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On the plot of the lifetime of a metasable state vs temperature there is a point To near which an 
abrupt transition from classical to quantum decay takes place. The vicinity of this point is investi- 
gated at arbitrary viscosity. The pre-exponential factor at arbitrary temperature is obtained in the 
limit of high viscosity. 

1. INTRODUCTION where F is the free energy: 

The influence of dissipative processes on the probability P=T l n z ,  z=z0+iz1= J ' D ~  ( z )  e x p { - ~  1). (3)  
of quantum-mechanical tunneling through a potential bar- 
rier has been actively investigated in the last few years. Such 1, (31, z is the partition function and A [q] is the effective 
effects were observed in experiments on the lifetimes of me- action. Since the imaginary part Z, ofthe function 
tastable states of superconducting tunnel  junction^.'.^ The is small compared with the real part z,, ~ q .  (2)  for r can be 
phenomenological theory of this phenomenon was devel- represented in the form 
oped in the paper by Caldeira and Leggett.3 The microscopic 
derivation of the effective action for a superconducting tun- r=2TZ,/Zo=2TZ0-' Im [ ~ ~ ( z ) e x ~ { - ~ [ q ] } .  (4) 
nel junction was obtained in Refs. 4 and 5 The lifetimeif the 
metastable state is determined, with exponential accuracy, 
by the extremal value of the effective action. Its temperature 
dependence was obtained in Refs. 6 and 7 .  It was shown that 
a temperature To exists above which the temperature depen- 
dence of the tunneling probability is determined by the clas- 
sical formula r a exp ( - U / T  ). At T < To an important role 
is played by the process of quantum tunneling, and the char- 
acter of the temperature dependence of r changes. A sec- 
ond-order phase transition takes place on the point To. It is 
shown in the present paper that the quantum fluctuations 
wash out this transition in a narrow temperature region near 
To. The transition from the quantum to the classical decay 
regime was considered without allowance for dissipation in 
Ref. 8. At temperatures T <  To the quantum fluctuations de- 
termine the pre-exponential factor in the T ( T )  dependence. 
We obtain below this factor for the important particular case 
of high viscosity and for a potential in the form of a cubic 
parabola. In this limiting case the argument of the exponen- 
tial is determined by the viscosity and does not depend on the 
mass. A large contribution to the pre-exponential factor is 
made by the high-frequency fluctuations, whose spectrum 
depends on the mass even in the limit of high viscosity. The 
tunneling probability increases with decreasing viscosity 
like m-2. 

2. INFLUENCE OF QUANTUM FLUCTUATIONS ON THE 
TUNNELING PROBABILITY 

At zero temperature the lifetime r -' of a metastable 
state is determined by the value of the imaginary part of the 
ground-state energy 

At low temperatures T < To, when the decay of the metasta- 
ble state is determined by quantum-mechanical tunneling, 
the lifetime is 8,99'0 

The functional integral in (4)  is with respect to the function 
q(r)  defined on the interval [ - 1/2T, 1 /2T]  and satisfying 
the condition q( - 1/2T)  = q(1 /2T) .  

To calculate Im Z we use a method developed in Refs. 9 
and 10. There exists a function ij(r) on which the action A [q] 
assumes an extremal value. The function ij(r) is obtained 
from the equation 

6 A  [ q ]  i6q=0. (5)  

Near the extremal trajectory, the function q(r)  can be repre- 
sented in the form 

where q, ( T )  are the normalized eigenfunctions of the opera- 
tor S2A /S2q, i.e., 

with periodic boundary conditions q n ( 1 / 2 T )  
= 9,  ( - 1/2T) .  

One eigenvalue A,  is negative. The contour of integra- 
tion over C, must be shifted to the imaginary axis, so that an 
imaginary part appears in the partition function. 

At T <  To the function i j  ( T )  differs from a constant, and 
at an arbitrary T ,  the periodic (with period 1 / T )  function 
$(T - T,) is also a solution of Eq. ( 5 ) .  It follows therefore that 
the function dij/dr satisfies Eq. (7)  with zero eigenvalue. For 
each function q(r)  we choose T ,  such as to approximate as 
close as possible q(r)  by the function i j  (T - T,), i.e, we deter- 
mine from the condition for the minimum of the func- 
tional' ': 

l l2T 

D ( z l l q ) =  5 d r [ q ( z ) - l ( z - r ' )  1'; -!! I =O. (8)  
-1lZT 

dz' ,,,, 

r = 2  Im F, ( 2 )  The quantity Z, can be written in the form 
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IlZT 

Z,= Irn 5 d r f  ~ ~ q ( ~ ) e x ~ { - ~ [ q 1 ) 6 ( ~ ' - r ~ [ q ( r )  I )  
-1/2T 

