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Attention is drawn to the fact that, in general, the topological classification of linear singularities 
in nematic crystals gives incomplete information about the distribution of the order parameter. 
The symmetry of the director distribution in uniaxial nematics, or the triad of orthogonal unit 
vectors in biaxial nematics, also plays an important role. The symmetry groups of the distribution 
of the order parameter in the presence of disclinations are discussed. Possible phase transitions 
between the states of the liquid crystal, differing by disclination symmetry alone, are examined. 

I. INTRODUCTION 

Homotopic methods of investigation of disclinations in 
nematic crystals, and of other structural defects in con- 
densed media,' have led to a simplification of the classifica- 
tion of these defects (see, for example,  review^.'.^) The entire 
set of defects turns out to be divided into classes with differ- 
ent topological indices. Thus, disclinations in the ordinary 
uniaxial nematic crystal form two topological classes with 
topological indices N = 0 and N = 1 and defect composition 
law 

l i - l = O ,  l i-O=1. (1) 

Defects in one class can be continuously transformed 
into one another, whereas transitions between defects be- 
longing to different classes involve considerable losses in 
producing a discontinuity in the order-parameter field, 
which necessarily arises in this process. 

However, the topological classification is often too gen- 
eral and does not exhibit much of the detail of the distribu- 
tion of the order parameter in the presence of defects. Thus, 
theoretical and experimental studies of vortex lines in super- 
fluid He3 have shown that a vortex belonging to a given topo- 
logical class can exist in different states. In the B phase of 
He3, a first-order phase transition is observed between differ- 
ent  state^,^ but the properties of He3-B itself do not change at 
the transition point. The states of the vortex differ by their 
symmetry5 and by the physical properties of the vortex de- 
termined by this ~ y m m e t r ~ . ~ ' ~  

Thus, the topological classification of defects must be 
augmented by the symmetry classification of the states of the 
defect that are possible within a given topological class. The 
symmetry classification of defects, i.e., essentially inhomo- 
geneous states of the order parameter of an ordered medium, 
must differ from the usual classification based on the sym- 
metry of ordered media themselves. In particular, the differ- 
ence consists in the following. To enumerate the classes of 
ordered media, it is suffcient to find all the possible symme- 
try groups of the system, i.e., all the subgroups H of the 
general symmetry group G of its physical laws. For example, 
to enumerate all the possible crystal or liquid-crystal states, 
it is sufficient to find all the subgroups of the Euclidean 
group. 

On the other hand, when the symmetry classification of 

defects is introduced, it is important in addition to take into 
account the fact that a given symmetry leads, in general, to a 
restriction on the range of variation of the order parameter, 
i.e., to a change in topology and hence to the appearance of 
new topological indices imposed by the symmetry. 

Let us illustrate this point by considering the simple 
case of disclinations in a nematic crystal. When, for example, 
a symmetry plane perpendicular to the disclination line is 
given, the distribution of the order parameter (in this case, of 
the director d) should be planar. As a result, we have a new 
symmetry-imposed topological invariant, namely, the dis- 
clination index m (the so-called Frank index), which is the 
index of a planar vector field (see Sec. I1 for further details). 

Thus, the symmetry and topological factors are interre- 
lated. Disclination states with different symmetry are possi- 
ble within each topological class, and different subclasses are 
possible within given symmetry. 

In this paper we shall illustrate the defect classification 
principle by considering the example of linear disclinations 
in uniaxial and biaxial nematic crystals. This classification 
predicts the existence of different disclination states between 
which (as also in superfluid He3 phases) first-order phase 
transitions are possible on change of temperature and pres- 
sure, and are not accompanied by changes in the properties 
of the nematic crystal itself. Such transitions can be revealed, 
for example, by a discontinuous change in the optical prop- 
erties of a given liquid crystal texture (see Sec. IV for further 
details). 

