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The problem of interaction between a modulation soliton and low-frequency (LF) waves is investi- 
gated within the framework of the well-known set of coupled equations for Langmuir and ion- 
acoustic waves in a nonisothermal plasma. It is shown that in the presence of a sufficiently intense 
LF wave a stochastization of the envelope soliton may occur. The problem is treated both in the 
approximation of a prescribed LF wave field, and in the selfconsistent case, i.e., taking account of 
the radiation field and its reaction on the motion of the soliton. 

The use of solitons as elementary objects, on which con- 
cepts of relatively complicated phenomena of nonlinear 
physics are built, assumes a detailed investigation of the 
properties of individual solitons, properties which manifest 
themselves in their interaction among themselves and with 
external fields. The majority of theoretical and experimental 
papers on the soliton problem is devoted to the analysis of 
these interactions. In many cases the solitons behave like 
classical particles'.' under such interactions and one some- 
times even talks about the "classical mechanics" of solitons 
or the "kinetic theory" of solitons. 

The investigation of the statistical properties of an en- 
semble (gas) of solitons has recently attracted the attention of 
many groups of investigators, mainly in connection with at- 
tempts to construct a theory of strong plasma t ~ r b u l e n c e ~ - ~  
and various problems of solid state physics.' At the same 
time we are aware of few papers which consider the mecha- 
nisms which lead to the stochastization of the motion of an 
individual soliton or of a small number of interacting soli- 
t o n ~ . " ~  

In the present paper we investigate the dynamics of a 
modulation soliton (also known as the Schrodinger soliton) 
in the self-consistent field of a low-frequency wave. Such an 
interaction is described by the equations 

where Pis  the complex envelope of the high-frequency field; 
u and n are the components of the low-frequency field. This 
system ofequations, first derived for the analysis of the inter- 
action between Langmuir and ion-acoustic waves in a non- 
isothermal plasma,9 also describes the interaction between 
surface and internal ocean waves, as well as electronic exci- 
tations in long helical m~lecules , '~  and is generally conven- 
ient for the analysis of the interaction between high-frequen- 
cy and low-frequency waves of arbitrary nature. 

The system (1) admits the well-known soliton solution 

In the case we are interested in, when ii, ii #const, the 
soliton solution (2) is, in general, no longer valid,however, 
when ii(x,t ) and ii(x,t ) are slowly varying functions ofx and t 
(on the scale of the soliton), then one may expect that the 
soliton will be able to follow the variations of ii and that its 
speed and amplitude will be slowly varying. When the prob- 
lem is posed this way it can be solved by an asymptotic meth- 
od. One looks for the solution of the system (1) in the form of 
the series 

Here Qr 'O', u"', and n"' are the leading terms of the solution, 
having the form (2); V = V(T), A = R @,T) are slowly varying 
functions of time,p = E X ,  T = ~ t ,  with E a small parameter of 
the same order of magnitude as the ratio of the scales ii and ii 
of the soliton and the specified sound wave. Substituting the 
series (3) into Eq. (1) and equating to zero the coefficients of 
equal powers of E we obtain the following system of equa- 
tions for the successive approximations: 
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Here d /dt = a/& + V W p .  The equations for u(") and n(") 
can be directly solved, and the real and imaginary parts of 
the high-frequency envelope @("I are determined from the 
independent system of second-order equations: 
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It was shown in Ref. 2 that a necessary and sufficient condi- 
tion for the non-growth of the corrections @("I is tke orth2- 
gonality ofH(") to eigenfunctions of the adjoints to L, and L, 
which decrease to zero as 6- _+ W .  It is easy to verify that 
these orthogonality conditions can be written in the form 

In the first approximation these conditions lead to the sys- 
tem of equations 

Here the values of /2, f i ,  and f i x  are taken for 
1 

2 = X .  = J V dt'. 
0 

When the conditions (6) are satisfied, the corrections @'"I 

can be considered localized [in particular, the first correc- 
tions @ ") tend to zero like ( 'exp( - A / ( I)] as <-+ f w . 

In order that the corrections to the LF field n'"' and u(") 
not increase with ( it is necessary that the so-called algebraic 
orthogonality relations (Ref. 2) be satisfied. In the case under 
discussion these conditions have the form 

") H F )  I,,,,=H!, Ir+trn=O 

and, on account of the fact that 0'"' (( )+O((- f cc ), lead to 
the obvious result: 

(u*) J n ) +  ( u a )  r) =o, (n,) In'+ (u,) r' =o. (8) 

The quantities n(2 and u(2 , treated as radiation fields of the 
nth order, are defined as follows 

The solution of the equations (8) is determined independent- 
ly in the regions (-+ + a, and <+ - a, and are matched by 
means of the boundary conditions implied by Eq. (9): 

This concludes the formal procedure of constructing the ap- 
proximate solutions for the problem under consideration. 

