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A model-independent theory has been developed for the energy spectrum of weakly bound states 
of a particle in a short-range potential in external fields. On the basis of this theory we have 
obtained equations which determine the shifts and widths of shallow levels (E = xi/2,  xorc ( 1, rc 
is the radius of the center) in a uniform electric field F(r: 3.  The cases of weak fields F<x; and 
strong fields &xi are studied. For a weak field we have obtained the hyperpolarizabilities and 
the corrections to the classical expressions for the widths of the states, and in a strong field we 
have obtained expressions for the shifts and widths. We have solved the problem of ionization of a 
shallow p-level by the electric field of a circularly polarized wave. Over a wide range of frequency 
and amplitude of the field we have found analytic expressions for the shifts and widths of all three 
quasienergy states arising from the initial level under the action of the wave. We have shown that 
in the antiadiabatic case the three widths have substantially different values. For a strong field we 
have found the shifts and widths ofthe levels in the adiabatic case. We have discussed the question 
of numerical calculations of the width ofans-level. In the high-frequency region we have obtained 
for the widths of states with arbitrary I expressions which relate them to the asymptotic behavior 
of the Fourier component of the potential. 

The zero-range potential has been used to 
solve a large number of problems on the effect of external 
fields on a particle with angular momentum I = 0 weakly 
bound in a short-range potential. In Refs. 6-9 attempts have 
been made to generalize this method to the case 1 #O. How- 
ever, in the framework of the approaches proposed it was 
possible to consider only an extremely limited group of ques- 
tions. 

In this paper we develop a model-independent method 
of calculating the spectra of weakly bound states of a particle 
with arbitrary angular momentum I in external fields, and on 
the basis of this theory we discuss the problems of the shift 
and broadening of levels in a uniform electric field and in the 
field of a monochromatic circularly polarized electromag- 
netic wave (some results on application of the method to the 
case of an external magnetic field are given elsewherelo). The 
method consists of direct solution of the Schrodinger equa- 
tion at large distances and at small distances, and for joining 
the wave functions, which is the most important aspect in a 
problem with a noncentral external field, we have general- 
ized the approach in Landau and Lifshitzl' in discussing the 
scattering of slow particles by a short-range center. Here the 
spectrum does not depend on the specific form of the poten- 
tial of the center and is determined by the two parameters- 
the scattering length and the effective range. 

1. EQUATION FOR THE SPECTRUM OF WEAKLY BOUND 
STATES OF A PARTICLE IN AN EXTERNAL FIELD 

We shall consider the problem of determining the ener- 
gy spectrum of weakly bound states (shallow real or quasi- 
discrete levels) of a particle characterized by a Hamiltonian 
( f i = m = e =  1) 

Vf(r) describes both the action of the external field and the 
interaction with other centers which themselves can bind the 
particle. By weakly bound we mean states with energy 
E = k 2/2(r, 2.  The interaction Vf in the region r 5 r, is 
assumed to be weak (Vf <r; 2 ) ,  varying substantially only at  
distances Lf )r,, and to permit exact solution of the Schro- 
dinger equation with the Hamiltonian Hf .  Assuming that in 
the potential U there is a shallow level with arbitrary angular 
momentum I, we obtain an equation which determines its 
shift and width under the action of uf. 

In  the problem under discussion the Schrodinger equa- 
tion permits exact solution both at  large distances (r>r,) 
where U z O  and at  small distances (r(Lf), where it is possi- 
ble to neglect Vf, so that the problem becomes spherically 
symmetric and we can use the idea of the effective-range 
approximation. The energy spectrum is determined from the 
condition of matching of the solutions in the region of over- 
lap, 

r,<(r<min (L*, k-'). (2) 

For a solution of the problem of matching which takes 
into account the specific feature of the problem-the pres- 
ence in the field Uof a shallow level, we introduce a complete 
system G f, ( r ,E )  of solutions of the Schrodinger equation 
with the Hamiltonian Hf as follows. We shall require that in 
addition to satisfying the boundary condition at infinity 
these solutions at  r-+O contain singular terms of the form 
,.-1'-1 Y,.,. (n) only with I ' = I, and m' = m; here in the re- 

gion (2) we have 

H=-'/,A+U(r) +V, (r) =H,+U(r), (I '  These conditions uniquely determine both G I and A im'. - - .... 
where U(r)  is a short-range central potential of radius rc and For r)r, the wave function of the described state is 
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represented in the form IV = Z C l Z m r  G Lm,, and in the region 
(2) it is possible to use the asymptotic behavior (3). At the 
same time in this region if we approach from the direction of 
small r we have1 

Y=X 7 1 . m z Y i m ~ [ r - 1 p - 1 + .  . . +B,,  ( E )  ( r l ' + .  . . ) I ,  
(4) 

whereS,, a,, and r, are the phase shift, scattering length, and 
effective range for the potential U. If in U (r) there is a shallow 
level with angular momentum1' I, then in this partial wave 
the scattering is anomalously large, but the phase shifts 6,. +, 
are small and in Eq. (4) we can omit the singular terms pro- 
portional tor  - " - ' with I ' # 1. Matching the wave functions 
in the region (2), we find that c,. , ,  # O  only for 1' = 1, and 
here clm = Z I m  and 

I'm 
~ t c [ m - Z  A ~ : ~ c , , ~ = o ,  B,.T,~,=J'- e l m t A l m ~  , I f + / .  