II. DISCLINATIONS IN A UNIAXIAL NEMATIC CRYSTAL. 
STATES WITH MAXIMUM SYMMETRY 

Consider a rectilinear disclination in a uniaxial nematic 
liquid crystal with order parameter 

~ ~ ~ = ) / 3 / 2 s  (d,dfi-'/36CL~) PI 
specified by the director d(r) (s is the modulus of the order 
parameter). The Euclidean group defining the symmetry of 
this liquid crystal consists of rotations 0 d=O d(Or), inver- 
sion I d=d( - r), and translations T d=d(r + a) (a is an arbi- 
trary vector). This group reduces to the space subgroup con- 
sisting of translations T, along the disclination line and the 
elements of the point group D,, containing all rotations 
around the disclination line, rotations of n- around twofold 
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axes perpendicular to this line, and inversion. For simplicity, 
we shall confine our attention to disclinations whose struc- 
ture does not depend on the position coordinate along their 
axis. The classification of disclinations then reduces to the 
enumeration of the symmetry group, i.e., the subgroups of 
the group D ,  , :Dm ,C,, ,C,, , C ,  , D,,, D,, , D, , C,h , C,, , 
C, ,  S,, (we are using the notation of Ref. 8), and to the 
enumeration of the topological subclasses within a given 
symmetry group. 

Although this enumeration is straightforward, it is la- 
borious and contains very little physical information. We 
shall therefore base our classification on the principle of 
maximum symmetry. By states with maximum symmetry, 
we shall understand states whose symmetry cannot be con- 
tinuously increased without changing the topological subin- 
dex. It is clear that states with maximum symmetry are al- 
ways the extrema of the free-energy functional F. This 
distinguishes them from states with lower symmetry. The 
latter become extrema only in definite ranges of the param- 
eters of the energy functional that are bounded by the so- 
called catastrophe s ~ r f a c e . ~  It is therefore more natural to 
begin by considering states with maximum symmetry for 
which there are always solutions of the Euler-Lagrange 
equations resulting from the minimization of the functional 
F. It is only then, and if these solutions turn out to be stable, 
i.e., correspond to saddles of the energy functional, that we 
must investigate states with lower symmetry. This proce- 
dure corresponds to the Landau scheme for second-order 
phase transitions. 

Detailed direct analysis of all the symmetry subgroups 
of the group D,, shows that maximum symmetry states 
occur only for the groups D,, with a symmetry plane per- 
pendicular to the disclination line. We therefore begin with 
the groups D,, . 

To find the topological subclasses, let us consider the 
distribution of the director d on an arbitrary circle coaxial 
with the disclination (symmetry D,, ) and lying in the z = 0 
plane. At each of the 2n points of intersection of this circle 
with the n perpendicular twofold symmetry axes, the direc- 
tor d must be invariant under rotations around the corre- 
sponding axis. Moreover, d must be symmetric with respect 
to thez = 0 plane. This means that, at these points, the direc- 
tor d can lie only along the following three directions: 

I-along the z axis 
11-along the radius of the circle 
111-along a tangent to the circle. 

For the purposes of our classification, it is sufficient to know 
the distribution of the director on an arc n-/n joining two 
neighboring symmetry points on the circle, since the remain- 
ing distribution is obtained by applying the symmetry trans- 
formations in the group D,, under consideration. 

The director distributions on this arc form homotopic 
subclasses characterized by nonhomotopic paths connecting 
points I, 11, and I11 in the space of states in different ways. 
The enumeration of these subclasses presents no difficulty 
since, apart from the 1-1 subclass (class of mutually homo- 
topic paths connecting a point I to a point I), where d is 
parallel to the z axis, the director can vary only along the 

circle in all the remaining cases. There are only five such 
distinct subclasses: 

(3) 
The quantities in parentheses indicate the angle through 
which the vector d rotates between neighboring invariant 
points (k is an integer). 

The first subclass corresponds to the homogeneous 
state (d parallel to the z axis), i.e., it belongs to the higher 
symmetry group D,, . 

In disclinations belonging to the second and third sub- 
classes, the director d changes by 237 + 2nkn- when the entire 
circle is traversed, i.e., the disclination index m = 1 + nk is 
always an integer. It follows that these disclinations belong 
to the trivial homotopic class N = 0 for any n and k. 

For disclinations in the fourth and fifth subclasses, 
which are equivalent since they are obtained by redesigna- 
tion of the axes, the disinclination index is given by 

These disclinations therefore correspond to the N = 0 class 
for even n and the homotopic class N = 1 for odd n. 

We must now determine which of the above states are 
maximum-symmetry states, i.e., which of the groups D,, 
cannot be continuously extended to a higher symmetry 
group without changing m. 

