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A theoretical and experimental study is made of space-charge-limited currents in ice. Compari- 
son of the theoretical and experimental results yields a value of the mobility of the most mobile 
charge carriers in ice, viz., the H,O+ ions. 

INTRODUCTION 

The extensive physical research on ice in the last twen- 
ty-five years has been motivated both by an obvious practical 
importance and by the extremely unusual properties of ice. 
For example, the behavior of ice in electric fields differs 
strongly from the behavior of ordinary electronic insulators 
and semiconductors. This is because the electrical properties 
of ice are due to the motion of protons, not electrons. 

The results of the research of previous years can be sum- 
marized in the following model for ice. In the most common 
modification, hexagonal ice, the oxygen atoms form a regu- 
lar lattice of the wurtzite type (Fig. I).'.' Energy oxygen 
atom has four nearest neighbors at a distance roo = 2.76 A. 
Every 0-0 bond has two potential wells for the protons at a 
distance of 1 A from the oxygen atoms. The distribution of 
the 2 N protons (N is the number of H 2 0  molecules in the 
crystal) over the 4 N sites satisfies the Bernal-Fowler (BF) 
rule3: 

a) there is one proton in every bond: 
b) there are two protons close to every oxygen atom. 

Despite these restrictions, the number of different proton 
configurations (BF configurations) is large. Pauling4 esti- 
mated their number as (3/2)N and, assuming that all the BF 
configurations have the same probability, obtained the resid- 
ual entropy of ice as So = kN ln(3/2) (k is the Boltzmann 
constant). Nagle5 subsequently carried out more-exact cal- 
culations but found only an unimportant difference from the 
crude Pauling approximation. The estimates of the residual 
entropy are in excellent agreement with the experimental 
results of Gisuque and Stout6; this agreement (together with 
other facts) confirms the above description of the protonic 
structure of ice. 

One cannot pass from one BF configuration to another 
by individual proton moves without breaking the BF rules. 
Therefore, in an ideal BF configuration the transport of 
charge by protons and the reorientation of the ice molecules 
cannot occur. However, one can create certain defects, 
known as D and L defects (which break rule a) and H,O+ and 
OH- defects (which break rule b), whose motion makes it 
possible to go between different BF configurations (Fig. 2).7,8 
Working from these ideas, Jaccard9.10 created a phenomeno- 
logical model for the electrical properties of ice; this model 
was recently refined by Hubmann." 

Though confirmed in its general features by many ex- 
periments (see, e.g., Ref. 12), this model suffers from the lack 
of experimentally measured values of the mobilities pi and 
concentrations ni of the H,O+, OH-, D, and L defects. In 
fact, all the quantities which have been measured to date (the 
dielectric constant E and the electrical conductivity a) con- 
tain the productsp, ni , and no one has yet been able to mea- 
sure the Hall constant because of the low mobilities. There- 
fore, it is important to employ new methods for studying the 
electrical properties of ice. 

For many materials the study of electron injection from 
contacts and the measurement of the space-charge-limited 
currents arising thereby are effective methods for studying 
such parameters as the mobility and lifetime of the current 
carriers, the concentration of defects, and the nature of the 
traps. The power of this method has been demonstrated par- 
ticularly clearly for semiconductors.13~'4 For this reason it 
seems attractive to apply the method of injection currents to 
the study of a protonic semiconductor-ice. However, many 
of the theoretical concepts developed for electronic conduc- 

FIG. 1 .  Structure of hexagonal ice. The circles indicate the oxygen atoms; FIG. 2. Diagram illustrating the formation and motion of H,O+, OH-, 
the proton positions in the bonds are not shown. D, and L defects. 
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tors do not apply to ice. Therefore, it is necessary to first 
make a theoretical study of space-charged-limited currents 
in ice in order to correctly analyze the experimental results. 
The present paper is designed to address this problem. In 
Part I we make a theoretical study of space-charged-limited 
currents in ice. In Part I1 we describe the experimental tech- 
nique and present results which are interpreted on the basis 
of the theory developed in Part I. 

PART I. THE THEORY OF SPACE-CHARGE-LIMITED 
CURRENTS IN ICE 

81. Basic equations 

Let us consider an ice crystal of thickness I, to which a 
dc voltage V is applied at time t = 0. The contacts at x = 0 
and x = I will be assumed ideal, which means that there are 
infinite concentrations of current carriers at the injecting 
contact at x = 0 and that there is no voltage drop across the 
collecting contact at x = I. Our problem is to evaluate the 
dependence of the electric current I on the voltage V and 
thickness I. 