The condition of existence of a nontrivial solution of this 
system 

d e t { [ - 1 / a [ + r l ~ ] 6 , m ~ - ~ l l ~ ~  ( E ,  f ) ) = O  ( 5 )  

is the relation which determines the energy spectrum; here 

We note that Eq. (5) is greatly simplified if Vf(r) has 
certain symmetry properties. For example, in the case of 
axial symmetry it breaks up into 21 + 1 independent rela- 
tions 

-I /al+rlE=A,,(E,  f ) ,  x ~ ~ ~ = A ~ ~ ~ , , , ~ , .  (6) 

However, if Vf commutes with the operator I of reflection in 
the x, y plane, then the condition (5) breaks up into two 
independent equations which contain values of m and m' of 
definite identical parity. 

Calculation of the spectrum on the basis of Eq. (5) in 
specific problems requires knowledge of the coefficients 
A imm* determined by the asymptotic relation (3) of the func- 
tions G f, . The latter can be found from the known Green's 
function GBof the HamiltonianHf according to the formula 

where the differential operator Y,,  (V) is obtained by re- 
placement of ni  by d/dxi in the spherical function 

Y[m (n) ... k ( 1 ,  m )  ni . - . nk 
(E,, , ,  is a tensor of rank 1 symmetric in any pair of indices 
with zero trace .ciii,,,, = 0). However, in specific problems it 
is sometimes possible to express G f, directly in terms of 
G ,f(r,O,E 1. 

2. PARTICLE IN AN EXTERNAL FIELD V, = Fz,Fe<1 

For an electric field the general relation (7) is simplified 
since from the integral representation for the Green's func- 
tion it follows that d/dxf = - a/&, d/dyl = - d/dy, a/ 
dz' = - d/dz - Fd/dE, and therefore 

- a a a  a v=(- - , - + F - )  , 
a x '  ay a z  a~ 

- (8) 
Gof (r, 0 ,  E )  = (8n3i)-' 5 Q ( t ,  r, E, F )  t-'/' dt,  

0 

1. The function G f, is expressed particularly simply for 
the case m = I :  

OI 

= N l i 1 ( 8 n 3 i ) - ' " ( r + i y ) '  J Q ( t l  r ,  E, F)t-'-'i2 dt,  (9) 
0 

where N, is a normalization factor; since in an electric field 
the energies of states differing only in the sign of the projec- 
tion of the angular momentum m are identical and the wave 
functions are connected by the relation IVE, -, (r) 
= YE,, (x, - y,z), in what follows we shall consider only 

states with m>O. 
Separating from the integral in (9) in accordance with (3) 

and (6) the constant term in its expansion in powers of zk rn , 
we find A,, and in accordance with (6) obtain an equation 
which determines the spectrum: 

a) We shall consider first the case of a weak electric field 
F<xi; here E )'" = - 4 / 2  is the energy of the level in the 
absence of the field. Calculating the integral in (10) by the 
method of steepest descent (this method was used in Ref. 12 
for 1 = O), we obtain the equation [ x  = ( - 2E)'I2, 
1 arg x ( < 1~161 

1 -- + rIE= (-1)1+fX2'+'  
a, 

The first term is determined by the beginning of the integra- 
tion contour, and the second by the saddle point. Represent- 
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ing the energy in the form 

E , , = E , ' ~ ' - ~ / ~ ~ ,  (1 ,  m )  F2-i /4p2 ( 1 ,  m)  F4- i /2 i r lm 

and solving (1 1) by an iterative method, we find the polariza- 
bilities, the hyperpolarizabilities of second order, and the 
widths of states with m = I: 

Here Ti:' coincides with the result of a calculation of the 
width in the quasiclassical a p p r o ~ i m a t i o n ' ~ , ' ~  

For I = 0 and 1 the expressions for the polarizability 
coincide with the well known  result^.'^,^^^ For 1>3, as fol- 
lows from (12) (see also Footnote I), PI cc (x,,r, )2'-5 -0 as 
~ ~ - 0 ;  this means that for these I values the polarizability 
already is not related to large distancesI6 but is determined 
by the action of the field on the particle in the region of 
localization of the wave function r 5 rc , has an order of mag- 
nitude (me2/fi2)r:, and depends on the specific form of the 
potential U (r). 

