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The ensemble-averaging method is used to consider the dynamics of resonance excitation, by 
radiation with linearly varying frequency, in a spectrally complex system of the degenerate level 
+ band type. Asymptotic expressions are obtained for the populations. The action on the system 

by radiation with randomly varying frequency, and the influence of quantum fluctuations of the 
field, are also considered. The results are important for the understanding of processes that occur 
in complicated-structure spectral regions of polyatomic molecules under multiphoton-vibration- 
a1 and vibronic excitation. 

In the study of the action of intense radiation on polya- 
tomic molecules it is necessary as a rule to take into account 
the possibility of populating a large number of different 
quantum states.' The reasons are the appreciable number of 
degrees of freedom that ensure a high level density, and the 
complicated stochastic character of the internal motion of 
the molecules, which permits dipole transitions even 
between states with greatly differing quantum numbers. 

To understand the physical processes that occur in po- 
lyatomic molecules located in an intense field at resonance 
with their transitions, it is therefore necessary to have a clear 
idea of the rules of behavior of complicated multilevel quan- 
tum systems. This behavior can, of course, be described only 
"in the mean," i.e., one can find those features which are not 
sensitive to the microstructure of the spectrum. In this ap- 
proach it is expedient to describe the system by a distribution 
function of its parameters. 

Good results in problems of excitation of complicated 
systems were obtained by an approach based on the use of 
the Wigner distribution function2 for the matrix elements of 
the dipole-moment operator. It described the "stepwise" ex- 
citation of a quasi-contin~um,~ excitation of multiphoton 
resonances in the presence of a fine s t r~c tu re ,~  the behavior 
of a spectrally complicated system in a bichromatic field,5 
collisional redistribution of the populations of strongly ex- 
cited  molecule^,^ and others. It is proposed to use this meth- 
od in this paper to consider no less important a problem, that 
of the influence of the radiation-line broadening due to fre- 
quency beats on the effectiveness of resonance excitation in 
spectrally complicated systems. 

As applied to excitation of high-order vibrational re- 
sonances in molecules, the problem is the following. When 
multiphoton transitions are excited the frequency-variation 
amplitude increases with increasing number of photons in 
the resonance. At the same time, for transitions that proceed 
without intermediate resonances, the composite matrix ele- 
ment of the transition7 decreases. Consequently the charac- 
teristic width of the Stark trapping also decreases, although 
the number of levels in it may continue to remain large be- 
cause of the increasing density of states. It is known from the 
solution of the problem of excitation of vibrational-rota- 
tional multiphoton resonance from a lower (resonant) level4 
that when an external field is turned on the ratio of the sta- 
tionary populations of the lower (degenerate) level and of the 

band is proportional to their statistical weights, the role of 
the latter being assumed by the number of states that land in 
the Stark width of the resonance. 

If the radiation frequency fluctuates in time, the reso- 
nant value of the energy shifts over the band, and the levels 
that determine the effective statistical weight of the band 
change continuously. If some fraction of the population is 
left on the levels that have gone out of resonance with chang- 
ing frequency, the total population of the multiphoton-reso- 
nance band may turn out to be larger than in the case of 
monochromatic excitation. 

It is proposed to describe here this phenomenon in the 
simplest case that lends itself to an analytic solution, that of 
frequency variation linear in time. Similar problems, which 
arise in connection with the study of collisions, were consid- 
ered in Refs. 8-10 for single level + continuum or single 
level + band systems." Their solution could be physically 
generalized to include the case of a nonmonotonic change of 
the level position. Such a generalization is expected also for 
the case of a degenerate level + band system. It must be 
borne in mind, however, that the present problem differs 
somewhat in its formulation from those in Refs. 8-10, since 
it is aimed mainly at investigating the asymptotic behavior of 
the populations as t - t m  in the case when the interaction is 
not turned off. 

The Schrodinger equation for the system in question 
takes in the resonance approximation the form (fi= 1) 

where n and k number respectivley the states of the band and 
of the degenerate levels, respectively, V,, is the composite 
matrix element of the interaction, A ,  is the detuning of the 
nth level from a fixed position in the band, and A (t ) is the 
detuning of the resonance from this position at the instant of 
time t. 