It is readily seen that there are the following states with 
maximum symmetry: homogeneous state m = 0, D,,;  dis- 
clination with radial director distribution m = 1, D t); dis- 
clination with tangential director distribution m = 1, D :', 
(the indices 1 and 2 are used to distinguish between these two 
types of disclination); m = 1 - n/2 (n #2), D,, ; m = 1 + n/ 
2, D,, . Figure 1 shows some distributions of the director 
around the disclination lines that have maximum symmetry. 
These disclinations can be distributed as follows over two 
homotopic classes of the subgroup n-,(RP,) = 2, that de- 
scribes linear defects in uniaxial nematic liquid crystals. 

The trivial class N = 0 (topologically removable dis- 
clinations) includes the following maximal director distribu- 
tion groups: m =0, D m , ;  m = 1, DL),,  m = 1, D:),, 
m f0.1, D I ,  - . The nontrivial class N = 1 (disclinations 
that cannot be topologically removed) contains maximal 
groups, with m equal to a half-integer, and the symmetry 
group Dl ,  - ,,,, . Of course, depending on the specific form of 
the free-energy functional F, not all these maximum-symme- 

FIG. 1. Distribution of the director around maximum-symmetry disclina- 
tion lines: a-m = 1; D t i h ,  b - m  = I ;  DtIh; c-m = 1. 2, D ~ h ,  d- 
m=:;D,,,e-m= -J;D, , , f -m=-  D3h. 
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try groups give stable director distributions. For example, 
Dzyaloshinskii and Anisimov,'' who have investigated the 
Frank energy functional for similar values of the elastic 
moduli, have shown that the planar disclination with 
m = + 4 is unstable for K2, < 4(Kll + K,,). The planar dis- 
clination with m = 1 is unstable when K2,<2K3, or 
K,, < K,,. Finally, all planar disclinations with high indices 
are definitely unstable for K3,>K1,, K,,. It is precisely this 
relationship between the Frank elastic moduli that obtains in 
classical nematic liquid crystals such as MBBA and PAA. 
However, many new systems have appeared in recent 
years," in which this inequality may not be satisfied. Nema- 
tic liquid crystals formed in systems consisting of disk- 
shaped m~lecules '~ are promising in this respect. 

Thus, when the conditions are favorable and the planar 
distribution of the director is stable, nontrivial disclinations 
have the maximum-symmetry group D - ,,,, , where m is a 
half-integer. Disclinations with different indices m can then 
have the same maximum-symmetry group. For example, the 
distributions of the director around the disclinations with 
m = 1/2 and m = 3/2 have the group D ,, , whereas the dis- 
tributions around disclinations with m = 5/2 and 
m = - 1/2 have the group D,, . Phase transitions are possi- 
ble, in principle, between these competing states when the 
temperature, pressure, or some other external parameter (for 
example, concentration in a mixture) is varied. These transi- 
tions should be of second order because they occur without a 
reduction or increase in symmetry. 

The N = 1 class may also contain transitions between 
distributions of different symmetry. For example, from the 
state D,, (m = - 4) to the state D ,, (m = 1). 2 

Let us now examine the possible phase transitions asso- 
ciated with a change in the D ,, symmetry of a disclination 
within the framework of the Landau theory. This group8 has 
four one-dimensional irreducible representations (we shall 
denote them by 1, u, v, and w) and two two-dimensional 
representations ($, $). The group D,, can be written in the 
form of the direct product D ,, = D, XU, and, relative to 
action of the horizontal reflection plane a, we have (using 
the notation of Ref. 8), 

It is readily seen that all the possible D ,, symmetry break- 
i n g ~  are described by five parameters that are conveniently 
taken to be u, v, wand $. The remaining elements ofD ,, (C,, 
C :, U2, U2C3, U2C : ) operate on these parameters as follows: 

The free-energy functional that is invariant under D,, de- 
pends on the following sixteen invariant combinations of the 
five parameters, of degree not higher than four; 

uZ, v2, w2, u4,  v4, w4, u2v2, v2w2, wZu2, U U W ,  

IQI: 13+($*)3, 1 ~ 1 4 ,  

u2I$l2, u21*l2, w21$I2. 

One can also establish directly which nonzero parameters 
[out of the u, v, w, $1 remain nonzero in the subgroups of 
D3h  : 

Thus, the D ,, -D ,, transition is connected with the param- 
eter $ ($+O in a disclination with D ,, symmetry and $ = 0 
in a disclination with D,, symmetry). This is a first-order 
phase transition because the Landau expansion for the free 
energy contains only the third-order terms t,h3 + $*,. 

