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We investigate possible properties of exchange magnets in which the onset of magnetic order leads 
to spontaneous violation of the isotropy of the spin space, but invariance to time reversal is 
preserved. These magnets do not differ from antiferromagnets in their macroscopic magnetic 
properties and can be identified only by neutron scattering or NMR investigations. The possibil- 
ity of similar ordering in the nuclear system of solid 3He is discussed. 

The onset of magnetic order in exchange magnets is 
accompanied by spontaneous symmetry breaking relative to 
the spin-space rotation group 0 (3). In ordinary magnets the 
character of the ordering is such that the order parameter 
representative of the coordinate dependence of the average 
microscopic spin density is always transformed in accord 
with the vector representation of the spin group 0 (3), i.e., in 
particular, it reverses sign under spin inversion whose role is 
played by the time-reversal transformation. It is precisely 
this last property which is usually regarded as the general 
criterion of magnetic ordering. Magnets differ in accordance 
with which representation of the pure space group of the 
crystal the order parameter is transformed. This is the uni- 
tary representation for ferromagnets, the one-dimensional 
non-unitary representation for collinear antiferromagnets, 
and so on (see Ref. 1). 

which is characterized by the presence of a rather large bi- 
quadratic exchange. This system was considered in many 

Matveev4 observed a spin-wave spectrum of anti- 
ferromagnetic type in the absence of relativistic interactions, 
as well as a phase transition corresponding to collapse of the 
sublattices of an antiferromagnet. We shall show how, in 
accord with the general properties noted above, there are 
produced in this system all the remaining properties typical 
of antiferromagnets-zero longitudinal susceptibility, a 
phase transition corresponding to sublattice flopping, etc. 
Quadrupole ordering is impossible for spins = 1/2. We shall 
consider an example of a system of spins s = 1/2 localized in 
a lattice in which the spin-nematic state is produced via ap- 
pearance of anisotropic spin correlations in the presence of a 
sufficiently large four-particle exchange interaction. 

We analyze in this paper the possible properties of ex- 
change systems in which magnetic ordering leads to sponta- 

1. GENERAL PROPERTIES 

neous breaking of the spin group 0 (3), but invariance to time Let s(r) be the microscopic spin density operator. In 
reversal is preserved. By virtue of this last property, the aver- states with magnetic order invariant to time reversal, just as 
age microscopic spin density vanishes in the systems consid- in the paramagnetic state, we have (s(r)) = 0. We consider 
ered. The order parameter should be introduced as a charac- the spin-correlation function (si (r)sk (r')). In the Paramag- 
teristic of the transformation properties of the spin netic state, by virtue of the invariance to the spin group 0 (3), 

correlation functions and described by the tensor represen- this function reduces to the spin scalar 
tation of the spin group 0 (3). The symmetry of the consid- 
ered systems is similar to the symmetry of ordinary nema- 
tics, the only difference being that we are dealing here with 
spin rather than coordinate space. We shall show below on 
the basis of general symmetry considerations that despite the 
invariance to time reversal, the magnetic properties of "spin 
nematics" are indistinguishable from the properties of anti- 
ferromagnets. Namely, all the phenomena typical of antifer- 
romagnets, such as flopping and collapse of sublattices or 
zero longitudinal magnetic susceptibility at zero tempera- 
ture, should be observed in spin nematics. The macroscopic 
equations that describe the low-frequency long-wave dy- 
namic properties of spin nematics, particularly the spin- 
wave spectra, coincide with the corresponding equations for 
antiferromagnets and, just as in the latter, systems of the 
"easy axis" and "easy plane" type are possible here. 

We consider also examples of systems in which states 
with spin-nematic symmetry are realized. The first is the 
quadrupole ordering, first observed by Blume and Hsieh, ' of 
spinss = 1 localized at lattice sites. The interaction between 

(si (r)sk(rr) )=6ikF(r, r') . 
The nonscalar part of the correlation function 

can therefore be regarded as a characteristic of the symmetry 
of a magnetic order that is invariant to time reversal. Separ- 
ating in Kik the parts symmetric and antisymmetric in the 
indices i and k, we rewrite (i) in the form 

where Pi (r, r') are antisymmetric functions of the spatial ar- 
guments, and the Q, are symmetric in the indices i and k as 
well as in r and r', with Q,, = 0. 

