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The probability of ionization of highly excited states of a hydrogen atom by a low-frequency field 
is estimated by using the previously derived quasi-classical wave function of an electron in a 
Coulomb field and in a radiation field. The expression obtained predicts an ionization threshold at 
field intensities approximately equal to those observed experimentally, but predicts an increase in 
ionization probability that is approximately ten times the increase observed experimentally when 
the field intensity in the threshold region is increased. The approximations underlying the deriva- 
tion of the equation for the ionization probability are discussed. 

I. INTRODUCTION 

As was first shown by Keldysh,' multiphoton and tun- 
nel ionizations are the limiting cases of the same process of 
ionization by an alternating field. However, his study and 
those made by other authors2p3 actually pertained to the case 
of ionization of a system bound by a short-range potential 
and having only one level. For real atoms, the presence of a 
long-range Coulomb potential and of a large number of 
bound states leads to a substantial change in ionization prob- 
ability as compared with the case of a short-range potential. 
This accounts for the extensive development of the high- 
order perturbation theory for  atom^,^-^ which is in satisfac- 
tory agreement with experimental data on multiphoton ioni- 
zation of atoms by visible and infrared radiation. 

Exceptions are experiments on ionization of highly ex- 
cited states of the hydrogen atom by a microwave as 
well as analogous experiments recently conducted on He 
(Ref. 9) and Na." A high-order perturbation theory can 
hardly be developed to explain these experiments, since the 
number of absorbed photons in the latter is several hundred. 
Apparently, it cannot as yet be stated that there exists a com- 
plete quantitative description of the process of multiphoton 
ionization of highly excited atomic states by a strong low- 
frequency field, even though several approaches to this prob- 
lem have been proposed. 

Since the adiabaticity parameter y = w/nFo introduced 
by Keldysh is less than or of the order of unity in these ex- 
periments, the ionization probability can be estimated" on 
the basis of the corresponding expression for tunnel ioniza- 
tion in a constant field if Fo is replaced by Fo cos wt and 
averaged over the period of the field. Here and below, the 
atomic system of units is used, o and Fo are the frequency 
and intensity of the field, and n is the principal quantum 
number. The expression obtained predicts a marked increase 
(threshold) of the ionization probability at fields Fo equal to 
several tenths of n - 4 ,  this being approximately equal to what 
is observed experimentally. A disadvantage of this expres- 
sion is that it is independent of the frequency of the field and 
differs by an insignificant factor from the corresponding 
expression for the tunneling probability in a constant field. 
Both the tunneling process itself and the expression obtained 
are essentially quantum-mechanical. 

A second approach is a purely classical ~ n e ' ~ . ' ~  and 
consists in solving the classical equations of motion with the 
aid of the Monte Carlo method. Although the authors note 
the good agreement between the calculated results and ex- 
perimental data, there still remains the question, is it possi- 
ble to account for the ionization of highly excited states of 
atoms by a low-frequency field solely on the basis of classical 
mechanics? If so, it would be of definite interest to explain in 
what region of frequencies and fields classical mechanics 
could be used, since both limiting cases, i.e., multiphoton 
and tunnel ionization, are essentially quantum-mechanical. 
Of interest is another classical mechanism of i~n iza t ion , '~ - '~  
based on the onset of stochastic instability in nonlinear oscil- 
lations of an electron acted upon by a strong wave. 

This paper will give a rough estimate of the probability 
of ionization of highly excited states of a hydrogen atom by a 
strong low-frequency field on the basis of a previously'7 de- 
rived quasi-classical wave function. 

1. QUASI-CLASSICAL ESTIMATE OF IONIZATION 
PROBABILITY 

The authorI7 derived a quasi-classical wave function for 
highly excited states of a hydrogen atom in a strong alternat- 
ing field of frequency less than or of the order of the Kepler 
frequency. The wave function constitutes a double series: a 
Fourier series in the alternating field and a series in spherical 
functions. In the radial wave functions of all the channels, a 
common, rapidly oscillating part related to the classical el- 
liptical motion of the electron, was separated from the slow- 
ly changing part which is the excitation probability ampli- 
tude of the given state. The square of the 
probability-amplitude at u = 7r (u being the variable describ- 
ing the elliptical motion of the electron) give the excitation 
probability of the given state per period. Dividing this quan- 
tity by the period of orbital revolution T = 27rn3 and sum- 
ming over all the states located above the ionization thresh- 
old, we obtain the ionization probability per unit time: 
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where N is the number of absorbed photons, I is the orbital 
quantum number, and L is the orbital quantum number of 
the unperturbed state. For amplitudes a, (T), the following 
expression was obtained in the form of a product of Bessel 
functions: 

