 2, for sample lengths L 
that are close to the selected values La or L, and for domain 
currents jzja,, there can exist a narrow range of U in which 
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each value of U corresponds to two small-amplitude do- 
mains. From Eq. (48) it follows directly that one of these 
domains is necessarily stable and the other unstable. If the 
uniform state is stable the domain with the smallest "ener- 
gy" is unstable. When the uniform state is unstable this do- 
main is stable. In the first case all the states of the system 
withinitial "energy" Eo <Em,, = min(E +,E -)approach as- 
ymptotically the uniform state, while the states with 
Eo > Em,, approach asymptotically the state of "energy" 
Emax = max(E +, E -). In the second case all the states with 
Eo in the band 0 < E < Emax are transformed into a domain 
with "energy" E = Em,, , and the energies of the states with 
Eo > Emax increase explosively as in the situation examined 
above for a single (unstable) domain. 

In conclusion let us discuss briefly the dynamics of ther- 
mal-electric domains that occur in the presence of nonuni- 
formities in the sample. It is physically obvious that the ef- 
fect of a nonuniformity on the dynamics of a thermal-electric 
domain is determined by the relation between the velocity of 
a thermal-electric domain and the magnitude of the nonuni- 
formity. As has already been mentioned, the velocity of a 
thermal-electric domain is small to the extent that the ther- 
mal emf coefficient a is small. Therefore the situation of 
greatest interest is where the nonuniform perturbation is 
also quite small. In the opposite case pinning occurs, that is, 
the thermal-electric domain is bound to the nonuniformity. 

Without significant loss of generality we can allow for 
the nonuniformity by introducing the term f, (T,q, ) on the 
right-hand side of Eq. (23). For f, the thermal-electric 
domain motion that is established in a time much larger than 
the characteristic time of an instability can, for any "energy" 
of the thermal-electric domain, be described by an adiabatic 
approximation similar to that developed above. If the do- 
main amplitude is not small, then, up to corrections that are 
small in f,, the temperature distribution has the form 
T(q,,t ) = 8 (q, - il (t ),E,?),where8 (q,)isthe2~-periodicfunc- 
tion that is defined by Eq. (29) or (30) and B and7 are the 
"energy" of a domain and the domain current that corre- 
spond to the given values of U and L. The requirement that 
the nonuniformity correction to 8 be small gives the follow- 
ing differential equation for the phase shift il (t ): 

1 do 
=s-F ( A ) .  ~ ( h )  = -( -fn (q+h(t) )r  (8 )  ), (52) 

B d9 

where B is a number independent of il and given by 

and s is the velocity of a thermal-electric domain under uni- 
form conditions (formula (14)). As can be seen from Eq. (52), 
when s > maxF(I1 ), nonuniformities do not prevent domain 
motion, but only change their velocity. Ifs < maxF(il ), then 
domain pinning at the nonuniformity occurs at the point il, 
where F(ilo) = s and dF/dil> 0. 

In the case of small-amplitude domains (and f, 4) the 
analysis is "shortened," as was discussed above, and T (p,t ) is 
determined by formula (43). A small nonuniformity leads to 
the two terms 

a= ( n f i x l ~ ~ , )  I fii' I E-'" sin A, 

on the right-hand sides of Eq. (48) and (49), respectively, 
where f A') is the first harmonic of the periodic function 
f, (8 (q, ),q, ). The "nonuniformity" corrections E and w ,  by 
mixing the variables E (t ) andil (t ), can lead not only to ther- 
mal-electric domain pinning, but also to a new, self-oscilla- 
tory mode, which corresponds to the system going into the 
limiting cycle. An in-depth analysis of this situation is out- 
side the scope of this paper and will be investigated separate- 
ly. 

APPENDIX I 

For small-amplitude domains (see Sec. 2), the differen- 
tial resistance at the end point j, has the form 

(AI. 1) 

It follows therefore thatp, vanishes for at least two values of 
the current j = ja,b. Actually, it follows from (AI.l) that 
p, z d U d d j  < 0 in the neighborhood of current values for 
which dL,, /dj = 0. However, p, > 0 in the neighborhood of 
j = jA and of j = j, (see Fig. I), where LC ( j )  = 2r/( - f ' ) ' I 2  

goes to infinity. It is easy to see that this last relation is true if 
one notes that, in the zero-order approximation in the pa- 
rameter E/Wo.<l, it follows from (15) and (16) that in the 
neighborhood of jA and jB 

o:(O, i ) = i p ( T 2 ( i ) ) L t i P ( i ) ,  (AI.2) 

5 ( f " ) Z  f"' p'f" [ - ~ m + m + ~ I  T = T * ( j )  , (AI.3) 

Substituting (AI.2)-(AI.4) in (AI.l) and using (I), we find 
that for values of j close to j, and jB , the differential resis- 
tance p, is p, z - 2Lq'p/5f 'd > 0. 

APPENDIX II 

To express Q (0) (see (35)) in terms of the differential re- 
sistance of the dynamic I-V characteristic: 

(AII. 1) 

we differentiate Eq. (29) with respect to the current Jfor fixed - -- 
L ( E j )  =L :  

h 

Here H is the operator defined by expression (27). It follows 
from (AII.2) and (32) that the function xd8 /$can be written 
in the form 

Substituting (AII.3) into (AII. 1) and comparing the resulting 
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expression with formula (35) evaluated at p = 0, we obtain 
relation (37). 

' 1  We note that even if o depends only weakly on T, the inequality (2) can 
hold because of the existence of the decreasing segment of the function 
q(T). This occurs in the case of cooling the sample in a liquid during the 
transition from nucleate boiling to film boiling. In this situation, which 
corresponds, in essence, to the constant current regime, a thermal-elec- 
tric domain is unstable, and therefore the interpretation given in Ref. 6, 
that the thermal-electric domains observed by the authors of Refs. 4 and 
5 are manifestations of a boiling crisis, is not correct. 
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