From Eq. (13) for the case C:o = 1 we obtain the well 
known result for the hyperpolarizability in a potential of 
zero range." Since P, cc (?tor, )2"1' , the features of the be- 
havior of weakly bound states in an electric field appear 
more distinctly in the hyperpolarizability values than for the 
polarizability values also for larger values of angular mo- 
mentum ( 1 ~ 5 ) .  

b) Up to the present time we have been discussing a 
weak field. The case of a strong field &?ti (but as before 
Fr: <1) also permits analytic study. For such fields the shift 
and width of a level with I f 0 satisfy the condition AE, 
T<F"~ (AE,T-F 2 / 3  for I = 0), so that in calculation of the 
integral in (10) we can make use of an expansion in powers of 
E /F2l3. We shall give the final results: 

and the power dependence on the field-reflect the quasi- 
classical nature of the situation. In fact 

(the term x2  in the square root is a correction, in contrast to 
the weak-field case when the centrifugal barrier is unimpor- 
tant). Note that our discussion of a strong field assumes the 
weakly bound nature of the state (x i  .gF<r; 3). In the oppo- 
site case the condition FX x i  corresponds to atomic fields, 
which destroy the system in an atomic time - r f .  

2. In the case m = 1-1 in accordance with (8) we have 

The equation for the spectrum can then be converted to the 
form 

Using the expression obtained previously for A, , ,  we find 
from (2 1) in case a) of a weak field and case b) of a strong field: 

a) pl=7pi (1, l ) ,  1=1, 2 ;  P2=13p2(l, 1 1 ,  1<1<5, (22) 

[see Eqs. ( 17)-( 19)]. 
3. In the case m = 1-2 we find 

and according to (6) and (1 1) for weak and strong fields we 
obtain 

For 123 the contribution to the level shift from large dis- 
tances (AE, -(r, F "3)2'-5~2r:), as in the case of a weak field, 
is unimportant in comparison with AE, - F2r:-the contri- 
bution from the region r 5 rc . 

The properties of the width which follow from (17)-its 
independence of the binding energy (see the first footnote) 

We can carry out a similar discussion of the case of 
other values of I and m. However, to find the hyperpolariza- 
bility such calculations are unnecessary. In fact, since 
P2(l,m) = a + bm2 + cm4, on the basis of the three values of 
this expression calculated above for m = I, 1-1, and 1-2 we 
can find a,  b, and c and with them we can find also the values 
of P2 for the remaining m values. 
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3. PARTICLE IN THE FIELD OF A CIRCULARLY POLARIZED 

WAVE 

The Hamiltonian H (t ) of a charged particle acted on by 
a central potential U in the field of a monochromatic circu- 
larly polarized electromagnetic wave in the dipole approxi- 
mation on transformation to a rotating coordinate system 
takes the formI8 

H,=-'/~A+U (r) -oL+Fx, Vr=-oLz+Fx, (27) 

where o and Fare  the frequency and amplitude of the elec- 
tric field of the wave and the z axis is directed along w. The 
spectrum of complex quaisenergy levels of the operator H (t ) 
coincides with the spectrum of ordinary quasidiscrete levels 
of the static Hamiltonian H, . Therefore in determining the 
shift (splitting) and width of a shallow real level with angular 
momentum 1 in the potential U under the influence of the 
wave field one can use the method developed in Section 1. 

1. The case I = 0. Taking into account the form of the 
Green's function of the operator Hf = - 1/24 + Vf 

r2 
x exP{i [ ~ t  + + 9, (t)xf q2(t) y+rp(t)]} dt, 

q,= (cos at.-l)F/oZt, q2= (ot-sin ot]FJozt, (28) 
cp= [l-cos ot-'1, (wt)2]F2/04t, 

according to Eq. (6) we obtain the equation for the energy of 
an s-level 

I 
m 

- - + roE= ( 2 4 - " j  t-'h {exp[iEt+ilp (t) ] -1)dt. (29) 
a. 

0 

The results obtained from Eq. (29) for F<?cA reproduce to a 
significant degree the corresponding results for a state with 
I = 0 in a short-range potential obtained by various methods 
in Refs. 19-25, 13, and 17. However, a number of statements 
which exist in the literature require clarification. 

Let us discuss first the question of calculation of the 
total width of the level r = Z , r , .  The expression for the 
width of n-photon ionization which follows from Eq. (29) 
(Refs. 20, 13, 17, and 22) 

B 

rn=xow2c~02~-i jj,. (2) CJZ. 

0 (30) 

on expansion of the Bessel function in series takes the form 

where 

where AE is the level shift, KO is the threshold number of 
absorbed photons, and y = wxo/Fis the Keldysh parameter. 

Analysis of Eqs. (31) and (32) shows that in calculation 
of the total width it is convenient to introduce three different 
overlapping regions of values of the parameters w and y in 
which ionization channels corresponding to different 
numbers of absorbed photons n contribute substantially to 
r (w,y). 