2 sin nun3 

x exp{inN (1-on3) Sins), (2) 

v5F0 ~2 I/? " 
c = - 1 - ) du(1-e cos u) [ (cos u-e)cos o t  

2 

(1-e2) '" sin u sin ot] ,  (3) 

where 

t=vS (u-E sin u) ,  E= (1-L2/v2) Ih ,  

M being the magnetic quantum number, and Y the mean 
value of the principal quantum number for all the channels; 
in Ref. 17, this value was chosen equal to the principal quan- 
tum number n of the unperturbed state. For wv3g 1, we have 

c , = - ~ / ~ ~ Y ~ F ~ E  (1-M2/L2)"'. (4) 

For mv3%l and Lgv,  the quantities c + are expressed6 in 
terms of the Airy function Ai( y) and its derivative Aif( y): 

Let us note that expression (5) is independent of the principal 
quantum number, i.e., of the electron energy. 

Since, wn3 < 1 in the experiments of Refs. 7-9, we shall 
use henceforth for our estimate will Eq. (4) with v replaced 
by n, and consider only states with M = L = 0. Representing 
squared Bessel functions as an integral, and the sum of 
squared Bessel functions over N also as an integral," after 
simple transformations we obtain 

d6 6 sin 6 J N O  (x cos 6 )  JNa+i  (X  cos 6), 
n2n3 

Tables are available for the derivative and integral of the 
Airy function.In For a) 1, 

W= ( 8 ~ ~ / ~ n ~ N ~ ~ " a ' / ~ )  -' exp (-'/,a5). (9) 

If the perturbation acts on the atom during a time t = 2am/ 
w, where m is the number of periods of the field, the probabil- 
ity of its ionization is 

Let us compare the predictions of Eqs. (7)-(10) with ex- 
periment. Since No amounts to several hundred in the experi- 
ment, a is very large, and the ionization probability Wis low, 
provided the field Fo does not approach the value 1/3n4, at 
which a sharp increases in ionization probability should be 
observed. Such a sharp increase in W (threshold) was ob- 
served for the hydrogen atom in fields F, that were 2.6 times 
lower than this value in Ref. 9 and 3.5 to 4.5 times lower in 
Ref. 8. The fact that in the experiment the ionization thresh- 
old is observed at fields several times lower than given by Eq. 
(8) is partly accounted for, since in Eq. (4) the mean value of 
the principal quantum number Y was replaced by the smaller 
quantity n. Actually, Eq. (8) should have v5/n instead of n4, 
where Y can be found from the definition of the mean energy 

Since the final state is close to the ionization threshold, the 
energy Ef corresponding to it can be made to approach zero. 
The v = 2'I2n, and in Eq. (8) the factor 3 will be replaced by 
3.2512z 17. It is obvious that the experiment lies between 
these two extreme definitions of v. Let us note that for states 
with nonzero values of L and M an additional factor 
(1 - L 2/v2)112(1 - M2/L 2)112, smaller than unity, will ap- 
pear in front of n4 in Eq. (8). 

Equation (7) predicts in the threshold region an increase 
in W (F,) ten times faster than observed experimentally. Con- 
tributing to the leveling ofthe increase of W (F,) in the experi- 
ment is the inhomogeneity of the field and especially the 
presence of a whole set of initial states for which the thresh- 
olds are different. It is still unclear whether a more exact 
solution of the fundamental quasi-classical equations (see be- 
low) will result in a different dependence of W of Fo in the 
threshold region than predicted by Eq. (7). According to 
Eqs. (7) and (8), this dependence is determined by the quan- 
tum-mechanical quantity n4F0. 

The parameterx is the ratio of the maximum Stark energy to 
the photon energy. Since the index of the Bessel function No 2. SIMPLIFICATION OF QUASI-CLASSICAL EQUATIONS AND 
is a large quantity, Wwill be appreciable only when the argu- DISCUSSION OF THE APPROXIMATIONS 
ment is approximately equal to the index. Again represent- We shall now discuss the quasi-classical approxima- 
ing the product of Bessel functions as an integral and using tions on the basis of which expressions were derived for the 
an asymptotic expression of the Bessel function, we finally amplitudes a, (T) and the ionization probability W. 
obtain shown in Ref. 17, the amplitudes are 