We now turn to an investigation of the equations of 
motion in the first approximation (7). We first note that the 
first of the equations (7) is a consequence of the conservation 
of the number of "quanta," whereas the second is a conse- 
quence of the law of variation of the total wave momentum in 
the original system of equations (1). 

The system (7) can be replaced by a single second-order 
equation for the coordinate X, = .fb Vdt of the center of the 
soliton: 

Here C = A ( l  - V 2 )  = const is to be interpreted as the num- 
ber of "quanta." The equation (7) is the starting point of the 
analysis that follows. For small velocities ((xS ( < I )  this equa- 
tion coincides with the equation of motion of a classical non- 
relativistic particle in an external field. It is known8~".'* that 
in this case it is sufficient for the stochastization of the mo- 
tion that the spectrum of fi(x,t ) should contain, in addition to 
the component corresponding to one propagating harmonic 
wave, a small "admixture" of components corresponding to 
counterpropagating waves. If the magnitude of the addi- 
tional components is small, then only those particles become 
stochastic which have velocities close to the phase velocity of 
the fundamental wave, i.e., (xS / -- 1 so that for "nonrelativis- 
tic" solitons the equations (1) are a contradictory condition. 
The restrictions on the synchronism conditions are lifted if 
among the additional components of fi there is a counterpro- 
pagating wave of magnitude comparable to the fundamental 
wave. In order to investigate this case numerically on a com- 
puter we have integrated the equation 

dZX,ldt2=E sin X ,  sin t ,  (12) 

which describes the motion of solitons in the field of a stand- 
ing wave. Here E = (3/4)N0/C ', No is the amplitude of the 
sound wave. Fig. 1 represents the Poincart map of the sec- 
tion t = 2r/E "' onto itself. It is clear that the motion in this 
case is stochastic. The quantity il + is the Kolmogorov en- 
tropy characterizing the mean divergence of trajectories 
over the invariant set and equals 0.0355 (E = 1.0). 

Equations of the type (12) have been investigated ana- 
lytically in Ref. 13; here we restrict our attention to the sim- 
plest estimates obtained in Refs. 8 and 13. We rewrite Eq. 
(1 2) in the form 

dZX,/dt2=E, cos (X,-t)  +E, cos ( X , f  t )  . 

If the amplitudes of the two waves which propagate in 
opposite directions are very different, IE, I $ (E2( ,  then the 
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equation can be considered as a perturbed pendulum equa- 
tion 

wherey = X, - t, E = EJE, ( 1. In this case the width of the 
region of stochasticity is determined by means of the Mel'ni- 
kov function8 which describes the distance between the se- 
paratrices 

This estimate is valid for nonrelativistic solitons, i.e., it 
is not directly applicable to Eq. (1 1). However such a result is 
of interest in connection with the analysis of the behavior of 
the soliton of the sine-Gordon equation in the field of a wave 
packet 

since in this situation the phase velocity of the perturbations 
can be arbitrary, and synchronous motions of the soliton and 
wave are possible.638 

For an approximate description of the motion of a mo- 
dulation soliton, Eq. (12) can only be used in the case when 
there is no global overlap of resonances (in this case the tra- 
jectory cannot get into the region IX, / > 1). The method of 
overlap of resonances'' it follows that for (2E )'I2 < 1 there is 
no overlap of resonances from the two forced components. 
Such an estimate is quite acceptable, since more accurate 
estimates obtained, e.g., by means of numerical methods, or 
by means of the renormalization method yield the value: 
(2E)'I2 < 0.7. 

Since for chaotic motion the velocity of the soliton can, 
in general, reach large values (/& I =: I), it is interesting to 
consider also the influence of relativistic effects on the sto- 
chastization picture. For this purpose a numerical integra- 
tion was carried out for the system: 

FIG. 1 . 

which corresponds to the motion of a relativistic soliton for a 
value C = 1 of the constant C. The PoincarC map for this 
case (Fig. 2, where E = 1.0) bears witness to the fact that 
being relativistic does not inhibit the stochastization of the 
motion of the soliton, although it modifies the structure of 
the point mapping. The portrait of the map shows that the 
average of the velocity of the soliton over a period of the 
wave is close to the limiting speed (speed of sound), i.e., most 
of the time the soliton moves with relativistic velocities. 