1) The asymptotic region2': 

For an arbitrary fixed frequency and y--t co the width of the 
level is completely determined by the ionization channel 
with n = K , =  [?c$/2w + 11, so that rzr$i ay-2Ko  
a FZKn, which is the result of perturbation theory in the first 
nonvanishing order in the electric field. However, the ap- 
proach o f r  (w,y) to this asymptotic regime usually is highly 
protracted. This is due to the kinematic suppression of the n- 
photon ionization channels r, ap:+' with decrease of n 
(p ,  is the momemtum of the photoelectron in the corre- 
sponding channel). This suppression leads to the result that 
at a large but finite value of y absorption processes with 
n >KO which occur in higher orders of perturbation theory 
can contribute substantially to the total width. Here, as can 
be seen from Eq. (3 I), T, z r f ' ,  which corresponds essen- 
tially to the possibility of calculating T, in the first nonvan- 
ishing order of perturbation theory. It is easy to see that 
under the conditions (33) we have T, + , <r, for n >KO, so 
that a kinematic enhancement can appear only for 
n =KO + 1 and the total width is 

We note that for KO- 1 (few-photon ionization) a sup- 
pression of the dominant channel with n = KO can occur 
only near threshold, i.e., at frequencies for which S< 1 [in the 
opposite case in Eq. (34) it is possible to restrict the discus- 
sion to the one term with n = KO]. Here for values 

-6 - 1% + ll/4= --yo) 1 the two terms in (34) are of the same 

order. The approach to the asymptotic region Tzr$i oc- 
curs for y)yo) 1. For values 1 <y(yo in (34), on the other 
hand, the term r $; + , is dominant. 

2) The intermediate region: 

o<xo2, yB1, but &K0G2 In y<Ko, where E K ~ .  (35) - 
For a fixed frequency w with decrease of y the kinematic 
enhancement of channels with larger n values leads to an 
increase of their role. Here there is an increase both in the 
most probable number of absorbed photons no and in the 
number An of ionization channels in the vicinity of no which 
contribute substantially to the toal width. As long as the 
number of such channels is small, the efficient method of 
calculating the total width is direct summation of the contri- 
butions of these channels. However, the case An,l corre- 
sponds to the quasiclassical situation. 

3) The quasiclassical region: 
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In this region of parameters a large number of ionization 
channels contribute to the total width. However, in calculat- 
ing r (w,y) there is no need to sum the partial widths, since 

Eq. (29) can be used directly. Calculating the integral in this 
equation by the saddle point method, as in the case of an 
electrostatic field, we obtain for the total width of the level 

(37) 
where 

f (y) = 2 ~ ~ ( 1 + y - " - y - ~  sh 2.to, 
(38) 

and r, = 2i~,/w is the saddle point. These expressions in par- 
ametric form solve the problem of determining the total 
width of an s-level. For w ( ~ i  the level shift is 
A E z  - C;,F2/8tcA and it is easy to see that lAE l~,,(Cw; 
here Eqs. (37) and (38) coincide with the results obtained in 
Refs. 20 and 13. 

As an illustration of the dependence of the level width 
and the role of the various ionization channels on the ampli- 
tude of the electric field of the wave, we have shown in Fig. 1 
the results of a calculation of the total width as a function of 
y for w = 0 . 0 6 ~ ;  [the results of a numerical calculation of 
the width of an s-level according to Eq. (29) with r, = 0 
which are shown in Figs. 2 and 3 in Ref. 17 must be consid- 
ered erroneous]. The straight line 1 gives the extrapolation of 
the relation r,,,,,, = TIo' K,, a y -2Ko from the region of large 
values of y and was calculated on the basis of Eq. (32) with 
K, = 9 and S = 2/3. The portion of curve 2, which repre- 
sents the total width, for values y < 5 was constructed ac- 
cording to Eqs. (37) and (38), and for y > 5 the curve was 
calculated on the basis of the formula r = 8, r, . For y = 5 
(here r/reXtrap z 12) there is a substantial contribution to 
the total width from the ionization channels with n  = 1&13, 
the relative probabilities of which are 

tions proportional to F2]. Although in the present case 
An = 3-4 the result of the quasiclassical calculation differs 
from the exact calculation by about 25%. 

For y = 10 the relative contributions of the important 
channels to the width are 

and r /Textrap z 6.2. For y = 40 only the contributions of 
two channels are important, and hereT,/r,, z 1.9, whi ler  / 
re,,,,, 7 1.4. With further increase of y the relative contribu- 
tion of the channel with n = 10 decreases in proportion to 
y-2, and the level width in accordance with (34) reaches the 
asymptotic region r ~ T ~ ~ , ~ ~ ~ ( 1  + C/y?) with 

%a2 
X- 

0 

and in this case C-680. This large numerical value of C 
reflects the kinematic enhancement mentioned above of the 
channel with n  = K, + 1 for KO, 1. 

Note that the quasiclassical formula (37) correctly re- 
produces the dependence of the width on the field over a 
wide range of y: the ratio r /T,, rises only to 2.5 on change 
of y from 1 to 1000, while the value of r itself changes by 54 
orders of magnitude. 

Finally we note that the relation for the total width of an 
s-level T a  w - ~ ~ ~  for w ) x ~ ,  obtained in the zero-range po- 
tential reflects the specific properties of the mod- 
el, since it is strongly related to the behavior of the wave 
function Pa l / r  at small distances and has a natural region 
of applicability w(r; [see Eq. (44) below]. 