We denote the defects H,O+, OH-, D, and L by sub- 
scripts i = 1,2, 3, and 4, respectively. The defect concentra- 
tions n, and current densities ji satisfy the continuity equa- 
tions 

dnr/at+div ji=O. (1) 

Equations (1) apply only in the absence of chemical reactions 
or, if reactions are present, under the condition that a chemi- 
cal equilibrium is maintained at any instant in time. Other- 
wise, the right-hand side of equations (1) would contain the 
rate of formation of particles in the chemical reactions. 

The electric field is determined by Poisson's equation 

div E=4np, (2) 

wherep is the total charge density. Let us write the charge 
density as 

where pd is the charge density of the defects and pp is the 
polarization charge density of the water molecules with the 
exclusion of the polarization charge due to their permanent 
dipole moment. At time t = 0 we have p =pd =pp = 0. 
Hence, for pd (t ) at t-+ oo we get 

p d ( ~ )  =- lim v-' dt as=-- 
v-o I o $ '  8 C e i ~ ~ v - t J d t  ,= l  o 

Here v is a physically infinitesimal volume, s is its surface 
area, ds is an element of area, Bn, = ni ( w ) - n, (0), j is the 
electric current density, by definition equal to 

and ei are the effective charges of the defects. From the 
above definition it is seen that the effective charge of defect i 

is equal to the charge ei which, in moving through a distance 
Sr,, would cause the same electric current as do the actual 
proton and electron motions necessary for a displacement of 
the defect by an amount Sr, . It can be shown that the ei have 
the properties 

where e is the proton charge. The charge density pp can be 
taken into account by introducing a high-frequency dielec- 
tric constant E = 3.17. As a result, Poisson's equation as- 
sumes the form 

4 n 4 '  
div E = --z ei6ni. 

In the Jaccard theory the state of the proton system is 
characterized by a configuration vector fl ,  which has the 
following physical meaning. If we consider the 0-0 bonds 
parallel to a certain direction z, the protons in these bonds 
can be found in two positions: 1 and 2 (suppose z, > z,). For a 
completely random BF configuration the numbers of bonds 
in states 1 and 2 are equal: N, = N,. The corresponding com- 
ponent J2, of the configuration vector is zero in this case. If, 
however, N ,  > N,, then the configuration is partially or- 
dered, and J2, #O. Because the defects change their state in 
moving along the bond,9 the vector f l  is related to the fluxes 
of the particles. One can define f l  aslo 

wherevl= 1 ,v2=  - 1,q3 = - l ,andv,= 1 takeintoac- 
count the character of the orientation of the bond by defects 
1,2,3, and 4. Taking the divergence of Eq. (6), using Eq. (1), 
and passing to the limit t-00, one easily obtains, for steady- 
state processes, 

4 

div 62=- 

Finally, we have the phenomenological equations for 
the fluxes: 

Pini 
ji= (eiE-qi@O)- - Di grad ni. 

I ei I (8) 

Here Qi = 3.85 r ,  kT (Ref. 1 I), where T is the tem- 
perature and Di are the diffusion coefficients. 

In Eq. (8) the term 7, Qi f l  enters as a sort of force acting 
on the defects. This force is due to the fact that in an oriented 
lattice (f l  #O), random jumps of defects give rise to a directed 
flux of these defects. 

From now on we shall consider only the steady, one- 
dimensional case, in which all the quantities depend only on 
x. We shall everywhere neglect the diffusion term D,grad n,, 
since it is small throughout almost the entire crystal, except 
for a narrow region near the injecting contact, and it would 
only lead to a small correction to the characteristic I (V , l ) .  
Equations (I), (5), (7), and (8) enable one to find E: 0, J,, and 
ni , and with the aid of Eq. (4) and the condition 
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1 where a plus or minus sign at the intersection of the ith col- 
V= [ E ( x )  dx (9) umn and jth row indicates the possibility or impossibility of 

0 the corresponding steady-state double injection. The phys- 
one can find the volt-ampere characteristic I ( V,I ). ical meaning of these restrictions is very simple. For exam- 

52. Boundary conditions and restrictions on the possible 
forms of steady-state injection 

We shall consider contacts which are able to exchange 
protons with ice. A single proton upon injection into the ice 
lattice immediately forms two defects: H30f and D. Simi- 
larly, one "proton hole" formed as a result of the extraction 
of a proton into the contact is equivalent to a pair of defects: 
OH- and L. Thus, the charge carriers usually come off the 
contacts in pairs: (1,3) and (2,4). However, the relatively im- 
mobile members of the pairs (presumably the OH- and D 
defects) can then remain trapped by the surface or by traps 
until they are annihilated. This circumstance makes it possi- 
ble to have any combination of injected carriers for contacts 
capable of exchanging protons with the ice. 