(9) 
It follows from (6) and (8)  that 

Substituting expressions (10) in (9) we get 
1/2T I,, */2T 

dC0 CO" z,=[ ~ d r ( : ) ' ]  J d ~ p J w e ~ ~ ( - T l ~ o l )  
-1 /2T  -1 /2T  0 

The quantity Zo can be analogously written in the form 
of a Gaussian integral over the region of the values of q ( ~ )  
near the minimum of the effective action. As a result we 
obtain for the lifetimer - ' of the metastable state the expres- 
sion 

I'=g exp ( - A ) ,  (12) 

where 

A=A [Q] -A [qmin] ; 

The prime on the determinant symbol in (13) means that the 
zero eigenvalue has been left out. 

For a particle moving in a potential field and at zero 
temperature we have 

In the presence of viscosity, however, relation (14) is incor- 
rect even at zero temperature. 

We have derived here the known formula (13) to demon- 
strate that it is valid.for arbitrary T < To and for any type of 
effective action, including in the presence of dissipation. 

3. HIGH VISCOSITY 

We consider the important case when the effective ac- 
tion is of the form 

Here q ( ~ )  is a periodic function with period l / T : q ( ~  + 1/ 
T )  = q ( ~ ) .  The effective action has this form in supercon- 
ducting tunnel junctions at a current Jclose to the critical J, . 
In this case 

J ,  
qo= [ I -  ( J / J , ) 2 ] 1 1 * ,  VO= - [ I -  ( ] / I e )  'I%, 

3e (16) 

where C * is the effective capacitance of the junction5 and 
R,, is the shunting resistance. 

At high viscosity (772qi)6m Yo) the extremal value of 
the action A [q] reached on a function i j  ( T )  equal to6 

where tanh b = T/T *, T * = 3 VO/rgq: .  
In this case A [ i j ]  is equal to 

Substituting expression (17) for 4 ( ~ )  in (7)  we get 

We have retained in this equation the term with m*, which 
becomes significant for eigenvalues with large numbers. 

We seek the solution of q(7) in the form of the Fourier 
series: 

OD 

8 ( r )  = C, exp ( i 2 n n T ~ ) .  
n-,-OD 

For the Fourier coefficients C, we'obtain the equation 
OD 

C , [ I + l n l t h  b ] -  2th  b z  Cn,exp(-bln-ni l)  

m'qo2 +- c/oz  

6 Vo 
(2nTn)'C,=ri - C,. 

6 Vo 
(21) 

For the first eigenvalues, the significant values of the index n 
are of the order of unity, and at high viscosity we can leave 
out the last term in the left-hand side of (21). We seek the 
eigenfunctions in the form 

C, ,=(Inl+C)  exp ( - b l n l ) .  (22) 
Functions of the type (22) satisfy the system (21) if the follow- 
ing relations hold: 
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C th b=-Aqo216Vo, C2 th b=C+ 2/sh ( 2 b ) .  (23)  
Qo r= - rI1 

From these equations we obtain the first two eigenvalues: (211)'" 
e x ~ ( - A )  --, 

n2 

4 
A.,.=-? [l *( I+=)  ''a]. (24)  where 

Yo  

To find the remaining eigenvalues, we note that when n is II,=fi [F + 2 n ~ q n + m *  ( 2 n ~ n ) '  , 
replaced by - n the system (21)  goes over into itself. We can n=i I 
therefore seek the solutions C, in the form of even and odd (32)  
functions of the number n. The solution of even type, corre- n,= [?+2nTq (n-2) +n* (2nTn) '  ; N - m .  
sponding to the eigenvalue A,, ,  , we seek in the form "- I 
where d, = d - , and is different from zero only at In I <N.  

The equation for n = N with allowance for the equa- 
tions for n > N is 

(6V,lqn2+N2nTq) div=Aiv+zdiv. (26)  

Since d, # 0 ,  we have 

i i ~ + ? = 6 V n / q o " 2 ~ T ~ N ,  N=O, 1, 2,  3 . .  . (27)  

The odd eigenfunctions with n >  1 are of the form (25)  
and yield the set of eigenvalues 

A-,=O, iZ-,N+2,=AN+2, N=O, I ,  2. .  . (28)  

For 1 N I > 1 we must take into account the last term in the left- 
hand side of (21). The second term of (21)  can then be ob- 
tained by perturbation theory. In the zeroth approximation, 
the eigenfunction corresponding to the eigenvalue A ,  is 
equal to C, = a,,, . Calculating the eigenvalues A ,  in first- 
order perturbation theory, we obtain 

AN=6Vn/qo2f  ( 1 NI -2) 2 n T q S m * ( 2 n T N )  ' .  (29) 

Since the last term of (29)  is small at IN I - 1 and (28)  goes 
over into (27) ,  we can assume that (29)  is the correct expres- 
sion for the spectrum at In 1 2 2 .  