2. The case I = 1 and m = 0. We shall turn to discussion 
of the influence of a circularly polarized wave on a level with 
angular momentum 1 = 1. This triply degenerate level in the 
potential U will correspond to three quasidiscrete levels of 
the Hamiltonian (27). Since the reflection operator 
I (z+ - z) commutes with the operator Hf, according to Eq. 
(5) one of these levels is characterized by m = 0, and the 
other two are superpositions of states with m = + 1. 

The function G {, is expressed in terms of the Green's 
function (28): 

[we note that for this value of y in calculation of the partial 
widths r, in (31) it is necesary to take into account correc- 

Separating from it for r-0 the term proportional to rY,, a z ,  
we obtain an equation which determines the energy of the 
quasidiscrete level with I = 1 and m = 0: 

1 
- 

-- + r,E=-Bi(2ni) -" {eap[iEt+irp(t)  ] -l-iEt)t-"2 dt. 
a, 

0 

(39) 

Still restricting the discussion to the case of a weak field 
F<xi ,  in the lowest approximation in F2 we obtain 

, 0 - 2 s u  
-1 0 

-19 Y 
FIG. 1. 
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From this for w(xi it follows that 

[for w = 0 Eq. (41) coincides with the shift in an electrostatic 
field of a level with angular-momentum projection on the 
field direction3' ml = 11. 

For w > xt /2  there is an imaginary part in E , ,  which 
determines the width of one-photon ionization of the state 
considered: 

The behavior of the width T,,,ccp:, where 
p, = (h - xi)"2 is the momentum of the emitted electron, 
is related to the transmission of the centrifugal barrier 

+ 1 , since an electron in the state with I = 1 and m = 0, 
having absorbed a dipole photon with j, = 1, has angular 
momentum 1, = 2. 

In the high-frequency region w>x; we have according 
to (40) 

However, these relations have a limited region of applicabi- 
lity: x i  (w<r; '. The physical reason for this is that a parti- 
cle with low energy, having absorbed a photon of frequency 
w 2 r; 2, acquires an energy E 2 r: and is no longer slow, so 
that the assumptions of Section 1 are not satisfied. 

At frequencies w -r: the shift and width of the level 
will depend substantially on the form of the wave function in 
the region r 5 r, . However, for w>rCp simple regularities 
again appear. According to the perturbation-theory formula 
for the width 

[the summation is carried out over the complete set of states 
in the potential U (r)] we obtain for wsr;  

(44) 
where p,, (p) =x,(p)Y,, (p/p) is the wave function of the 
state under discussion in the momentum representation and 
R, is related to the function IV,, (r) = r 'R, (r)Y,, (n). In deri- 
vation of (44) it is necessary, after making use of the relation 
iw,, (slrln) = (sJpJn) ,  to replace the wave function 1s) in 
the matrix element by a plane wave (this substitution can be 
carried out just in the matrix element of the momentum, but 
not of the coordinate), to integrate over the angles of p, and 
to take into account the relation which connects the asymp- 
totic behavior of the wave function in the momentum repre- 
sentation with the Fourier component of the potential u ( p )  
in the case in which it falls off according to a power law as 
p-tco. 26 

By continuing the iterations it is possible to find the 
shift and width of the level in higher order in F2. In particu- 
lar, the expression for the width of n-photon ionization has 
the form 

where 

and the values ofB, KO, and 6 are determined by Eqs. (30) and 
(32). 

The calculation of the total width in the regions of vari- 
ation of the parameters w and y 1)-3) given above is carried 
out in exactly the same way as in the case I = 0. Here in the 
quasiclassical region the calculation of the integral in (39) by 
the method of steepest descent gives for the width 

[see Eqs. (37) and (38); the level shift is negligible in this case]. 
3. The case I = 1 and m = -t 1. To determine the pa- 

rameters of the quasidiscrete levels corresponding to l = l 
and representing superpositions of states with angular-mo- 
mentum projections m = f 1 on the direction of propaga- 
tion of the wave, it is necessary to know the functions G , + , . 
These functions can be expressed directly in terms of the 
Green's function (28). For this purpose we introduce the op- 
erators 

so that for r f  0 

(H,-E+o) II,Gof (r, 0, E) =O. 

The functions f , - + , = I7 + G B(r,O,E +w) differ from 
G {, , only in one respect: they contain an extra singular 
term a l /r  corresponding to 1 = 0. After compensating this 
term by addition to f s + - , of a term proportional to G ,f, we 
obtain 

(49) 
The quantities A i:' which enter into Eq. (5) are found 

from Eq. (3) and have the form 

A::: (E, F, a) =A:,':: ( E ,  F ,  -a) 

A:' (E, F,  w) (E, F, a) 
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The energies of the levels are given by the equation 

, 

- 3 ~ : ;  (E ,  F, -o) =9[A, , ,  (E ,  F, o) 12, I 
the difference of which from Eq. (5) (the terms + r,w) corre- 
sponds to the fact that in solution of the Schrodinger equa- 
tion in the region r 5 r, in the Hamiltonian H ,  only the term 
Fx has been neglected, while the term - wL, has been taken 
into account. This refinement of Eq. (5) permits inclusion in 
the discussion of the high-frequency case w 2 x i .  For a weak 
field a solution of Eq. (5 1) can be obtained in the form of an 
expansion in powers of F /x i .  

