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A formalism based on the method of accelerated convergence is used to consider multispin and 
multiquantum effects in electron-nuclear double resonance at distant nuclei. Cases of homogen- 
eous and inhomogeneous broadening of the ESR line are considered. Various limiting cases are 
analyzed. The results are compared with the known experimental data. 

A number of recent report experimental stud- 
ies of multispin and multiquantum effects in electron nu- 
clear double resonance (ENDOR). These effects were inves- 
tigated both for distant and close nuclei. Whereas estimates 
of the corresponding ENDOR transition probabilities were 
obtained for close nuclei, there are not even qualitative ex- 
planations for ENDOR at distant nuclei. Yet effects that call 
for explanations have been observed in multispin ENDOR 
at distant nuclei. In particular, in Ref. 4 was studied a system 
consisting of two species of atoms with different Zeeman 
frequencies, w, and w,. Besides the usual ENDOR lines, a 
line was also observed at a frequency w, + w, , and its inten- 
sity was approximately the same as at the frequencies w, and 
w, . This fact is not obvious, since the probability of the two- 
spin process is much lower than that of the one-spin one. 

An explanation of this phenomenon is one of the tasks 
of the present paper. We consider also a number of other 
possible situations in multispin and multiquantum ENDOR 
at distant nuclei. We deal in particular with the two-quan- 
tum transitions observed in Ref. 2 for ENDOR at distant 
nuclei in sufficiently strong rf fields. Experiment has shown 
in Ref. 2 that the coupling of the nuclear Zeeman subsystem 
(NZS) with the electron dipole-dipole reservoir (DDR) is de- 
cisive. We shall therefore consider in detail two-quantum 
and two-spin transitions in ENDOR with account taken of 
the role of the electron DDR. We shall use6 a formalism 
based on the analogy with the method of accelerated conver- 
gence and developed in Ref. 7 for the description of multi- 
spin processes in magnetic resonance. 

In Secs. 1 and 2 we consider multispin processes in EN- 
DOR for a homogeneously and inhomogeneously broad- 
ened ESR line. In Sec. 3 we consider two-quantum transi- 
tions in ENDOR for the case of quadrupole splitting of the 
NMR line. 

1. MULTlSPlN ENDOR IN HOMOGENEOUS BROADENING OF 
ESR LINE 

We consider the spin system experimentally studied in 
Ref. 4, consisting of paramagnetic impurities of Zeeman fre- 
quency w, and two species of nuclei with frequencies w, and 
w, . As already noted, besides the usual lines in the ENDOR 
spectrum at the frequencies w, and w, an additional line 
was observed at the frequency w, + w,. This line is obvi- 

ously due to a two-spin resonance process wherein two nu- 
clear spins of different species are simultaneously flipped. 
Following the method of Ref. 7, we readily obtain a system 
of equations for the reciprocal temperatures. In the station- 
ary case it takes the form 

wherep,, PD, P I ,  andp, are the reciprocal temperatures of 
the electron Zeeman subsystem, the DDR, and the nuclear 
Zeeman subsystems NZS; PL is the lattice temperature; 
Ws = Ws (R - w,) is the usual ESR probability due to a mi- 
crowave field of frequency R;  W = W(o - w, - a,) is the 
probability of the two-spin nuclear process (we do not pres- 
ent here explicit expressions for Ws and W, since saturation 
of the ESR and NMR is assumed hereafter); TsL , TDL , etc., 
are the relaxation times, wD = Sp (XD 2)/Sp(Sz 2), and XD 
is the DDR Hamiltonian. 

We consider first the case when both frequencies w, and 
w, are of the order of the homogeneous width of the ESR 
line (this is apparently the case realized in Ref. 4). The relax- 
ation coupling of the NZS of both species of spins with the 
DDR will then be strong, so that spin-lattice relaxation can 
be neglected in the last two equations of the system (1). To 
calculate the electronic susceptibility we use the formula8 

wherex, = PL F N S  (S + 1)/3 is the static susceptibility, Sis 
the value of the electron spin; y is the gyromagnetic ratio; 
p(0 - w,) is the profile of the unsaturated ESR line, 
p(Aw) = W, (Aw)/m:, and w, is the microwave-field ampli- 
tude in frequency units. 