As T tends to To, the parameter b tends to infinity. The 
system (21)  is then diagonalized and all the eigenvalues are 
easily found. Comparing the eigenvalue obtained in this 
manner with those obtained above, we verify that Eqs. (24) ,  
(28) ,  and (29)  yield the complete set of eigenvalues. The pro- 
duct of these eigenvalues determines the value of 2,. The 
value of Zo is calculated in the same manner. 

The minimum value of the action A [q] is reached at 
q ( r )  = 0.  The eigenfunction equation for this value of q ( r )  is 
the same as the system (21)  without the second term. The 
eigenvalues of such a system can be easily found and are 
equal to 

hn7=6V,iy,2+2nTq IN 1 f m'(2nTN)" ,N=O, * I ,  *2. .  . . 

The products in (32)  are expressed in terms of the Euler 
function r ( x ) ,  and in the high-viscosity limit we get 

r- ql"q: 
exp (-A). 

6.2'hVom" 

We note that the pre-exponential factor in Eq. (33)  for the 
lifetime does not depend on temperature at T < To. The tem- 
perature dependence of the normalization factor ( 3  1 )  was 
cancelled out by the temperature dependence of eigenvalues 
A , ,  [Eq. (24)l.  In the limit of high viscosity the argument of 
the exponential in (33)  depends little on the mass. The pre- 
exponential factor, however, is determined by the eigenval- 
ues with large number N and is inversely proportional to the 
square of the mass. 

The dependence of the pre-exponential factor on the 
high-frequency fluctuations can make the frequency disper- 
sion of the effective mass substantial. Equation (33)  for the 
lifetime r - ' acquires then an additional factor 

where m* = m ( w  = 0 ) .  In the case of a superconducting tun- 
nel junction we have for m ( w )  (Ref. 7 )  

where C is the capacitance of the junction. At frequencies 
1 w I < A  the second term in (35)  renormalizes the capacitance 
and m ( w )  = m*.  For frequencies Iwl > A  the second term is 
proportional too- '  and leads to renormalization of the vis- 
cosity. Accurate to a number of the order of unity we have in 
this case 

(30)  where v* is the effective viscosity at high frequency: 
Using Eq. (17) for the function q ( r )  we obtain the normaliza- 
tion coefficient that enters in the equation for the lifetime 
r - I :  

1712 ' 6nVo nTqqo2 
Jar(:) =T[i-(x)2]. (3 1 )  4. TEMPERATURE CLOSE TO TO 

-i /2T An expression for the transition probability near the % 

Substituting the obtained value of the spectrum (2419 transition temperature can be obtained at an arbitrary form 
(291, (30)  and of the normalization coefficient (32)  in Eq. (13)  ofthe potential V ( q )  and at any ratio of mass to viscosity. The 
we obtain reason is that thesignificant values of q ( r )  are close to the 
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extremal value of go. Therefore the effective action can be 
expanded in powers of q(r)  - go. 

It is convenient to expand the function q(r)  in a Fourier 
series 

D1 

q (.t) =q,+T1" y, Cn exp ( 2 i n T ~ n ) ,  C,=C-,*. (37) 

Substituting Eq. (37) for q(r)  in Eq. ( 1 5 )  for the effective ac- 
tion, we get 

The effective action was expanded in terms quadratic in 
C ,, # , and the small terms of fourth order in C , , were 
retained, since the coefficients A *, vanish at the transition 
point 

As before, by shifting the contour of integration with respect 
to C, to the complex plane and integrating over all C ,,, # , , 
we get 

z,= e x p ( - V ( q o ) / T )  
2 [ - V " ( q , )  I"' 

&- '2 exp {-A, I c1 I '-B I ci 1 '1, 
n=2 -m  

(401 

where 

The partition function Zo [Eq. (3 I ) ]  is determined by a 
Gaussian functional integral near the minimum of the ac- 
tior,: 

The integral in (40) is expressed in terms of the error 
integral @ (x),  so that 

where 

For potential motion (viscosity coefficient 7 = 0 )  Eq. (43) 
coincides with the result of Ref. 8. In the high-viscosity limit 
we obtain from (43) 

where 

x= 
2nq (T-To)  

To'" (V(IV) ( q o )  - (V'" ( q , )  ) ' /VN ( q , )  ) I h  

For a potential V ( q )  in the form of a cubic parabola we have 
V "(0)  = - V "(go) and Eq. (44) goes over into Eq. (33) at 
T < To. For a potential of different form, the pre-exponential 
factor has a power-law dependence on the mass and the ar- 
gument of the exponential is determined by the form of the 
potential. 