We shall not engage here in classification in all the cases 
that are possible in principle. As is customarily done in the 
investigation of spontaneous breaking of the space group 
0 (3)  in ordinary nemat i~s ,~  we confine ourselves to struc- 
tures having an axis of total axial spin symmetry. 

Just as any exchange magnetic system, a spin nematic is 
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described by specifying the exchange symmetry group,' 
whose elements are products of certain spin rotations by ele- 
ments of a certain space group G consisting of translations, 
rotations, and reflections. The group G itself determines the 
symmetry of the spin scalars in the system. Let the system 
considered be characterized by a nonzero spin pseudovector 
Pi (r, r'). We regard the components Pi (Gr, Gr') at given ini- 
tial r and r' as functions on a group G and represent them in 
the form of a sum of quantities that transform in accordance 
with irreducible representations of the group G. With the aid 
of the method described by Marchenko and one of us ' it is 
easy to verify that for a structure with complete axial spin 
symmetry only one term in this sum differs from zero and 
corresponds to a certain one-dimensional (unitary or nonun- 
itary) representation. This means that the structure in ques- 
tion can be characterized by an order parameter p (lpl = 1) 
that transforms like a pseudovector under the action of the 
elements of the spin group 0 (3) and in accord with one of the 
one-dimensional representations of the space group G. By 
virtue of the axial symmetry, the symmetric part Q, of the 
correlator (2) should take in this case the form 

The function A (r, r') is a spin scalar and is therefore invariant 
to the group G. The pseudovector p thus determines com- 
pletely the symmetry of the correlation function (1). 

If P, (r, rf)=O, we have by virtue of the axial spin sym- 
metry 

where n is a certain constant unit spin vector defined accu- 
rate to the sign, while Q (r, r'), as above, is a scalar with re- 
spect to all the transformations. 

There exist thus two types of axisymmetric spin nema- 
tics, characterized by spin directors p or n. In the first case p 
is a spin pseudovector that transforms in accord with a cer- 
tain one-dimensional representation of the group G, with p 
and - p different. In the second case n can be regarded as a 
scalar relative to G, and the states n and - n are identical. 

The macroscopic low-frequency properties of the spin 
nematics, particularly their behavior in magnetic fields that 
are weak compared with the exchange field, can be described 
on the basis of symmetry considerations alone. Reasoning 
similar to that expounded in Ref. 1 for the case of collinear 
antiferromagnets leads to the following Lagrange function: 

Here H is the external magnetic field, y the gyromagnetic 
ratio, aa8 the inhomogeneous exchange tensor, 

the magnetic-susceptibility tensor, X ,  the transverse suscep- 
tibility, and U,, the relativistic anisotropy energy. The mag- 
netization of a spin nematic is equal to 

The foregoing equations, especially formula (6) accord- 
ing to which a spin nematic has no longitudinal susceptibil- 
ity (at zero temperature), do not differ in substance from the 
corresponding equations for collinear antiferromagnets. 
The only difference is that, by virtue of the invariance of the 
state to time reversal, weak ferromagnetism is impossible in 
spin nematics; furthermore, Eq. (7) cannot contain addi- 
tional terms that are linear in the spatial derivatives of the 
order parameter. Equations (5)-(7) in which n is replaced by 
p, hold also for spin nematics with director p. Some differ- 
ence between the two types of nematic is in the form of the 
anisotropy energy. In type-n nematics, just as in antiferro- 
magnets, the expansion of Uan in powers of n has no linear 
terms. In the case of antiferromagnets this is due to symme- 
try with respect to time reversal, and in the case of n nema- 
tics to the identity of the states n and - n. As a result, as 
usual, we have U,, = (aik /2)ni nk , where a, is the anisotro- 
py tensor (a, = 0). A similar formula with n replaced by p 
holds formally for p-type nematics only if the one-dimen- 
sional representation of the group G, according to which p is 
transformed, is not contained in the pseudovector represen- 
tation. Otherwise there exists a relativistic invariant linear in 
the components of p and Uan = a ip i ,  where ai are con- 
stants. Let, for example, p transform in a uniaxial magnet 
like thez-component of a pseudovector. Then the anisotropy 
energy can be written in the form Uan = a,p,. The energy 
minimum corresponds top, = 1 orp, = - 1, depending on 
the sign of a,. At small deviations from equilibrium we have 

which is analogous to antiferromagnets of the easy axis type. 