Other transitions can be described in an analogous 
manner. 

Finally, for K3,>Kl1, K,,, when planar disclinations 
are unstable, we must consider symmetry groups with non- 
planar director distribution. We need not then consider the 
low symmetry groups Cn , S,, ,I, E since, as the symmetry of 
the director distribution is lowered, the information that can 
be obtained from our analysis is also decreased. We shall 
therefore confine our attention to the groups D,, , Cnu , D, . 

As before, it will be sufficient for the classification of 
states to know the distribution of the director on the arc r /n  
of a circle drawn around the disclination line. The only dif- 
ference from the preceding analysis is that now we do not 
have the horizontal symmetry plane ah so that, without 
breaking the symmetry of the director distribution, we can 
rotate the director d in the vertical plane. Moreover, it must 
be remembered that, from the point of view of the degener- 
acy space RP2 of the order parameter of the nematic crystal, 
the effect of a twofold symmetry axis (for example, thex axis) 
is equivalent to mirror symmetry relative to the yz plane. 
Consequently, the effect of D, is obtained from Cnu by rotat- 
ing through 90", and it is sufficient to consider Cnu and Dnd . 

It is readily verified that all distributions with the D,, 
symmetry belong to the trivial topological class N = 0. On 
the other hand, distributions with the C,, symmetry can be 
divided into two subclasses: 

where the director orientation of type I1 along the radius of 
the circle can be transformed into I without symmetry 
breaking. The subclass 1-1 always belongs to the trivial ho- 
motopic class N = 0, and the subclass 1-111 has N = 0 for 
even n and N = 1 for odd n. 

As noted above, an analogous classification can be in- 
troduced when the distribution has the Dn symmetry. Thus, 
for odd n (i.e., for topologically stable disclinations) we have 
a possible competition between director distributions with 
Cnu and Dn symmetries, between which phase transitions 
are possible as the external parameters are varied (see Sec- 
tion IV for further details). 

Ill. DlSCLlNATlONS IN A BlAXlAL NEMATIC LIQUID 
CRYSTAL 

Biaxial nematic liquid crystals were discovered quite 
recently.', The order parameter in such cases is a tensor of 
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rank two, of more general form than the uniaxial tensor (2) unit vectors along the tangent and the radius of the circle, 
set by the director. It is convenient to parametrize it with aid respectively. Finally, we have the possible symmetry groups 
of a triad of unit vectors el, e,, e, and some angle q, that D,, , where mi = 1 + n/2 or mi = 1 - n/2 (n +2), each of 
specifies the degree of biaxiality of the tensor: which provides three cases for analogous reasons. To distri- 

bute these symmetry groups of the triad distributions among 
~ ~ ~ = l ' % [ e , ~ e , ,  cos ((p-n/3) the topological classes (7) of the quaternion group, we need 

+e,,e,~ cos (cp+n/3) -e,,e,~ cos cp] . ( 5 )  only find the angle through which any of the vectors in the 

where is a normalizing factor. It is readily seen that the 
tensor QaB in (5) is symmetric and SpQap = 0. 

When the angle q, is a multiple of a/3, the tensor QaB 
has uniaxial symmetry. For example, when q, = a/3, the 
tensor QaB is obtained directly from (2). 

The tensor Qap can also be specified by its invariants: 

I,=Sp QaBZ=sZ, ZJ=Sp Q,B3=-6-'hs3 cos 3cp. ( 6 )  

If we are in some equilibrium state, the tensor QaB will be 
defined in this state, and the values of temperature, pressure, 
and other parameters will determine I, and I,. 

Thus, in mathematical terms, we must find all the equi- 
valent mappings of the space R onto the space Mofsymmet- 
ric 3 x 3 matrices (for which SpQaB = 0, SpQ iB = const and 
SpQ iB = const under the action of the groups D, , C,, , D,,, 
and D,, ). It is readily verified that it is sufficient to solve the 
problem for the mapping of a circle S '-M, since the con- 
tinuation to R , occurs in the same way as in the problem of 
uniaxial nematic crystals, which was solved in the last sec- 
tion (where we required a description to within the invariant 
homotopic equivalence of the mapping of S ' onto RP, under 
the action of the groups D, , C,, , D,, , and D,, ). 