We take the Fourier transforms of the system (1) and of 
its complex conjugate. Using the method of generalized 
functions, we take into consideration the initial conditions12 
for $, (0); +bk (0); +b, *(O); $k *(O). AS a result we get 

676 Sov. Phys. JETP 60 (4), October 1984 0038-5646/84/100676-06$04.00 @ 1985 American Institute of Physics 676 



and 
i 

Elpn ( t )  - (0 )  

where 
m 

A (T) = J' A ( t )  eixt at. 
0 

We consider a situation wherein only one of the states of the 
lower degenerate level is populated at the initial instant. In 
other words, the initial conditions are of the form 

$h (0 )  = 8 h , 0 ,  $k* (0) = 6 h , o ,  $n ( 0 )  =$n* (0 )  =0. 
h 

Denoting the integral operator in Eq. (2) by A and in (3) by A ,  
the solutions of (2) andh(3) can be represented as series in 
powers of the operator V. Introducing the notation 

h 
h 

representing the functions in them as series in powers of V, 
mukiplying the series, using the assumption that the opera- 
tor V is complex and the ensuing procedure for selecting the 
terms of the series, and then summing, we obtain expressions 
for 8, and 8, : 

where Vis the mean squa~ed matrix element of the transition 
operator, and quantities ~ a n d X  (the polarization operators) 
satisfy the equations 

For further calculations we use the model of equidistant 
band levels, A ,  = ran .  It has already been noted that this 
restriction is immaterial if V%S (Ref. 3). Then 

Since the ratio V/S is assumed large and the sums of the 

polarization operators of the degenerate-level states should 
have an imaginary part, the arguments of the cotangents 
have a large imaginary part and the cotangents take on the 
values f i, depending on the sign of the imaginary part of 
their argument. These signs can be determined from the cau- 
sality principle, after which Eqs. (7) take the form 

8 ,  (&)  = (&+iV2/6)- ' ,  x*, ( & )  = [F- ( A ~ - A )  - V ~ A ' ~ A ] - ' ,  

.. - 
( 9 )  

x, ( z )  = (t,-iVz16)-', x",(t) = [ g -  (A,-a') -v'Nx~] -', 
where N denotes the degeneracy of the lower level. We note 
that X,  does not depend on k, and designate this operator 
simply as X. Taking into account the relations 

.. .. z*, ( t )  2% (&)  = [2n-'-in-i] -'(xn-xn) 
n 

2i ,. A .. ,. (10) 
=-- [ C g - E -  (A-A) -VZN(X-X)  I-' 

6 
and substituting in the first equation of (6) the value of 2, 
expressed in terms of 2,, the system (6) becomes 

[ E - E - ( ~ - ~ ) - v ~ N ( E - E ) ~ ( c ~ ) X ( E )  ]xi 

If the detuning varies linearly with the time, A (t ) = at ,  
then 

A (8-8')  =ia6'(&-E'), A ( E ' - E )  =-ia6'( t- t ' ) ,  
and 

Substituting (12) in (11) and introducing the notation 
u = E + 6, u = 6 - E, we obtain for 8, the equation 

Equation (13) is linear, of first order, and with right-hand- 
side coefficients that depend on the variable. It can be solved 
by the method of variation of the constant 

where 

v2 v V2N v r=-  a =---- ---, B=- ,  
6 '  ia  (v- ir )  2a 

and the integration is along a ray that passes through zero 
and is directed such that the integral converges at infinity. 

To integrate with respect to dA it is convenient to use 
the relation 
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(1Sx)"-' = 
1 j (-.)-a e-"+x). 

2i sin (na) r (I-a) d t ,  (15) 
c r 

where C, is the contour of the integral representation of the 
r function. 

After integrating with respect to dll, we integrate 2, 
with respect to (2r)-'du. As a result we get 

V Z  z, = -- I j j d7 d o ( + )  a e-'-" 
nu6 4na sin (na) 

Cr Cr 

If the times considered are much longer than the duration of 
the transient when the field is turned off, it can be assumed 
that v g r .  Measuring v in units of a/T and t in units of r /a, 
andputtingB = V 2 ~ r  -',we obtainfor2,(t )the expression 

1 exp (-T-0-ivt) 
~ ~ ( t l = ~ J  J d ~ d e j  d~ nuB sin nuB 

cr c, 
(f 1" 

We note that the integral is not changed by the substitutions 
7 + B,B--+r, U - - + V ,  SO that only its real part differs from zero. 
We introduce the notation 

then 

1 (-i) dv 
2 ,  = - ~ e j  

4n 4nB sin (nvB) 
j Y ~ Y  jdqch-zt 

where the integration contour C, encircles the points m/ 
B (m = 1,2,3 ...) on the real axis, the contour C ,  comes from 
+ a, above the real axis, circles around the origin, and re- 

turns to infinity below the real axis. The integration contour 
C, is shown in Fig. 1. 