2. EXAMPLES 

Let exchange-interacting spins s = 1 be located at the 
sites of a crystal lattice. The most general pair interaction of 
the spins is described by the Hamiltonian 

where s, are matrices of unity spin, 

and the subscripts a and b number the lattice sites. Assuming 
that the exchange parameters Jab and Gab are positive and 
long-range, we shall use the self-consistent-field method, 
i.e., seek the wave function of the ground state in the form of 
the product 

where s,, = + 1, 0, - 1 are the values of the spin projec- 
tions on the z axis, and $(s,, ) is a single-node wave function 
defined by the condition that the energy be a minimum. 

By averaging the Hamiltonian (8) over the wave func- 
tion (9) we obtain the energy per site: 
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Here 

the angle brackets denote averaging over the function $(s, ), 
and the subscript z will hereafter be omitted. The wave func- 
tin $(s,) of unity spin is equivalent to the symmetric spinor 
$mn (m, n = 1,2).  We put 

where am, are Pauli matrices and 3, is the unity-spin wave 
function in the vector representation and satisfies the nor- 
malization condition $*$ = 1 .  The mean values in (10) are 
expressed in terms of the components of $ as follows: 

The general phase factor of the wave function $ can 
alway be chosen such that the vectors Re $ and Im $ become 
mutually perpendicular. We choose next a coordinate frame 
in which the x axis is directed along Re $ and the z axis is 
perpendicular to the plane of Re 11, and Im $. Taking the 
normalization condition into account we obtain 

where O(p( 1 and A = + 1 .  
Substitution of (12) in ( 1  1 )  and ( l o )  yields 

If G < J the energy is a minimum at p = 2/G. Then 
( s , )  = 1 ,  i.e. the ground state corresponds to an ordinary 
ferromagnet. If, however, G > J, the minimum is reached at 
two points: p = 0 and p = 1 .  In both cases we have (s) = 0 .  
This is the so-called quadrupole In the consid- 
ered simplified model the function ( 1 )  differs from zero only 
at r = r'. Therefore Pi (r,  r') = 0 and the order parameter is 
Qik = (qik ) or the spin director n determined by the formula 
Qik = - 2(nink - (1/3)S,) .  At q, = 0 and p = 1 we have 
respectively n, = 1 and n, = 1 .  In the general case at G > J 
the ground state of the Hamiltonian (8) is characterized by 
the equality (s) = 0 and is infinitely degenerate in the direc- 
tions of the vector n, with the states n and - n identical. 

Let the system be in an external magnetic field H direct- 
ed along the z axis. For states described by Eqs. (12) this the 
case of a field transverse to n. An extra term - y(H ) (s,  ) is 
added to expression (10) for the energy and leads, when ( 1  1 )  
and (12) are taken into account to an additional term 
- U y H q ( 1  - q,2)1J2 in (13). If H < H c ,  where H, = 2(G 
- J ) / y ,  the minimum of the energy corresponds to A > 0 
and p(l  - p2)1'2 = H / 2 H c .  In the presence of a field the 
energy E is decreased by yH ' /2H, ,  from which it follow that 
the nematic state is characterized by a field-independent 

transverse susceptibility X, = y/Hc per atom.4 At H > H, 
the energy minimum corresponds to q, = 1 / 0  and 
(s,  ) = 1 .  The field Hc is thus4 the critical magnetic field of 
the phase transition from the nematic to the usual complete- 
ly polarized state. This transition is analogous to collapse of 
antiferromagnet lattices. 

It is also easy to see that in the nematic state, just as in 
collinear antiferromagnets, the longitudinal susceptibility is 
zero. Indeed, let $, = 1 and $y = $= = 0 in the absence of a 
field; this is equivalent to n, = 1 .  We consider closely lying 
states, putting $, = 1 + q,, and +by, = pY,,, where 1 Q 1 ( 1. 
In the approximation linear in Q the first of formulas ( 1  1 )  
yields 

E=-4/,G+4 ( G - I )  cpZ  (1-cp2) 

Thus, the contribution - yH, (s,  ) to the energy from the 
longitudinal magnetic field does not contain terms linear in 
the deviations of the state of the system from the initial mini- 
mum. In a sufficiently weak field the system remains there- 
fore in exactly the same state as in the absence of a field. 