It is well knownlW3 that the linear singularities of biaxial 
nematic crystals are determined by the group a, = Q, where 
Q is the group of quaternion units. The topological index for 
the five different homotopic classes will also be denoted by 
the letter Q which can assume the following values: 

with the multidication rules 

It is clear from the foregoing that the only difference 
from the uniaxial nematic crystal is that we must consider 
the triad el, e,, e, instead of the single unit vector n. How- 
ever, for the purposes of our classification, it is sufficient to 
solve only the plane problem, each time examining only the 
variation of one of the vectors el, e,, e, on the arc a/n. Ac- 
cordingly, we shall use mi as the disclination index that de- 
scribes the orientation variation during rotation around ei . 

As in the last section, we begin with the maximal sub- 
groups. We take a homogeneous state with m = 0 and D,, 
symmetry. Next, for each of the vectors ei there exist planar 
distributions in which the other two vectors of the triad are 
oriented along the radius or a tangent to the circle drawn 
around the disinclination line. The symmetry of these distri- 
butions is D,, and six types of such disclination may be 
present in a biaxial nematic crystal, namely, (el = _i; e, = @), 
(el = Q; e, = i), (e, = i; el = Q), and so on, where cp and i are 

triad is rotated i s  the complete circle is traced. The class 
Q = 1 corresponds to rotation by 4a, the class Q = - 1 cor- 
responds to rotation by 2a, and any of the classes (i, - i), ( j ,  
- j), (k, - k ) corresponds to rotation by a .  We thus obtain 

the following results. The trivial class Q1 includes the follow- 
ing maximum-symmetry groups: D,, with m = 0, D,, with 
mi = 1 + n/2 (mi even; three groups), and D,, with 
mi = 1 - n/2, where mi #O is even (three groups). 

The class Q = - 1 includes six D,, groups with odd 
mi. Finally, the classes (i, - i), ( j ,  - j), (k, - k ) correspond 
to D,, with half-integer m,, m,, or m,. 

If, for some energy reasons, the planar distributions 
with maximum-symmetry group are unstable, it is best to 
consider less symmetric (but still quite ample) symmetry 
groupsDnd, en",  and D, ,just as in the case of uniaxial nema- 
tic crystals. We shall use the letters A, B, C to denote the 
liquid-crystal states with vector el, e,, or e, tangential to the 
circle, and thelettersA ', B ', C 'to denote states obtained from 
A, B, C by rotation around a twofold axis (or by reflection in 
the vertical plane). 

Thus, we find that there are the following nine sub- 
classes for all the groups that we have considered: A-A; 
A-A '; A+B (and six additional subclasses obtained by per- 
muting the letters A, B, and C ). The first and second letters in 
the designation of a subclass correspond to the orientation of 
one of the vectors in the triad at the edges of the arc a/n. 

Direct examination of the possible distributions shows 
that D,, contains states A-A and A-A ' with topological 
index Q = 1 and the state A-+B with Q = - 1. (Of course, 
states obtained from these by permuting the letters A, B, and 
C will also belong to D,, ). 

In C,, , the A-A states have Q = - 1 and the A+A ' 
states have Q = ( - I)", while the A-B states belong to the 
homotopic class (i, - i) [and, correspondingly, B-+C and 
C-+A belong to ( j ,  - j) and (k, - k )I. 

In precisely the same way, and for the reasons noted 
above (Sec. 11), the same classification can be introduced for 
the group D, as well. 

It is important to note that the A-A state with 
Q = - 1 and the A-+A ' state with the same topological in- 
dex (for odd n) can be extended to the higher D,, symmetry 
(states A+B with Q = - I), but this extension does not take 
us outside the limits of the homotopic class Q = - 1. 

As above, structural phase transitions are possible with- 
in a given topological class. For example, for Q = - 1, we 
have competition between disclinations with D,,, C,, 
(A-A ), and C,, (A-A ' for odd n) symmetries. For the 
classes (i, - i), ( j ,  - j), (k, - k ), disclinations with C,, and 
D, symmetries are found to compete. Phase transitions 
between these disclination structures are possible in princi- 
ple as the external parameters are varied. 
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IV. CONCLUSION 

We shall now summarize the results of our symmetry 
analysis of disclinations. 