The integration with respect to dv yields the expression 

The integration with respect to dYin (19) calls for determin- 
ing the residue at the point Y = (2p - it )Bcothq,. As a result 
of this integration we get 

FIG. 1. 

FIG. 2. The intersection of the straight line 2B$ - t with the function 
(cos $ f l)/sin t+b determines the zeros of the denominator of the inte- 
grand in (22). 

2cpB-it 
X [ (2cpB-it) z+2 cth cp (2cpB-it) + l )  1'" (20) 

The limit a 4  corresponds asymptotically to t 4 .  In this 
case the main contribution to the integral is made by the 
point q, = 0: 

xi= (4BfI)- '" ,  (21) 
which coincides with the expression for the stationary popu- 
lation of the degenerate level + band system in a monochro- 
matic field.4 

We make the change of variable q, + i$. Then 

1 (it-2iBg) sin-' I) dg 
Z, =-Re 

4nB . (22) J [ 1- (2qB-t)'+2 ctg q(2I)B-t) 1' ' 
C~ 

at t # O  the integrand has four branch points: $ = 0, $ = $,, 
$ = $', $ = qh3 (see Fig. 2). With account taken the signs of 
the imaginary parts, the integration contour CJ, encircles the 
points 0 and $,. Making the change of variable cot* = x, the 
integral takes the form 

and should be taken along a contour that passes over two 
sheets of the Riemann surface, as shown in Fig. 3. The main 
contribution to the integral is made by the points x ,  and x,. 
The difference between the contributions from these points 
as t-tw plays a decisive role and is equal to unity, i.e., H,+l 
as t-tw . The contributions from the branch points are ex- 
ponentially small and are of the order of exp( - t /B ). 

After a long time, thus, the system goes completely over 
asymptotically to the upper band. In other words, just as in 
the problem considered in Ref. 8, a situation is realized in 
which the stationary population is distributed over the levels 
in proportion to their statistical weights. In the problem con- 
sidered above, the total statistical weight of the band was 
assumed to be infinite, therefore only this band turned out to 
be populated as t-t a, . 
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FIG. 3. The integral in (23) is taken along a contour lying on two sheets of 
theRiemann surface. Thesingularitiesx, = - t /2 andx, = - t /2 + n-B 
of the integrand are located on different sheets. 

We determine now the asymptotic time dependence of 
the approach to the stationary population distribution. To 
this end we must retain the first nonzero term in the expan- 
sion of the integrand of (20) in the powers of t  - '. By making 
the change of variable x = tu in the integral of (23) and ex- 
panding the integrand in powers of t  -' in the vicinity of the 
branch point located near u = 1, we find that 

( 1 - 2 , )  =Z,=O ( B / t 2 ) .  (24) 
If we return to the initial notation, the population of the 

degenerate level EO, which decreases quadratically with 
time, turns out to be proportional to the square of the ratio of 
the Stark-trapping region to the size of the energy band ne- 
gotiated during the time t: 

Zo- VZN/aZt2 .  (25) 
This model problem can be used to describe the excita- 

tion dynamics of a degenerate level + band system in the 
case when the time derivative of the field frequency does not 
change substantially over times of the order of V -IN - I1 ' ;  

SV -'. In the opposite limiting case, when the external field 
variations are fast compared with the characteristic Rabi 
frequencies and the transition rates, a different approach is 
needed, based on assumptions substantially different from 
the linearity, proposed in (12), of the time dependence of the 
detuning and used to transform from the system (1 1) to 
expression (13). We assume thus in particular that A (t ) is a 
random function with a rapidly decreasing correlation 
$A (t )A (t + 7)dt-0 at r- co , and denote by A "' (x)  the Four- 
ier transform of the correlation function. We next carry out 
transformations that include representing the first equation 
of (1 1) as a formal series in powers of the operator (z - 2 ), 
assume also randomness of thGunction A (t ) and hence that 
the series terms odd in (z -A ) can be discarded, sum the 
series, rewrite the equation in the initial form with allowance 
for the fact that the operator 2iad/du in (13) is replaced after 
the foregoing transformation by the operator 