Expressing P, in terms of PD from Eq. ( la)  and substi- 
tuting in (2), we easily obtain an expression for the absolute 
change A, " of the susceptibility in the presence and in the 
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absence of an rf field: 

wheredp, =@D(W#O) -@D(W=O) ,S=(w: /As )TsL  is 
the ESR saturation parameter, and A, is the ESR line width. 

Using (lc) and (ld) to express @, and @, in terms of@,, 
substituting them in (lb), and assuming that the conditions 
for the saturation of ESR and NMR are satisfied, we obtain 

where a = TsL /TDL and 

Several limiting cases are possible here. We consider 
first a situation wherein the density of one spin species great- 
ly exceeds that of the other, e.g., C, )CM (this is realized in 
the experiment of Ref. 4). In this case 

Expressing TMD in terms of TDM, TsL in terms of TDL , and 
recognizing that w, - w, -A,, we obtain in order of magni- 
tude 

1 T D L  K---. 
C M  T n M  

Since CM ( 1, we obtain, if the ratio TDL /T,, is not too 
small, 

Consequently (4) takes the form 

This expression coincides with the known expression for the 
susceptibility9 when there is only one species of nuclei and 
when the bottleneck case is realized. Obviously, this is in- 
deed the situation in experiment, since the lines have practi- 
cally equal intensities at the frequencies w, + wM and o r .  

Thus, the cause of the identical intensity of the lines of 
the two- and one-spin ENDOR is the saturation of the nu- 
clear spin system and the bottleneck between the NZS and 
the DDR (as a result of which the change of the spin tem- 
perature no longer depends on the intensity of the external 
field). It is easy to show that in the situation considered 
above, when there are two species of nuclei and the rf field is 
applied at the frequency of one of the species of the nuclei 
under the bottleneck conditions, the result will be the same 
as for simultaneous saturation of both spin systems. 

In the other limiting case, when 

A, " will be proportional to K and will depend only on the 
relaxation time of the lesser species of particles. The physical 
explanation is that absorption of one rf quanta causes flip- 
ping of one spin I and of one spin M. Since the heat capacity 

of spins I is much larger than that of spins M, the NZS of the 
M spins becomes much more strongly heated and influences 
the DDR. A similar situation obtains also in dynamic polar- 
ization of nuclei. 

We consider now the case when one of the frequencies is 
much higher than the ESR line width, w, )A,, w, 5 A,. 
The coupling of spins I with the DDR is then weak and it is 
necessary to neglect the term (8, - 0, )/Tm in Eq. (lc), but 
to retain the term (p, - DL )/TIL. In analogy with the fore- 
going, it is easy to obtain the following expression for A, ": 

where 

If the condition TMD C, ) TIL CM is satisfied, we have 

OM' a C M T D L  T n L  K ' = - - -  
As2 T M D  T D M  ' 

In the presence of the bottleneck effect we have K ' )  1, and 
consequently expression (8) coincides with (7). 

In the other limiting case TMD C, (TI, C, we have 

OM' C r T s L  K ' = - -  
As2 C M T r L  ' 

As a rule TsL (T,, and consequently K'(1 and the EN- 
DOR signal is substantially weakened. 

The results are physically clear. In the first case, when 
TMD C, )TIL CM, the spins I relax rapidly to the lattice, so 
that saturation of the resonance at the frequency w, + w, 
leads to the equality 

Under the bottleneck condition we also have @, = @,. 
Without saturation of the NMR we have@, = @, -0, w,/ 
uD . This reciprocal temperature is much larger than@, w,/ 
w,, therefore the ENDOR signal will be the same as when 
only the M nuclei are saturated GB, = 0 in this saturation). 

At weak coupling of the spins I to the lattice, i.e., when 
T,, C, (T,, CM, the situation changes. The NMR satura- 
tion leads to the equality @, = - (w, /a,)&, and @, and 
@, take on approximately the same values they had prior to 
the NMR saturation. It is clear therefore that the ENDOR 
signal will be weak. 