For the case of the double injection (1,3), allowance for 
what we have said and for the stipulated ideality of the con- 
tact gives for the boundary condition at the proton-injecting 
contact 

as x+O. Here r is some constant. 
Let us now consider the restrictions imposed by Eqs. (6) 

and (8) on the possible forms of steady injection. Because fi is 
independent o f t  in the steady-state case, we have from Eq. 
(6) 

& 

From this we see immediately that mono-injection, with a 
current of only one type of defect, is impossible. 

Let us now consider the possibility of injection (1,2). 
This means that j,#O, j2#0, j3 = j, = 0. From Eq. (8) we 
obtain, without the diffusion term, 

Substituting (12) into (1 l),  we get 

where we have used e ,  = - e,. Equation (13) is satisfied in 
two cases: p,n, =p2n, = 0 and e,E - @fi = 0. In either 
case we obtain a contradiction with (12). Consequently, 
j, = j, = 0, and injection (1,2) is impossible. 

The other cases of double injection can be studied in an 
analogous way. The result can be represented in the form of a 
matrix 

ple, in the injection of carriers 1 and 2 their fluxes change the 
states of the bonds in an identical manner, leading to the 
unbounded growth of the configuration vector. In the final 
analysis their values will be sufficient to cancel the electric 
field in Eqs. (8), and the current will be cut off. 

A similar investigation shows that any triple or quadru- 
ple steady-state injection is possible. 

53. Double steady-state injection (1,3) with a small initial 
defect concentration 

In the steady one-dimensional case we havej, = j3 = jo, 
where jo is a constant. Assuming that the initial concentra- 
tions are small, n, 4 Sn, , and taking into account what was 
said above, we obtain from Eqs. (5), (7), and (8) 

These equations should be supplemented with boundary 
condition (10). Eliminating Sn, and Sn, with the aid of (15.3) 
and (15.4), we easily obtain a single equation for dfi  /dE and 
a boundary condition for R and E a t  x -+ 0. The only solu- 
tion of this equation that satisfies the boundary condition is 

where 

Even this solution exists only for a single value of r: 

r ='*[i-e, e ( y l + y 3 )  (r-1) 
ll.3 e iy l -ears  

(17) 

At other values of r there are no solutions. 
Using (16) and (15), we easily find 

E= (2djoz)",  

where 

and from (4), (9), and (1 8) we obtain the current-voltage char- 
acteristics 

Z=9eVZ/8dZ3. (19) 

Expanding d in powers of 6, we finally obtain 

I = 9 e e p i p 3 V / 3 2 n  (e1p3+e3p l )  13. (20) 

Formula (20) describes a typical volt-ampere character- 
istic for a space-charge-limited current, but with the high- 
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frequency dielectric constant E instead of the static constant 
E, . In addition, if one of the mobilities p, and p, is much 
larger than the other, then the current is governed by the 
smaller mobility. 

Further, from (1 5.3), (1 5.4), and (16) we find 

6ns/6ni=r, (21) 

where r is given by Eq. (17). This result has a simple physical 
meaning. The presence of the configuration vector requires 
thatj, = j3. AS a result, the concentrations adjust themselves 
so as to compensate the difference in the mobilities (to lead- 
ing order in 8, one has rzp1/p3).  For this reason a solution 
satisfying the boundary conditions exists only at the fixed 
value of r given by formula (17). 

In solving the problem we have used two conditions, 
viz., that the diffusion currents and initial concentrations are 
small. From (15.1), (18), and (21) we easily get 

Gni=ji/pi (2djox) ". (22) 

Hence, the diffusion current Di n[ is larger than the drift 
current j, only for 

x< (kT/eV)"l ,  (23) 

i.e., in a narrow region near the contact, and, consequently, 
its contribution to the volt-ampere characteristic can be ne- 
glected. Further, the conditions Sn, ) n, are manifestly 
satisfied if 

e max{pi)  
V B -  a max {nio) 1'. 

e min{pi)  

54. Double steady-state injection (1,3) with a large initial 
concentration of type 3 defects 

Let us assume that the initial concentrations satisfy the 
conditions Sn,,, S n,,, n,,, n,, and Sn,,, ( n,,. This can be 
achieved by doping the ice with impurities which form type 3 
defects or, if n,, % n ,,, n,,, n,,, by decreasing the voltage V, 
i.e., decreasing Sn ,,, . 