Weak relativistic interactions can be accounted for by 
introducing in the Hamiltonian the one-ion-anisotropy ener- 
gy. This leads to the appearance in the energy (10) of a rela- 
tivistic term (a/4)Qxx = - (a/2)nX + const. The system 
behaves like an easy-axis antiferromagnet at a > 0 and like 
an easy-plane one at a < 0.  In a magnetic field longitudinal 
with respect to n, a phase transition should be observed ac- 
companied by flopping of n in a plane perpendicular to the 
field. The corresponding critical field H, = (a/,y, ) ' I 2  (a > 0 )  
is perfectly analogous to the case of antiferromagnets. 

We consider now another example, which is interesting 
because both nematic-type states with directors n and p are 
realized in it; it involves besides spins 1/2, for which quadru- 
pole ordering is impossible. Let the unit cell of the crystal 
contain two atoms with s = 1/2, and let the exchange Ha- 
miltonian be 

The subscripts a and b number here different unit cells, and 
a!) and a:) are Pauli matrices acting on the spin variables of 
the first and second atoms in the ath cell. We assume, as 
before, the exchange parameters Jab and Gab to belong- 
range and use the self-consistent-field method, but now in 
terms of a unit cell rather than of an individual spin. Namely, 
we seek the wave function of the ground state of the Hamil- 
tonian (14) in the form of the product 

where $(a(2, at;) is the sought two-spin wave function. We 
emphasize that for the onset of the nematic state in the sys- 
tem considered calls for vanishing of not only all the compo- 
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nents of the average total spin of the cell, but of each individ- 
ual spin. 

Averaging the Hamiltonian (14) over the function (IS), 
we obtain the energy per unit cell 

where the averaging is now over the two-spin wave function, 

A two-spin-1/2 wave function is equivalent to an asymme- 
tric spinor $"" of rank 2. Putting 

we arrive at a representation in which the wave function of 
an aggregate of a vector $and a scalar q0; the two satisfy the 
normalization condition 

I$o12+11p12=1. 

The mean values in (1 6) are equal to 

We choose the gauge of the wave function and of the coordi- 
nate system such as to satisfy the equalities 

with positive u and real v. We set also $, = 6 + ir]. 
We assume first that the constants G, G '  and G in (16) 

greatly exceed in absolute value the constants J1,2,3. The sys- 
tem energy is then 

If the variable l is excluded with the aid of the normali- 
zation condition 6 = 1 - u2 - v2 - r]', the resultant func- 
tion E (u2, v2, r]2) should be minimized in the region O<u2, u2, 
q2( 1. The constants G, G ' and should be regarded as posi- 
tive to justify the choice of the wave function in the form (15) 
with a two-spin function that is the same for all unit cells. 
Since the second derivative 

is negative everywhere, the minimum energy is reached at 
the boundary of the region considered. Moreover, for that 
part of the boundary where r]' = 1 - u2 - v2 and 0 < u2 and 
v2 < 1 we have 

so that the minimum can be reached only at those points of 
the region where at least one of the quantities u, v, or r ]  is 
zero. Simple analysis of (19) shows that three types of state 
can correspond to the energy minimum. 

1. If 3c>max(G, GI), the energy is a minimum at 
u = u = 0. In this case 3, = 0 and l$ol = 1, so that we are 
dealing with a nonmagnetic state in which the spin symme- 
try 0 (3) is not broken. 

2. At 3G ' - 2G < 3 c  < G the energy reaches its mini- 
mum in two states: u = 1, = O  and u =  1, 
u = 1 = 7  = 0. In both states 

(a ' i '>=<~'z ' )=(~ik)=OI 

and the system is a spin nematic of type n. The order param- 
eter (qik ) = 2(nink - Sik /3) corresponds to a director n di- 
rected along the z axis in the first state and along the axis in 
the second. 

We consider now the total energy (16) under conditions 
(18) near the state u = 1 as a function of small v, g, and r]. 