We have shown for uniaxial nematic crystals that, for 
nontrivial topologically stable disclinations (i.e., N = I), the 
maximum symmetry groups of the director distribution are 
Dl, - ,,,, , where m is a half-integer. This symmetry (for any 
half-integer m) cannot be increased without changing the 
topological index N = 1). This extension of symmetry can 
only be achieved by overcoming a large energy barrier pro- 
portional to the area of the surface that rests on the disclina- 
tion and on which nematic order has to be removed. 

Next, lower-symmetry disclinations are possible when 
these planar distributions are unstable for energy reasons. 
The D,, symmetry then always leads to the trivial homoto- 
pic class N = 0, but nontrivial disclinations (N = 1) with the 
C,, or D, symmetry are present for odd n. 

Similarly, in biaxial nematic crystals, the classification 
of disclinations can be based on the indices Q of the quater- 
nion group and the indices ni which can be integers (even or 
odd) or half-integers. So far, we have always spoken of com- 
plete symmetry of the order-parameter distribution in the 
entire space surrounding a disclination. However, as was 
first noted by Lyuksyutov,'4 the order parameter is degener- 
ateon the sphereS4at distancessmaller than R, - (K /Bs~)~' '  
(K is the Frank modulus and B is the coefficient of SpQ $ in 
the Landau expansion), and since 7i1(S4) = 0, there are no 
topologically stable defects at all in the region R < R, . For 
most ordinary nematic crystals," we have R, - 10-7-10-6 
cm, and the R < R, region is unimportant in the order-pa- 
rameter distribution. We have therefore ignored structures 
differing by the type of this disclination outflow within the 
core. We note that, in contrast to our case, it is precisely 
transitions within the vortex core that were detected experi- 
mentally and studied theoretically in the case of the B phase 
of He3. 

In principle, liquid crystals are possible in which this 
disclination outflow region is much greater. For example, 
strictly speaking, R, will at any rate diverge in the region of 
the transition from the uniaxial to the biaxial liquid crystal. 
In such disclinations with a wide core, the question of the 
type of disclination outflow is legitimate. We shall not con- 
sider this in detail here and will examine only some energy 
questions. The potential energy that must be overcome by 
the disclination outflow (and is, in fact, overcome by gradi- 
ent energy) is determined by the Landau expansion in terms 
of the order parameter (5): 

where b and c are related to the coefficients of SpQ $ and 
(SpQ &)' in the Landau expansion. 

The angle q, defines the latitude on the sphere from 
which the disclination outflow takes place. The function 
V (q, ) is shown in Fig. 2. As already noted in Sec. 111, q, = n-/3 
in a uniaxial nematic crystal and the disclination outflow 
takes place toward the northern pole of the sphere q, = 0. In 
biaxial nematic crystals, the angle q, is arbitrary. In the case 
of outflow at angles in the range n-/3 < q, < 7i/2 through the 
north pole of the sphere, we necessarily pass through the 
latitude q, = ~ / 3 ,  i.e., through the disclination structure of 
the uniaxial nematic crystal. 

Finally, consider the possible experimental detection of 
first-order phase transitions between different disclination 
structures. A change in the order parameter is accompanied 
by a change in the optical characteristics (in particular, the 
transmission coefficient) of a liquid-crystal layer. The phase 
transition is in fact revealed by the rapid variation of these 
characteristics. We are thus able in principle to detect the 
structure of defects by observing the variation of the optical 
characteristics as functions of the wavelength and of the ex- 
perimental geometry. 

Other physical properties of disclinations may describe 
transitions in directly. For example, since the distribution of 
the order parameter is inhomogeneous in the presence of 
disclinations, the so-called flexoelectric effect16 leads neces- 
sarily to dielectric polarization which, in turn, produces a 
charge on the disclination core. The value of this charge is 
determined by the integral of the flexoelectric dipole mo- 
ment over the surface surrounding the disinclination. In 
principle this change can be determined, for example, by 
measuring the current transported by the disclinations, or 
simply by examining effect proportional to the first power of 
the electric field E (since the interaction between E and the 
director d is unrelated to the charge of the disclination core 
and is proportional to E '). This charge depends in turn on 
the structure of the disclination and varies in the course of a 
phase transition between different structures. 

It is our pleasant duty to thank S. P. Novikov and I. E. 
Dzyaloshinskii for their interest in this research and for use- 
ful discussions. 
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