2. MULTlSPlN ENDOR IN INHOMOGENEOUS BROADENING 
OF ESR LINE 

We shall consider only the case when spectral diffusion 
can be neglected. [The case of fast spectral diffusion reduces 
to that of Sec. 1 with the usual DDR replaced by the so- 
called reservoir of the local fields, PD-;P, + BwiSiZ 

I 

(for details see Ref. 9).] The ESR line can be represented in 
this situation as an aggregate of independent spin packets. 
We shall assume that the conditions w, -A  and^ (w, (A * 
are satisfied (A is the packet width and A * is the inhomogen- 
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eous width of the ESR line). 
In the limit of continuous distribution of the Zeeman 

frequencies w', the stationary equations for the reciprocal 
temperatures take the form 

Here WSa (J2 - w') is the probability of allowed ESR transi- 
tions, Wsf (0 - w' + a,) the probability of forbidden transi- 
tion with simultaneous electron and nuclear spin flips, and 
g(wl - a,) the inhomogeneous ESR line shape. To calculate 
the susceptibility we use the equation9 

X"=-Xo-  g ( o r - o o )  cp ( Q - 0 ' )  
2 P L  

x [ o l f i ( O ' ) + ( Q - 0 ' )  Pnldw'.  (10) 

Substituting here f l  (a') from the first equation of (9) for the 
change of the susceptibility, we get 

xo 1 
AX" = (Q-00 ,  S )  APD, 

where 
(Q-0 ' )  kcp ( 0 ' - Q )  g ( 0 ' - 0 , )  

@ R ( ~ - o o ,  S )  =- AS J do ' .  
I+ n A S q  ( 0 ' - Q )  

Calculating A, " to first-order in the small parameter A /A * 
we get 

nxo 
o 

D L  Qa0D2 
} + - A3Sg2 (Q-00) ' P Z  T- -* 

2 TIL (aoDZ+AZ) 

CITMo -' x(l+-) , 
C M T ~ L  

(12) 

The first term in the curly brackets corresponds to for- 
bidden transitions, and the second to direct thermal contact 
of the spins M with the electron DDR. Compared with the 
case of a homogeneously broadened ESR line, this expres- 
sion contains the small parameter (A /A *)2. 

It can be seen from (12) that the term corresponding to 
direct thermal contact vanishes if the spin-lattice relaxation 
of the I spins is neglected (T,, -+ co ). This follows directly 
from the form of the system (9). Indeed, if we neglect in (9c) 
the terms corresponding to spin-lattice relaxation and the 
forbidden transitions, we find that BIwI = 0 and 
f lM = BD, i.e., the system of equations will be the same as in 
the absence of the rf field. This situation is perfectly analo- 
gous to that already considered in Sec. 1. 

3. TWO-QUANTUM TRANSITIONS IN ENDOR FOR NUCLEI 
WITH QUADRUPOLE SPLITTING 

Resonant transitions due to simultaneous absorption of 
several rf quanta by one nucleus can occur in a system of 
nuclei with I >  1/2 under the influence a strong rf field. 
These multiquantum effects are diligently studied at pres- 
ent.1-3,5 We shall consider the simplest case of two-quantum 
transitions for nuclei with spin I = 1 and quadrupole split- 
ting, assuming that the quadrupole-splitting constant is not 
uniform over the sample. We shall also assume that the nu- 
clei are not the "proper" nuclei of the paramagnetic impuri- 
ties whose resonance is observed (multiquantum transitions 
on "proper" nuclei are described in Refs. 1 and 3). 