A system of equations describing this case is obtained 
from system (15) by replacing Sn, in Eq. (15.4) by n,,: 

(@Q+e,E) nao=e3j0lp3. (25) 

Because Sn, -+ co at the boundary, Eq. (25) is violated near 
thex = 0 contact, where, as before, system (15) holds. Bear- 
ing this in mind, we shall solve Eqs. (15. I), (15.2), (15.3), and 
(25) using as a boundary condition the smooth joining with 
solution (18) at a point x, determined from the condition 

Bn3=jo/p3 (2djox0) 'h=n30. (26) 

Eliminating R, Sn,, and Sn, in succession, we obtain an 
equation for E: 

(E-E,)  Ef=bjo,  (27) 

where 
E,=esjo/ep3n30, b = 4 n e , / ~ p ,  ( 1 + 4 n e 3 2 / ~ @ ) .  

Hence we obtain for the field E 

E=E,+ (2bj0 ( x - s o )  +ei2E,2/e3')". (28) 

If x, ( 1 (i.e., if n,, is large and j, is small) then, nearly 
throughout the entire crystal, we can use the expression 

E= (2bjox)'", (29) 

which gives for the volt-ampere characteristic 

Z=9eV2/8 bF. (30) 

With increasing voltage, x, increases, and at x , ~  I we 
have the case examined in the previous section. In the inter- 
mediate case x, 5 I, assuming that we have solution (18) for 
x <x, and solution (29) for x >no, we can obtain the interpo- 
lation formula 

where x, is given by (26). We have also used 

Figure 3 shows a schematic log-log plot of all of our 
results for the volt-ampere characteristics. In region a the 
voltage is so small that Sn ,,, 4 n,,, n,,. In this case, as usual, 
we have ohm's law Ia V. In region b the voltage is so large 
that the condition n,,, n,,, n,, ( Sn,,, ( n,, holds, and we 
therefore have the quadratic behavior (30). The transition 
voltage from a and b yields an estimate of n ,,, and from (30) 
we can find the mobility p , .  Finally, in the highest-voltage 
region c the condition Sn,,, , n,, holds. The volt-ampere 
characteristic (20) is again quadratic, but with a different 
coefficient. The transition voltage from b to c makes it possi- 
ble to estimate n,,, and from formula (20) one can obtain the 
mobility p, ifp, ( p,.  If, on the other hand, p, ( p,, then, 
instead of the situation considered in Sec. 4, we must create a 
situation such that n,,, n,,, n,, ( 6n1,, 4 n,,. We empha- 
size still another important distinction between the above 
results and the theory of electronic injection: In the present 
case, despite the small size of the injected concentrations 
Sn,,, in comparison with the original concentration n,, (re- 
gion b ), the volt-ampere characteristic is quadratic, and not 
linear. 

Let us estimate the applicability criterion for the results 
of Sec. 4. The diffusion current can be neglected if 

max(p1, ~ 3 )  ,kT - 
Pi e V 

The conditions on the concentration give 

e V 
101~roon,o >> - >> 1012ro~nlo,20,~o. 

kT 

FIG. 3. Theoretical volt-ampere characteristics for ice samples with pro- 
ton-injecting electrodes. For V <  V ,  (region a) we have Ohm's law, while 
for V ,  < V <  V, ( b )  and V >  V, (c) we have la V2. 
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In concluding Part I we note that the results for the 
other types of double injection, e.g., (2.4), (1.4), and (2.3), can 
easily be obtained from the results of Secs. 3 and 4. In fact, 
everything reduces to a suitable change of indices. Thus the 
cases considered actually exhaust all the possible types of 
double injection. 

PART 11. EXPERIMENTAL RESULTS AND DISCUSSION 

§I. Techniques 

To obtain single-crystal samples of ice with a low initial 
concentration of current carriers we used thrice-distilled wa- 
ter which had been deionized by multiple passage through an 
Elga ion-exchange column and filtered through a 0.2-pm 
microfilter to eliminate the organic particles entering the 
water from the ion-exchange columns. The dissolved gases 
were eliminated by boiling under evacuation by a roughing 
pump at T = 35 "C for 8-10 h. The resistivity of the prepared 
water was (0.9-1.3) lo7 D . cm. 