Just as in the case of temperatures not close to To, the 
pre-exponential factor in (44) depends on the high-frequency 
fluctuations. An important role can therefore be assumed by 
the frequency dispersion of the effective mass, and in this 
case an additional factor in the form of (34) or (36) will ap- 
pear in the right-hand side of (44). 

The temperature dependence of the lifetime near To is 
determined by an integral with respect to the complex pa- 
rameter C, = C * - ,. The integrand does not depend on the 
phase of C,; this is equivalent to separating the zeroth mode 
at T <  To. Integration with respect to the modulus of C ,  
yields the error function @ (x) .  

At high values of the argument, below the transition 
point, the difference between the error function @ (x )  and 
- 1 is exponentially small. Therefore the proximity to the 

transition point manifests itself only in the exponentially 
small terms. The situation is reversed above the transition 
point: the argument of the exponential does not depend on 
the proximity of T to To, and the pre-exponential factor has a 
power-law singularity. This singularity becomes smeared 
out in a narrow region near a point To whose width, as fol- 
lows from (43), is of the order of 

ill-2B'" or GTIT- (TIV)".  (45) 
It must be noted that when the temperature is raised Eq. 

(2) no longer holds, since it does not describe correctly the 
passage of the above-barrier excitations. In this temperature 
region we haveg 

I'=2T,Zj/Zo. (46) 
Near To, Eq. (46) coincides with expression (3)  for r. At 
T - T ~ % T ~ ( T / v ) " ~  we get from (46) 

where 
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U = V (go) - V (0) is the height of the potential barrier. Equa- 
tion (47) agrees with the result of Ref. 12. 

We have used above for the action expression (15) 
which, in particular, yields the effective action of a supercon- 
ducting tunnel junction at currents close to critical. At cur- 
rents not close to critical, the effective action has a more 
complicated f ~ r m . ~ . ~  In particular, the damping is nonlinear 
in this case. Near the transition temperature, however, ex- 
pansion (38) for the action remains valid, but the connection 
between the coefficients of this expansion and the physical 
parameters becomes more complicated. Therefore the quali- 
tative picture of the dependence of the lifetime r - ' on the 
temperature remains the same. 

5. CONCLUSION 

The plot of the lifetime of the metastable state vs tem- 
perature has a point To in the vicinity of which the decay 
regime changes from classical at T >  To to quantum at 
T <  To. The transition temperature To is defined by Eqs. (1 8) 
and (39) and decreases with increasing viscosity. The width 
STofthe transition region issmall, ST/T-A - ' I 2 ,   where^ is 

the argument of the exponential in the decay probability of 
the metasstable state. The temperature dependence of the 
lifetime near To is determined by the presence of two soft 
modes. 

In superconducting tunnel junctions at a current close 
to critical, the potential energy takes the form of a cubic 
parabola. In such a potential, the pre-exponential factor is 
independent of temperature at T <  To. 

'R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47,265 (1982). Phys. Rev. 
B24, 7447 (1981). 

'L. D. Jackel, J. P. Gordon, E. L. Hu, R. E. Howard, L. A. Fetter, D. M. 
Tennant, R. W. Epworth, and J. Kurkijarvi, Phys. Rev. Lett. 47, 697 
(1981). 

3A. 0 .  Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 21 1 (1981). 
4V. A. Ambegaokar, U. Eckern, and G. Schon, Phys. Rev. Lett. 48, 1745 
(1982). 

'A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B18, (1982). 
6A. I. Larkin and Yu. N. Ovchinnikov, Pis'ma Zh. Eksp. Teor. Fiz. 37, 
322 (1983) [JETP Lett. 37, 382 (1983)l. 

'A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 85, 1510 
(1983) [Sov. Phys. JETP 57, 876 (1983)l. 

'1. Affleck, Phys. Rev. Lett. 46, 388 (1981). 
91. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967). 
'OC. Callan and S. Coleman, Phys. Rev. D16, 1762 (1977). 
"I. Zittartz and I. S. Langer, Phys. Rev. 148, 741 (1966). 
12V. I. Mel'nikov and S. Meshkov, Pis'ma Zh. Eksp. Teor. Fiz. 38, 1 1  1 

(1983) [JETP Lett. 38, 130 (1983)l. 

Translated by J. G. Adashko 

424 Sov. Phys. JETP 59 (2), February 1984 A. I. Larkin and Yu. N. Ovchinnikov 424 