It is difficult to apply the method of resonance overlap 
directly to Eq. (1 3). For this case the width of the region filled 
by stochastic trajectories can be approximately estimated in 
the following manner. We rewrite Eq. (13) in the form 

If even one of the quantities E, or E, vanishes then the equa- 
tion admits a first integral, which we will not write out expli- 
citly, since it is rather bulky. We consider the PoincarC map 
of the section t = 2a  for the following two cases: a) El #0, 
E, = 0, b) E,#O, E l  = 0 (Fig. 3). For this mapping the 
straight lines X~ = 2 1 remain invariant for arbitrary El 
and E,. A numerical analysis of Eq. (13) shows that for E > 1, 
I X ,  I is almost always close to 1. Therefore, expanding the 
integral near X, = 1 it is easy to obtain the following esti- 
mates for the trajectory with the largest amplitude of oscilla- 
tions along the is axis. 

The deviations from the unperturbed state are equal to 

dl-1- [8 ( E , / 6 ) ' " ] - ' ,  &=I- ( E 2 / 2 )  - Ih .  

Taking the interaction of both components into account has 
the effect that the trajectories turn into "stochastic belts". 
On account of the symmetry for E, = E, the width of the 
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stochasticity region will be approximately 2d1, since for 
E ,,, > 1 d l  > d, and the stochastic layers which appear on 
account of the destruction of the trajectories in the cases a) 
and b) will always overlap. A comparison of the formula 
obtained for the maximal velocity of the soliton with the 
value which was obtained numerically yields results which 
are close to each other. For instance, for E = 2 (E  is the 
amplitude of the standing wave) X,","trn = 0.72 and X z t ~ o ,  
= 0.70. The fact that the soliton has almost all the time a 

velocity close to the speed of sound has the following simple 
physical explanation: for 1% I - 1 the acceleration ofthe soli- 
ton tends to zero, and therefore more time is needed to 
change its speed, i.e., something like the "relativistic in- 
crease of mass" occurs. 

Thus, for an approximate description of the motion of a 
soliton one can make use of the simplified equation (12) only 
for very small amplitudes of the sound wave (E  < 0.25); oth- 
erwise one must investigate the full relativistic equation (1 3). 

The results presented here need further explanation. 
The equation (1 1) within the framework of which the sto- 
chastization of the motion of the soliton was established is, in 
general, valid only over a restricted time interval ( - & - I ) .  It 
is important to note that over a time interval of the same 
order of magnitude there occurs a significant spreading 

FIG. 3 . 

FIG. 2 .  

apart of the trajectories of Eq. (7). Therefore the fact of sto- 
chastization of the motion of a soliton must be verified with- 
in the range of validity of equations which are more precise 
than (7), equations that take into account quantities of the 
order E,, and are thus valid over times longer than - & - I .  

Such equations can be obtained from the orthogonality rela- 
tions (6) for H = H '2' have the form: 

Here R ' = A (f i  + C!) ,  V, o) and thus, the first equation is 
simply the result of the renormalization of A by the magni- 
tude of the radiation field in the soliton center. The expres- 
sion in the right-hand side of the second equation (14) is just 
the spatial derivative of the magnitude of the radiation field 
at the position of the soliton, calculated to accuracy E ~ .  

Therefore, the second equation (14) can be written in the 
same form as Eq. (1 1): 

d2X .  
dt" 

where the magnitude of the acoustic field is no longer pre- 
scribed but is determined by solving the radiation problem 
(a), (lo), for n = 1: 

( u * )  + (n*) =o, (n*)  + ( u * )  = 0. 
(16) 

It is simplest to solve such a problem in the case of a system 
without boundaries. In this case the radiation field is repre- 
sented by waves diverging from the soliton: 
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the profiles of which can be obtained from the junction con- 
ditions (1 6): 

( 1 )  
n* Ip=x = hV1 [V(3+VZ)*(1+3VZ)] .  

( l - v 2 ) 2  (18) 

The Equations (9), (10) and (17) directly determine the pa- 
rameters C !) and C!':  

Substituting (19) into Eq. (15) we obtain a closed-form equa- 
tion for X, 

The last terms in Eq. (20), which distinguish it from Eq. 
(1 I), determine the reaction of the radiation field on the mo- 
tion of the soliton and have a dissipative character: the work 
done by the radiation field on the soliton equals (with oppo- 
site sign) the energy carried away by this field (cf. the similar 
situation in classical electrodynamics, Ref. 14). 

Thus, taking into account the second approximation is 
equivalent to taking account of a small amount of dissipation 
which, in general, does not lead to the disappearance of sto- 
chasticity, but only modifies the threshold levels of the exter- 
nal field amplitude and initial velocity of the soliton for the 
onset of stochasticity. In this case the nature of the chaotic 
motion of the soliton will already be related to the presence 
of strange attractor for the system (20). 

"We note that this case is characteristic for the regime of fully developed 
Langmuir turbulence in a plasma. 
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