The ice crystals were grown in a large desiccator in a 
thermally insulated jacket at a temperature of - 4.5 "C. The 
geometry of the thermal insulation of the desiccator was 
such that the water froze from its surface into its interior at 
an average rate of 1 cm/day. The growth took place under 
continuous evacuation by a roughing pump. The single-crys- 
tal nature of the ice and the direction of the c axis were moni- 
tored by observing the birefringence. 

The samples for the measurements were cut from the 
bars with a thin metal saw, sanded with an abrasive paper, 
and mechanically polished with filter paper. The thin ( -  50 
pm) work-damaged surface layer was then evaporated off. 
The samples were thin slabs 0.3-1.0 mm thick and about 5 
cm2 in area. The c axis lay in the plane of the slabs. 

We used three types of contacts. 
a) Proton-injecting contacts of a hydrogen-saturated 

palladium alloy (96% Pd + 4% Ag) in the shape of thin (1 
mm) plates of area 1 cm2. The alloy was saturated either by 
cyclic oxidation and reduction in a hydrogen flame or by an 
electrochemical method from a 1 M aqueous solution of HC1 
at a current density of 0.03 A/cm2. 

b) Blocking contacts of platinum foil. 
c) Blocking contacts of a liquid In-Hg amalgam. 
The rigid electrodes (Pd and Pt) were attached to the ice 

samples without melting by simple placing them in mechani- 
cal contact. Owing to the transport of material along the 
surface of the ice, after 2-5 h at T = - 4.5 "C a continuous 
contact was formed between the ice and the electrodes. 

To eliminate surface currents we used a guard ring of 
In-Hg amalgam, as shown in Fig. 4. This figure also shows a 
block diagram of an arrangement which permitted simulta- 
neous measurement of the volt-ampere characteristics, the 
frequency dependence of the capacitance C (w) and conduc- 
tance G (a),  and also the transient characteristics C (w, t )and 
G (w, t ) upon application of square voltage pulses to the sam- 
ples. The ac circuit was isolated from the high-voltage dc 
circuit by capacitors C, and C2 (z 5 . lop9 F), while resistors 
R,  and R2 ( z 3  . lo6 L! ) prevented short-circuiting of the 
bridge by the alternating current through the voltage source 
and electrometer. The ac bridge (General Radio 16 15 A) per- 

FIG. 4. Block diagram of the experimental apparatus: 1)  oscillator, 2) ac 
bridge, 3) selective amplifier, 4) dc voltage source, 4) electrometer, 6) x-y 
recorder, 7) synchronous detector, 8) phase shifter. 

mitted determination of the capacitance and conductance to 
an accuracy of AC= + lop3 pF, AG = + 10-lo mho at 
f= lo5 Hz and AC= + 1 pF, AG= + 5 .  10-1°mho at 
f = 20 Hz. 

The measurements were made at temperatures T 
between - 4 and - 56 "C, frequencies f between 20 and 
2 . lo5 Hz, and dc voltages V between 0.01 and 3 . lo3 V. The 
amplitude of the alternating voltage did not exceed 1% of 
the dc voltage. 

52. Results and discussion 

Figures 5-8 show the experimental results necessary for 
comparison with the theoretical formulas. 

The results shown in Figs. 5 and 6 are of the form which 
one would expect in the case of an easy exchange of protons 
between the sample and the contact. In fact, the dispersion 
curve for the case without a dc voltage has the ideal Debye 
shape implied by the Jaccard theory for a free exchange of 
carriers between the sample and the contacts. lo For blocking 
contacts the dispersion curve (see Fig. 7) differs from the 
Debye curve by the presence of low-frequency dispersion, 
which is due to the accumulation of carriers near the con- 
tacts and the formation of inhomogeneities. This low-fre- 
quency dispersion can take extremely complex forms"; 
these forms were explained theoretically and used to study 
the electrical properties of ice in Ref. 16. A dc voltage ap- 

FIG. 5 .  Plots of the direct current I, inverse resistance R -' (120 Hz), and 
capacitance C (120 Hz) of an ice sample with two hydrogen-saturated 
palladium electrodes; T = - 16 "C; sample thickness 0.7 mm. 
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FIG. 6. Influence of dc voltage V  on the frequency dependence of the 
capacitance Cand inverse resistance R -' of a sample with two palladium 
electrodes; T = - 16 "C; V  = 2 kV; sample thickness 0.7 mm. 

plied to a sample with palladium contacts creates a nonuni- 
form carrier distribution, and this is reflected in the low- 
frequency part of the dispersion curve (additional dispersion 
arises). A dc voltage applied to a sample with platinum con- 
tacts causes the dispersion curves to approach the Debye 
curve; this can actually indicate a shift of the low-frequency 
dispersion to lower frequencies. 