The Hamiltonian of a nuclear spin system acted upon 
by an rf field is 

+ 2 z ( ~ ~ + e ~ ~ ~ + ~ ~ - e - ~ ~ ~ )  + a c ~ ~ ~ ,  (13) 
11 

where w, is the amplitude of the rf field in frequency units, 
wQj the quadrupole interaction (we consider only the sim- 
plest case of hexagonal symmetry), and ZII the dipole-di- 
pole interaction Hamiltonian whose explicit form we do not 
need. If the condition o,>GQ > I IZ,, I  I is satisfied ( I  1XII I I 
is the "value" of the Hamiltonian in frequency units), two 
lines at the frequencies w, f ZQ will be observed in the EN- 
DOR spectra. The widths of these lines will be determined 
mainly by the inhomogeneity of w a .  One more line may be 
observed in this situation, at a frequency w, corresponding 
to the two-quantum transition. To describe this process it is 
convenient to use the formalism with fictitious spin - 1/2 
(Ref. 10). The eigenfunctions of spin I = 1, corresponding to 
the values m = 0, + 1 will be designated, following Ref. 10, 
as 13> = 1 - 1 > ,  12> = IO>,and l2> = I  - I > .  Wein- 
troduce the operators of the fictitious spin 12- ' (k, I = 1,2, 
3; a = x ,  y, z; see Ref. 10 for more detailed properties of these 
operators). The Hamiltonian (13) can be written as 
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The first two terms of the Hamiltonian (13') commute 
with each other, so that the quasi-equilibrium density matrix 
can be represented in the form 

To separate in explicit form the perturbation operator 
corresponding to the two-quantum process, it is convenient 
to use the formalism developed in Ref. 7. We transform to 
the interaction representation in terms of the first two opera- 
tors in the Hamiltonian ( 1  3'). The transformed Hamiltonian 
is written in the form 

kexp [ 4 i ~ Q 1 ( ~ ~ ' + ~ ~ - a )  t ]  +H.c.t%Ir ( t )  , (15) 
where Aw = w - o,. 

We assume that the condition ZQ )w 1 is satisfied. Then, 
following Ref. 6,  the effective Hamiltonian can be represent- 
ed accurate to second order as 

The averaging in (17) is only over the "fast" variables. Sub- 
stituting (15) in (16) and using the equation 

exp [4ioQj (zj:-%1j:-" t ]  = [Js+4 (I:') ' cos 2aqjt  

+2i1L2 sin 2uqjt]  [ 1 ~ + 4 ( 1 ~ ~ ~ ) , ~  cos 2wqjt+2il~-' sin 2aQjt]  

[J, and J ,  are 3 X 3 matrices with unity nonzero matrix ele- 
ments (<31J313> = 1 ,  <11J , )1>  = I ) ]  we obtain for the 
two-quantum-transition operator: 

A feature of this expression is that it does not contain an 
"inhomogeneous" frequency dependence, whereas the per- 
turbation operators corresponding to single-quantum tran- 
sitions at frequencies wI + ZQ depend on wQj . 

Using ( 1  8 )  we can obtain a system of equations that de- 
scribe the ENDOR. In analogy with (8 )  we have in the sta- 
tionary case 

where 

W'Z', i dt(z:-' ( t )  I!-' )eziAmt s'  ( ,1-3Z1-3)  ' 
W Q  + - 

It is easy to obtain from this an expression for the absolute 
susceptibility changed, " (it is assumed that the ESR satura- 
tion condition is met) due to two-quantum transitions: 

At low values of the rf power, when 

W(2)T1D<1, (21) 

A," will be proportional to W 2 ( A w ) .  In contrast to one- 
quantum transitions, W 2 ( A w )  does not contain inhomogen- 
eous broadening, so that the resolution of the line is higher. 
Furthermore, the homogeneous width W 2 ( A w )  is approxi- 
mately half the value in the case of one-quantum transitions, 
since (19) contains 2Awt in the exponential. Equation (19), 
however, contains a small factor ( w , / w Q ) 2 ,  so that under 
condition (21) the two-quantum ENDOR intensity is lower 
than the one-quantum one. This is apparently the situation 
realized in Ref. 2, since the intensity of the two-quantum 
ENDOR line observed there is much smaller than that of the 
one-quantum line, and an appreciable line narrowing is ob- 
served at the same time. 

In the other limiting case W 2 T I D  ) 1 Eq. (20) coincides 
with that for the susceptibility change for the usual EN- 
DOR,9 but the corresponding line width is much smaller. 

We note in conclusion that in the case of multispin and 
multiquantum ENDOR due to the coupling of the nuclear 
spins with the DDR electrons, the intensity of the double 
resonance in sufficiently strong alternating fields will be the 
same as in ordinary ENDOR. 
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