For W < X ~  in the lowest approximation in this param- 
eter we obtain 

and in accordance with Eq. (5 1) we obtain 

Hence for w<F2x; 're <x i  it follows that 

[for w = 0 Eq. (53) goes over into the results for an electro- 
static field], and for F2x; 'r, <w<xi we obtain 

[for the condition w<(rcx,)xi inclusion of the term propor- 
tional to F4 is legal in spite of the fact that the result was 
obtained in lowest order in ( F / x ~ ) ~ ] .  The last two terms in 
Eq. (54) determine the dynamic polarizabilities 
0 '1' = (ir, lxi)-',  which are identical for the two states (for 
a discussion of the difference in these terms see below) and 
which have the order of magnitude of the static polarizabili- 
ty and hyperpolarizability /3 I" = f 9(< wx:)-'/32, the 
value of which greatly exceeds the static value. 

However, at frequencies o)rcx; 'F2 (this region over- 
laps with the frequency region w<xi discussed above) the 
right-hand side of Eq. (51) can be set equal to zero. This 
corresponds to the fact that the states considered in the zero 
approximation already correspond to definite values of the 
angular-momentum projection m = + 1 on the direction of 
propagation of the wave. After calculating A :;: we find from 

(5 1) 

Since the regions of applicability of the formulas (52) 
and (55) overlap, they completely solve the problem of the 
influence of the wave field on the energy of the states with 
accuracy to terms proportional to F4. Here (55) permits im- 
provement of (54) and enables one to find the difference of 
the polarizabilities AD ")=. 3/4m/r,xi. This result corre- 
sponds to the known smallness of the antisymmetric polariz- 
ability 0 ','"cz w for .24 In the frequency region w - x i  
according to (55) the polarizabilities are substantially differ- 
ent; for example, for w = xi /2  we have P j + ) / P j - ) ~ 0 . 2 .  

For frequencies w > xi /2  there appear in E ,, , , imagi- 
nary parts which determine the probabilities of one-photon 
ionization of the corresponding states: 

These formulas do not reflect the shift A E ,  + , of the decay 
level and the change of the free energy of thkparticle by F2/ 
2w2 in the wave field, which are effects of higher order in F2 
(it must be kept in mind that part of the shift of the levels in 
E ,, , , , equal to + w, is a purely kinematic effect associated 
with the transformation to a rotating coordinate system and 
has no direct relation to the change of the binding energy of 
the particle). The threshold behavior of the widths 

, a , r l, - a p ,  as p, -0 is consistent with the rela- 
tion rap:'" + I ,  where I, is the angular momentum of the 
electron in the final state [compare with Eq. (42)l. 

In the frequency region x i  <w<r, [regarding frequen- 
cies w)r; see Eq. (44)] it follows from (55) and (56) that 

Let us turn to discussion of ionization processes with n > 1. 
Rather simple expressions for the partial widths can be ob- 
tained for frequencies w>r,x; 'F2 (this condition is equiva- 
lent to ~>(r,x,,)w/x$, SO that it includes the region y 2 1). In 
this case, as was pointed out above, the angular momentum 
projection m is a good quantum number, Eq. (51) for the 
energy breaks up, and in the first nonvanishing approxima- 
tion in P2 we obtain 

where KO, S and T\qb;n are given by the expressions (32) and 

(46). 
The general reasoning regarding the possibility of using 

these expressions for calculation of the total ionization 
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width in regions 1) and 2) of the parameters w and y are 
exactly the same as those given above in relation to the ioni- 
zation of states with I = 0 and 1 = 1, m = 0. In the case of 
multiphoton ionization (KO, 1) for y - + m  it follows from (46) 
and (58) that 

rlBo : r,,, : ri,-l=l : K~ : Ko3/h2. (59) 

We note that this substantial difference of the widths of the 
three states is preserved in order of magnitude over the entire 
region of variation of the parameters y > 1, KO, 1 (a proof of 
this for the quasiclassical region will be given below) and 
indicates the limited applicability of the quasiclassical ap- 
proach developed in Ref. 2 1 to the photoionization of weakly 
bound states with 1 #O. 

To determine the width in the quasiclassical region it is 
necessary to carry out a calculation of the imaginary parts of 
A ;:' in (50) by the method of steepest descent. After this we 
obtain from Eq. (5 1) the width of the levels [their shift AE j" 
is given by (52)] 

where 

AE:*) 
S= [ch 2.co- (if y z )  I-'" exp 2 - xoz [ ' 0  s - - f (Y, ]  0 

[rO and f ( y )  are given by (38)J. 
Let us discuss the properties of the widths rj+'. In the 

case lrllw<F2/xi, which is equivalent to the condition 
y((rcxo)(Fx; 3)(1, Eq. (60) goes over into the results for an 
electrostatic field (16). Here the state which corresponds to 
the energy E \+I corresponds to angular momentum projec- 
tion m = 0 on the field direction, and the corresponding 
E j-I corresponds to superposition of states (with identical 
amplitudes) with m = + 1 and r \+'ST j- '. 