(8-A) [ E - E - V ~ N  (?-A)] -' (a'-A),  (26) 
averaged over the realizations ofA (t )with allowance for cor- 
relation, and take thelimit as v = (6 - &)A. We then obtain 

as t-t co the value of 2, tends to a limit determined by the 
integral with respect to u, from - a, to + CO, of the solu- 
tion of the equation 

When the solution of (28) is integrated with respect to u 
in the case 

r ( 4 V 2 N / ~ Z ) z ~ A ~ z ~  ( 0 )  >>r, (29) 

we obtain 

21-A(z '  ( 0 )  /2Br=A( ' )  ( 0 ) / 2 N 6 ,  

where B = V 2 N r  -'. In other words, if the emission-spec- 
trum width exceeds the Stark trapping width, the effective 
statistical weight of the band begins to be determined by the 
number of levels spanned by the spectral width of the reso- 
nance. The stationary distribution of the population ceases 
then to depend on the external field. We note that allowance 
for the width of the emission spectrum does not change 
expression (21) for the stationary population at A "'(r. 

At very largevaluesofA "', whenA '2')B 21', thesolution 
obtained for (28) by variation of the constants in analogy 
with (14) is determined by the behavior near the singularities 
of the integrand. In this case the stationary population of the 
band approaches unity like 

111 ( t=m)  =exp { - B T / 8 A ( 2 ) ) .  

We note that if fluctuations of the frequency are superim- 
posed on its linear time variation, the system-excitation dy- 
namics can be described by Eq. (13) with an additional term 
added in the left hand side, viz., the operator (2b) acting on 
2 1 .  

We emphasize, however, that the approach based on the 
solution of (27) is not valid when the photon statistics does 
not permit the quantum field to be set in correspondence 
with the classical field even if the frequency of the latter has a 
complicated time variation, i.e., when the quantum state of 
the field deviates substantially from coherence. This means 
that the dispersion of the operator corresponding to the 
phase in the classical case exceeds 2a  substantially, meaning 
that the phase is not at all descriptive of the field, since it is 
subject to strong quantum fluctuations. This takes place 
when the characteristic spacing D /n of the photon frequen- 
cies (0 is the width of the spectrum of the radiation incident 
on the particle in question, and n is the number of photons it 
contains) becomes comparable with or much larger than the 
reciprocal of the radiation-pulse duration, 7,D /n) 1, i.e., (in 
the case of focusing) 

Qfio W-lh-z>>l ,  (31) 

where W is the radiation power density and A is the wave- 
length. At wavelengths on the order of 10pm the inequality 
(3 1) begins to be satisfied when the density of the radiation 
power becomes less than 1 W/cm2 if the relative linewidth 
f 2 / w  is The threshold power at a fixed relative 
linewidth increases in proportion to the fourth power of the 
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frequency and reaches values 10' w/cm2 at a wavelength 
100 nm. 

The condition (3 1) calls for a quantum treatment of the 
radiation field. The approach that must be used to describe 
the dynamics of the system excitation when this condition is 
satisfied must be based on consideration of the quantum 
photon variables. The asymptotic ratio of the level and band 
populations depends in this case on the radiation mode con- 
tent and statistics. Without going into details, we consider 
only some of the possible limiting cases that admit of a lucid 
interpretation. We assume that the number of radiation. 
modes participating in the system-excitation process is esti- 
mated by the total number n -7, Wil 2/h of the photons 
incident of the particles, and that the phases of these photons 
are random, since 7, fl /n) 1 by virtue of (3 1). We can there- 
fore describe the process by using the two-band model with 
random matrix elements of the interaction operator. 

The combined spectrum of the system and of the pho- 
tons is shown in Fig. 4. On the left and right are shown re- 
spectively the energy levels corresponding to the lower state 
and to the upper band of the system. If the width of the 
radiation spectrum exceeds the width of the band, transi- 
tions are possible to any of the upper states, and the ratios of 
the stationary level and band populations are equal to those 
of the statistical weights. In the other case when the radi- 
ation spectrum is strictly limited, transitions are possible 
only to those bands that enter into resonance, so that only a 
fraction of the bands shown in Fig. 4 participate in the for- 
mation of the spectral density of the quantum states of the 
band and of the radiation, and only that part of the band that 
is at resonance with the radiation determines the statistical 
weight. 