Expanding up to quantities of second order of smallness, we 
get 
E=-'/3G-G+4v2 (2G-Ji-Jz-13) +4g"4'/3G+2G-Jt-Jz+J3) 

+8qyz"/) G+G-G') . (20) 

Thus, at parameters J , , , 3  that are not too large in absolute 
value, the state considered corresponds as before to mini- 
mum energy. 

Near the state with $x = 1, without the use of condi- 
tions (18), we obtain, accurate to quadratic terms, 

The mean value of the projection on the total spin (I /  
2)(@ + a'')) on thex axis contains no linear terms. It follows 
hence, as before, that the state considered is characterized by 
a zero longitudinal susceptibility. The transverse suscepti- 
bility can be easily calculated by noting that by virtue of (20) 
the conditions (18) remain in force also in the presence of a 
weak field directed along the z axis. With the aid of (20) and 
(21) we get 

3. At 3 c  < min (G ', 3G ' - 2G ) the energy (19) is a mini- 
mum for states with v = 6 = 0, u = cose, and r ]  = sine, 
where 

The same energy is possessed by states with u = r] = 0, 
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g = sine, and v = cos6. In all these states 

If the pseudovector p is defined by the inequality 

(PB) = 1 sin 20 / e,,,p,, 

we get Jpl = 1, 

and at v =g = 0 and u = 77 = 0 we have respectively 
p, = sign(sin26 ) andp, = - sign(sin26 ). The system sym- 
metry corresponds thus to a spin nematic with director p. 

Let us consider states close to the state with (p, I = 1. 
At small v and the first three terms of (16) are of second 
order of smallness, as follows from (1 7), therefore the charac- 
ter of the equilibrium state does not change at exchange con- 
stants J , , , ,  that are not too large in absolute value. 

The magnetic susceptibility that is longitudinal i np  is 
likewise zero in this case, since (a!) + a!') does not contain 
terms linear in the deviations of the wave-function compo- 
nents from values corresponding to a state without a field. 
The z-component of the total spin is now 

1/2(0:') +012) )=2 cos OV, (24) 

so that a nonzero v appears in a magnetic field directed along 
the z axis. Expanding the energy (16) near the equilibrium 
value in powers of v at 6  = 0, we find 

(25) 
From (24) and (25) we obtain the following expression for the 
transverse susceptibility of a p-nematic: 

If 3G ' - 2G - 38--+0, it can be seen from (23) that cos26-1 
and the p-nematic is transformed into an n-nematic. Equa- 
tion (26) is then transformed into (22). 

The foregoing examples show that magnetic ordering 
with the symmetry of a spin-nematic should be sought for in 
experiments on substances in which, for one reason or an- 
other, the many-particle exchange is not small compared 
with the usual exchange. Since the magnetic properties of 
spin nematics are the same as those of antiferromagnets, 
they can be distinguished only by using neutron scattering or 

NMR, methods that can determine the average microscopic 
spin density. 

It is of particular interest to discuss here the possibility 
of nematic ordering in an exchange nuclear magnet, solid 
3He. At present it is universally accepted (see Refs. 7 and 8) 
that the principal mechanism of exchange interaction of nu- 
clear spins in solid 3He is four-particle cyclic exchange, 
which exactly contributes to nematic ordering. On the other 
hand, the conclusion that antiferromagnetic ordering was 
observed in solid 3He at temperatures below 1 mK was based 
either on a study of macroscopic magnetic properties, or on 
an investigation of the resonant properties of the systemat 
frequencies much lower than the exchange f r equenc ie~ .~~~  It 
is clear from our present results these properties are typical 
of antiferromagnets to the same degree as for spin nematics. 
It can therefore not be excluded that what is realized is not a 
structure of the uudd type but a nematic structure in which 
the director p behaves under spatial transformation like the 
antiferromagnetic vector 1 in the uudd structure. Since we 
are dealing here with ordering of nuclear spins, the only 
method capable of unambiguously answering this question is 
investigation of neutron scattering. 

We note in conclusion that a specific example of nema- 
tic spin ordering is the spin system of superfluid 3He-A. The 
pair spin correlator (1) in 3He-A is anisotropic and has the 
structure discussed above and determined by the spin direc- 
tor. The distinquishing feature is that 3He-A is not invariant 
to time reversal. The equality (s(r)) = 0 holds in it by virtue 
of the homogeneity and of the absence of ferromagnetism. 
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