However, already for r ,  I W  - F ~ / X ;  (but such that we 
still have y(F/xA (1) the static relation between the widths 
is strongly violated, although the difference of the argument 
of the exponential in S in (61) from the static value can be 
neglected. Now 

3F 64 r:" = - [I i (I + - rlzo2~02F-4 )-"'I exp (- $$) . 
41r I 9 

so that r I+' and r j '  are quantities of the same order and 
r ' , + I  + r ' , I  =:r ;:, i.e., the value of the width aveaged over 
the states ( + ) is unchanged. 

On further increase of the frequency, when 
Ir, Iw>x; 3F2 [i.e., y,(rcxo)( FK; 3)], the states ( + ) corre- 

spond already to definite angular-momentum projections 
m = + 1, the widths r \"become equalized, and amount to 
(1/2)r  :Itt so long as the argument of S in (61) can be restrict- 
ed to its static value [i.e., for $/15(Fx; (Refs. 20 and 13)]. 
At larger values of y 

3 oxo [ekr0- (1*2r0) e " ~ ] ~  r,,*,= --' 
16 lrl 1 y'cO3 [ch 2 ~ -  (If yZ) 1'' exp [- % f  (Y ) ]  ,163) 

so that r ,, - , begins to exceed T ,,, and for r0) 1 we have 

r,,, : r,,, : r ,,-, =I : K~ : 4 ~ ~ ~ 1 i ~  (64) 

[ r  ,,, is given by (47)l. As follows from (38), for ro> 1 we have 
In y z r 0  and for values 2 In y -KO (i.e., in the transition re- 
gion) Eq. (64) agrees qualitatively with (59). 

Let us consider now a strong field: &xi, & u ~ ' ~  (but 
as before F(r; 3). In calculation of the integrals for A i,"', as 
in the case of an electrostatic field we can make use of an 
expansion in the small parameters E /F213 and o/F 2'3. For 
states with I = 1, m = 0 according to Eq. (39) we find 

(in r , ,  we have taken into account the correction only in the 
small parameer w' /F~'~) .  For w = 0 these expressions go 
over to the results (17) and (1 8) for an electrostatic field in the 
case I = 1, im 1 = 1 (see the third footnote). 

Calculating the integrals in (50) by this means, we have 

Substituting these expressions into (5 I), we obtain in explicit 
form an equation for determination of the energies of the two 
quasienergy levels corresponding to superposition of states 
with m = + 1 [in the expressions (66) we have omitted cor- 
rections of order W/F 2 1 3 ,  since in the case considered the 
most important dependence on frequency is determined by 
the terms + r,w in (51)]. Analysis of this equation shows 
that for frequencies Ir, lw<F the expressions for the shifts 
and widths of these levels are described by the formulas ( I  7), 
(1 8), and (23) for a static field. With increase of the frequency 
the values of the widths come together: 

However, it must be kept in mind that according (65) and (67) 
at w - r, F the lifetime of the state is comparable with the 
period of the oscillations, and the probability of ionization 
by a pulse of electromagnetic wave will depend substantially 
on the means of turning on the field and requires discussion 
of the specific experimental situation. 
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In conclusion we note that the method developed per- 
mits also discussion of the effect of an electric field on quasi- 
discrete levels with 1> 1 in a potential U (r), and also discus- 
sion of the case in which in U there are several shallow levels 
with different I values. In this connection we shall make sev- 
eral remarks. 

1) In a strong electric field the shift and width of an 
unperturbed quasidiscrete level 

(now a ,  < 0)  in a potential U are described by Eqs. (17)-(19), 
(23), and (26) with the substitution 

Here the electric field, which contracts the centrifugal bar- 
rier, broadens the initial quasistationary states. 

2) However, in the case of a weak field the situation 
becomes complicated, since in addition to the levels which 
exist in the potential U(r) the electric field generates new 
quasidiscrete levels. The appearance of these levels is due to 
the fact that the combined action of the centrifugal potential 
and the potential of the electric field leads to appearance 
near the center of an effective potential well (as in the one- 
dimensional problem of a particle in an electric field, the 
motion of which is restricted by an inpenetrable wall, the 
role of the latter is played by the centrifugal potential). 

3) In the case of existence in the potential U (r) simulta- 
neously of two shallow levels, the influence of the field on the 
particle is described by the well known formulas for an iso- 
lated two-level system. Here the approach which has been 
developed permits calculation of the phenomenological pa- 
rameters of such a model with application to the problems 
considered. 
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"At frequencies o 5 xt values y 5 1 correspond to a strong field. 
3'In states with I = 1, m = 0 the projection of the angular momentum on 

any direction perpendicular to thez axis takes on only values m, = + 1. 