Finally, it is seen in Fig. 5 that the deviation of the volt- 
ampere characteristics from ohmic is correlated with an in- 
crease in the high-frequency conductance. Furthermore, as 
is seen in Fig. 6, a high dc voltage increases R -' over the 
entire frequency range, indicating an increase in the carrier 
concentration. 

All the aforementioned facts thus indicate that the devi- 
ation of the volt-ampere characteristics from ohmic at 
V = 400 V is due to the injection of protons and to an in- 
crease in their volume concentration, rather than to nonlin- 
ear properties of the contacts. 

Let us now turn to a comparison of the experimental 
results with the theoretical formulas obtained in Part I. The 
results on the effects of doping on the electrical properties of 
ice imply that in pure ice the majority carriers are L defects 
and the minority carriers are H30f defects. Consequently, 
the high-frequency conductivity is given by 

c, PF R-; mho 

FIG. 7. Influence of dc voltage V  on the frequency dependence of C and 
R ofasample with two blocking electrodes ofPt; T = - 30 "C; V = 1.5 
kV; sample thickness 0.56 mm; electrode area 1 cm2. 

FIG. 8. Transient characteristics of a sample with two proton-injecting 
palladium contacts upon application of a square voltage pulse V =  1.86 
kV; T = - 15 "C, sample thickness 0.55 mm; I,, is the dc current, R , ' 
and R ;,' are the inverse resistances at frequencies of 50 kHz and 100 Hz, 
respectively. 

i.e., is governed by the L defects. For the low-frequency con- 
ductivity we have 

i.e., a, is governed by the H 3 0 +  ions.'' As the dc voltage is 
increased, uo and u, monotonically increase. Consequent- 
ly, it can be supposed that in the present case we are dealing 
with the injection of H30+ and L defects. Here it follows 
from Figs. 5 and 6 that uo ( Sa, ( a,, u, & Su, , or 
Sn, ) n ,,, Sn, & n ,,, 6n , ,  ( n,,. The injection in this case is 
described by the formulas of Sec. 4 if it is recognized that 
e, = - e, and 7, = - 7,. From Eqs. (27) and (30) we have 

pl=8e,12Z/9eV2C,, (34) 

where C, is the low-frequency capacitance with 

EO=E ( l+ekZ/4n~@).  (35) 

We obtain the concentrations from (33) as 

n lo=~l le ip l=~o (elie)21elpl=ooellple2. (36) 
For the volt-ampere characteristics that are nearly qua- 

dratic (the deviations from quadratic volt-ampere character- 
istics in several samples are apparently due to the presence of 
traps in those samples), calculations with Eqs. (34) and (36) 
yield the following values at a temperature of - 20 "C: 

pi= (1-6) .lo-& cmVV. sec, n,,=1010-10"cm-3. 
The spread in these values can be attributed to the influence 
of traps, which decrease the current and thereby cause an 
apparent decrease in p,.  The value 6 . loF4 cmZ/V . sec 
should thus be considered a lower value of the mobility of 
H 3 0 +  defects. 

We have so far been unable to reach the second quadrat- 
ic region on the volt-ampere characteristics (see Fig. 3). To 
reach this region, from which one can determine n,, andp,, 
it will be necessary to go to lower temperatures and thinner 
samples. 

Finally, there is an interesting property of the transient 
characteristics that can be interpeted as confirmation of type 
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(1,4) injection. By injecting protons from the right-hand con- 
tact, we form H30+ and D defects. The D defects, annihilat- 
ing with L defects, decrease the concentration of the latter 
and thereby decrease a, , as is seen in Fig. 8. Then the H30+ 
ions reach the left-hand, negative contact and give off a pro- 
ton; in other words, the H30+ ions are destroyed and L de- 
fects are formed. The latter move into the sample and on the 
right-hand contact annihilate with injected D defects. At 
this time the high-frequency conductivity starts to grow 
again. The motion of L defects rather than D defects in the 
sample is apparently due to their higher mobility. 
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