(7) a,. (n) = C iN-"'Jr-n,+.-., (c-) 1 . ' - 8  (c+) b ~ ' . ' ,  (12) 
N' ,  b ' = - "  

a= 
 NO-2) - - 2 

a (1-3n4Fo). (8) 
where the constants 6, must satisfy the system of homogen- 

No'" (2n20)2'a eous algebraic equations 
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Let us note first that the system (1 3) can be substantially 
simplified if the following periodic functions are introduced: 

and the summation theorem for Bessel  function^'^ is used. 
After some trivial changes in notation, we obtain the follow- 
ing system instead of Eq. (13): 

d.ve-2"\h= J N - I \ . r  ( W ~  d N ' ,  W =  ( C - ~ + C + ~ + ~ C - C +  cos F)'. 
N = - m  

(16) 
If the function 

No 

F(rp) = e z N T d N ,  F ( l p + k )  = F ( q )  (I71 
.,- = - m 

is further introduced, and the integral representation of Ref. 
18 is used for the Bessel functions, the system (16) can be 
reduced to the homogeneous integral equation 

which should be satisfied for any p. 
Equations (13) or the substantially simpler (16) and (18) 

are the fundamental quasi-classical equations for describing 
multiphoton transitions in hydrogenlike atoms acted upon 
by a strong field of an electromagnetic wave. In their deriva- 
tion it is only required that, in all the channels making a 
substantial contribution to the multiphoton process under 
consideration, one be able distinguish in the electron motion 
the classical motion due to the Coulomb field. When wn3& 1, 
this motion is parabolic. The quantities c * in this case are 
determined by expression (5) and are independent of energy, 
and therefore Eqs. (16) or (18) should satisfactorily describe 
the ionization process. 

In the case wn3 5 1, this motion is elliptical, and c * is 
determined in accordance with Eq. (3)  or (4). At such fre- 
quencies, v,  can be replaced by vO + NOVA, where 
vo = ( - 2E )-'I2, and the upper limit of the sum in Eq. (18) 
can be made to approach infinity. This approximation corre- 
sponds to the approximation in which the levels are equidis- 
tant. The sum over N then reduces to a S function. If the 
function F(a) is sought in the form F(a) = exp[if(a)], one 
finds that f (a) must satisfy the functional equation 

f (9-2nov,3) =f (cp)+w sin 9-l-b (yo-n), 
(19) 

which has the solution 
n-vo w cos (lp+nmvo3) 

f(d=;;;;9+ 2sinnovo3 

where n is an integer. It follows from the condition that F(p ) 
be periodic that 

where k is also an interger. Taking k equal to zero, we find 
that vo = n, and expandingF(q, ) in Fourier series in p andp, 
we arrive at the solution of Eqs. (13), guessed in Ref. 17, in 
the approximation of equidistant levels and hence, at expres- 
sion (2) for amplitudes a, (T).  Since kwv; is small compared 
to n, E=. - 1/2n2 + kw, i.e., different k simply correspond 
to different quasi-energy levels. 

The solution found above should adequately describe 
multiphoton transitions in the region of equidistance of lev- 
els. This solution should give a poorer description of ioniza- 
tion, since the electron acquires energy it leaves at the end of 
the ionization process the region of equidistant levels and of 
ellipticity of its motion and enters the region of parabolic 
motion and a nonequidistant spectrum. Nevertheless, we as- 
sume that when wn3 5 1 the main contribution to the deter- 
mination of the wave function and hence to the ionization is 
made by the region of equidistant levels, and the solution 
obtained can give a rough estimate of the ionization prob- 
ability. 

Equations (16) and (18) are equations for eigenvalues. 
The fact that the summation in them extends to No is due to 
the boundary conditions in open  channel^,^ which reduce to 
the absence of converging waves from them. The energy ob- 
tained is therefore complex, and its imaginary part deter- 
mines the width of the level. When No is replaced by infinity, 
the energy becomes real, and the ionization probability can 
be approximately determined, as above, by means of Eq. (1). 
It follows from Eq. (1 8) that the energy depends o n 8  and q, as 
parameters, i.e., each level in the presence of a field is con- 
verted into a band. This is due to the fact that in the presence 
of a field, the wave function is a mixture of an infinite num- 
ber of states with different orbital quantum numbers and 
different numbers of absorbed (emitted) photons. At fre- 
quencies w that are multiples of n-3,  a resonant structure 
appears in the solution (20). However, the hydrogen spec- 
trum is not equidistant, and its influence on the ionization 
probability has not yet been elucidated. 
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