In both cited limiting cases the quantum treatment of 
the radiation field leads to the same conclusions as the classi- 
cal approach based on Eq. (28). Differences can appear when 
the spectral radiation line has slowly decreasing wings. In 
the ensuring situation the transitions induced by the radi- 
ation frequencies located on the wings of the spectral line 
cause the density of the final quantum states to increase, and 
the corresponding matrix element of the transition operator 

decreases. This problem is similar to that considered in Ref. 
13 and requires a special analysis that includes a study of the 
behavior of the parameter Wil 2 ~ p  V 2 / h 0  when the radi- 
ation frequency is shifted away from the line center. 

Our analysis demonstrates thus that when resonances 
are excited in complex multilevel systems the role of the 
emission spectrum width can be quite important. Its influ- 
ence depends substantially on the character of those pro- 
cesses that cause broadening of the spectral line. Thus, in 
particular, if the field frequency changes little during the 
time necessary to excite the system, the result of the slow 
motion of the resonance over the states of the upper band is 
total excitation of the system. This stationary distribution is 
approached in power-law fashion, and the population of the 
band approaches unit following a t  -2 law. When the change 
of the radiation frequency is fast compared with the system 
excitation rates, the stationary distribution of the popula- 
tions is determined by the ratio of the number of states of the 
lower level and the band states that enter into resonance with 
the radiation. The steady state is reached in this case expon- 
entially. If the relations between the pulse duration and its 
energy, frequency, and spectral widths are such that a quan- 
tum treatment of the radiation is necessary, a special analy- 
sis, with account taken of the radiation line shape, is needed 
to determine the steady-state populations. 

It seems that the results of this paper should be taken 
into account when considering questions such as excitation 
of multiquantum transitions in polyatomic molec~les '~- '~ 
and excitation of electronic transitions that have a compli- 
cated vibrational-rotational str~cture."-'~ Allowance for 
the radiation-field statistics in the experimental study of 
these phenomena can offer additional possibilities of analyz- 
ing the spectra and, in particular, permit the features of the 
density of states to be distinguished from the features of the 
transition cross sections. 

Indeed, in weak fields whose interaction with molecules 
is too weak to saturate a transition during the pulse time, the 
degree of absorption of the radiation is determined by the 
cross section for the transition, i.e., by a kinetic coefficient 
proportional to the mean squared matrix element of the di- 

FIG. 4. State spectrum of a system consisting of a degen- 
erate level or band plus a quantum radiation field. The 
levels (left) and bands (right) correspond to the states of 
the system at different states of the field (RR-resonance 
region). If the radiation-frequency spectrum is broader 
than the band, all the bands from among those landing in 
A have resonant levels corresponding to different excited 
states of the system. When the band is broader than the 
radiation-frequency spectrum (its width is marked), only 
the bands in the assembly B are at resonance. 
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pole-moment operator of the resonant levels, to the square 
field amplitude, and to the spectral density of the quantum 
states. Investigation of the spectral dependence of the transi- 
tion cross section is in fact, as a rule, the subject of the spec- 
troscopy of high vibrational states of a molecule. At the same 
time the transition cross ection, being an invariant according 
to the optical theorem, cannot determine the total number of 
levels that participate in the radiation absorption. In other 
words, the determination of the molecule properties of inter- 
est, such as the degree and limit of stochasticity of its vibra- 
tional motion, the values of the dipole moments, the inactive 
modes shifted to the infrared, remains beyond the capabili- 
ties of the traditional methods of this science. 

Measurement of the absorbed radiation energy over 
times substantially longer than the reciprical width of its 
spectrum, when the kinetic coefficient of the transition is less 
than this width, makes it possible in principle to determine 
the statistical weight of the resonant levels and find the ener- 
gy-space regions where the mixing of the mode levels is 
stronger. From the degree of mixing it is possible to assess in 
turn the degree of stochasticity of the motion and the value 
of the phase volume occupied by this motion. 

The problem dealt with this paper can be apparently 
also of interest when considering radiative collisions in spec- 
trally complicated molecular systems, when the change of 
the number of levels in a band that is at resonance with radi- 
ation is due to the change of the level positions in the process 
of pair collisions of excited particles. 
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