'H. A. Bethe and R. E. Peierls, Proc. Roy. Soc. 148A, 146 (1935). 
'L. D. Landau and Ya. A. Smorodinskii, Zh. Eksp. Teor. Fiz. 14, 263 
(1944). 

'Yu. N. Demkov, Zh. Eksp. Teor. Fiz. 46, 1126 (1964) [Sov. Phys. JETP 
19, 762 (1964)l. 

4B. M. Smirnovando. B. Firsov, Zh. Eksp. Teor. Fiz. 47,232 (1964) [Sov. 
Phys. JETP 20, 156 (1965)l. 

'Yu. N. Demkov and V. N. Ostrovskii, Metod Potentsialov nulevogo 
radiusa v atomnoi fizike (The Zero-Range Potential Method in Atomic 
Physics), Leningrad State University, Leningrad, 1975. 

6G. K. Ivanov, Teor. Eksp. Khim. 10, 450 (1974) [Theor. Exp. Chem. 
(USSR)]. 

'F. I. Dalidchik, Teor. Mat. Fiz. 23, 287 (1975) [Theor. Math. Phys. 
(USSR)]. 

'Yu. N. Demkov and G. F. Drukarev, Zh. Eksp. Teor. Fiz. 81, 1218 
(1981) [Sov. Phys. JETP 54, 650 (1981)l. 

9S. P. Andreev and A. V. Koshelkin, Pis'ma Zh. Eksp. Teor. Fiz. 35, 187 
(1982) [JETP Lett. 35, 229 (1982)l. S. P. Andreev and S. V. Tkachenko, 
Zh. Eksp. Teor. Fiz. 83, 1816 (1982) [Sov. Phys. JETP 56, 1050 (1982)l. 

'OS. P. Andreev, B. M. Karnakov, and V. D. Mur, Pis'ma Zh. Eksp. Teor. 
Fiz. 37, 155 (1983) [JETP Lett. 37, 187 (1983)l. 

"L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika (Quantum 
Mechanics), Nauka, Moscow, 1974 [Pergamon, 19781. 

I2F. I. Dalidchik and V. Z. Slonim, Zh. Eksp. Teor. Fiz. 70,47 (1976) [Sov. 
Phys. JETP 43, 25 (1976)l. 

')A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, Zh. Eksp. Teor. 
Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)l. 

I4B. M. Smirnov and M. I. Chibisov, Zh. Eksp. Teor. Fiz. 49, 841 (1965) 
[Sov. Phys. JETP 22, 585 (1966)l. 

I5Yu. N. Demkov andG. F. Drukarev, Zh. Eksp. Teor. Fiz. 47,918 (1964) 
[Sov. Phys. JETP 20, 614 (1965)l. 

I6F. I. Dalidchik and V. Z. Slonim, Teor. Eksp. Khim. 12, 147 (1976) 
[Theor. Exp. Chem. (USSR)]. 

"N. L. Manakov and L. P. Rapoport, Zh. Eksp. Teor. Fiz. 69,842 (1975) 
[Sov. Phys. JETP 42, 430 (1975)l. 

I8F. V. Bunkin and A. M. Prokhorov, Zh. Eksp. Teor. Fiz. 46,1090 (1964) 
[Sov. Phys. JETP 19, 739 (1964)l. 

I9L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47,1945 (1964) [Sov. Phys. JETP 20, 
1307 (1965)l. 

"A. I. Nikishov and V. I.   if us, Zh. Eksp. Teor. Fiz. 50, 255 (1966); 52, 
223 (1967) [Sov. Phys. JETP 23, 168 (1966); 25, 145 (1967)l. 

"V. S. POPOV, V. P. Kuznetsov, and A. M. Perelomov, Zh. Eksp. Teor. 
Fiz. 53, 331 (1967) [Sov. Phys. JETP 26, 222 (1968)l. 

221. J, Bersons, J. Phys. B: Atom. Molec. Phys. 8, 3078 (1975). 
23N. B. Delone and V. P. Krainov, Atom v sil'nom svetovom pole (An 

Atom in a Strong Light Field), Atomizdat, Moscow, 1978. 
24L. P. Rapoport, B. A. Zon, and N. L. Manakov, Teoriya mnogofoton- 

nykh protsessov v atomakh (Theory of Multiphoton Processes in 
Atoms), Atomizdat, Moscow, 1978. 

25A. I. Nikishov, Trudy FIAN 111,230 (1979) (Proceedings of the Lebedev 
Institute). 

26B. M. Karnakov, Yad. Fiz. 19, 1122 (1974) [Sov. J. Nucl. Phys. 19, 575 
(1974)l; Zh. Eksp. Teor. Fiz. 82, 1407 (1982) [Sov. Phys. JETP 55, 816 
(1982)l. 

Translated by Clark S. Robinson 

514 Sov. Phys. JETP 59 (3), March 1984 Andreev et aL 51 4 


