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The possible role of inertial terms in the dynamics of liquid crystals is discussed. A hypothetical 
case of a liquid crystal for which the moment of inertia per unit volume is not small is examined. It 
is shown that, at sufficiently high frequencies in such a system, the interaction between orienta- 
tional degrees of freedom and the hydrodynamic flow of the liquid crystal, and also all spatial 
inhomogeneities, can be neglected. The change in orientation may then occur quasiperiodically 
for a particular long-lived mode. The conditions for the chaotic behavior of orientation are also 
discussed. 

1. Studies of the dynamics of systems with a complex 
order parameter, for example, liquid crystals or superfluid 
He3 phases, have attracted considerable attention in recent 
years.'--' The general equations describing the dynamics of 
such systems are now well established. Their distinctive fea- 
ture is the role played by the degrees of freedom associated 
with the order parameter. 

Thus, for example, in He3 - B, an abrupt change in a 
constant external is accompanied after a period of 
the order of a few hundred microseconds by the appearance 
of a long-lived oscillatory mode of magnetization, with a 
slowly-varying frequency. On the other hand, chaotic mo- 
tion of magnetization may arise under parametric excitation 
if the frequency and amplitude of the exciting field have suit- 
able values (see Ref. 1 for further details). 

According to currently established general ideas, the 
structure of the order parameter is determined by the corre- 
sponding symmetry group. In the case of the superfluid 
He3 - B, this is theSO (3) XSO (3) group of rotations in orbi- 
tal and spin spaces. A partial breaking of this group is, in 
fact, described by the order parameter. The breaking of this 
symmetry is the reason for the dynamic features of magneti- 
zation, mentioned above. 

The breaking of the symmetry of the SO (3) space rota- 
tions occurs in nematic liquid crystals (NLC). The resulting 
order parameter is described by the real unit vector n, where 
n and - n are indistinguishable, i.e., the space of the order 
parameter is a sphere in three-dimensional space with identi- 
fied antipodal points. This relatively complex manifold can, 
under certain definite conditions (see below), ensure the exis- 
tence of long-lived modes and chaotic regimes. 

2. The form of the dipole-dipole energy with two mini- 
ma in the angular variable of the order parameter plays an 
important role in the dynamics of He3 - B magnetization. A 
liquid crystal does not have an analog of dipole energy, but 
the interaction between the director in the NLC and the ex- 
ternal field gives rise to a certain effective potential in the 
dynamic description of the system, which has similar prop- 
erties. Let us examine the form of this effective potential. 

The dynamic equations for the NLC are well known.4 
For the presentation given below, we shall need only the 
equation of motion for the director n, which is conveniently 
written in the form 

where we have taken into account the fact that, since n is a 
unit vector, n2 = 1 and any change in n reduces to rotation, 
described by the "angular frequency" a. The parameter I 
has the significance and dimensions of the moment of inertia 
per unit volume, y is the rotational viscosity, and X ,  is the 
anisotropic part of the susceptibility. 

For our purposes, the important frequencies are those 
satisfying the inequality 

The quantity I is, at present, unknown for liquid crystals. It 
is usually considered4 that I i s  a molecular quantity, in which 
case I- 10-l4 g/cm. If this is so, the molecules rotate indi- 
vidually in the liquid crystal, in the same way that they do in 
an isotropic liquid. However, the introduction of the direc- 
tor n that distinguishes the liquid crystal from an isotropic 
liquid in itself implies averaging over physically infinitesi- 
mal volumes (which, nevertheless, contain a large number of 
molecules). To the extent to which one can write a hydrody- 
namic equation for n with an inertial term, the parameter I 
may be regarded as being much greater than the molecular 
value. The justification for the small value I- 10- l4 g/cm is 
the experimental confirmation of the absence of inertial ef- 
fects in NLC dynamics. We shall show below that, even for 
the much greater values I- 10-7-10-8 g/cm, very special 
conditions are necessary for the observation of such effects 
and, in any case, they can be observed only in very short- 
lived transient states. Recent observations of propagating 
waves in the distribution of the director5 may be looked upon 
as an indication that such gigantic values of1 may occur. The 
velocity of these waves has been estimated5 as being - 1 cm/ 
s. However, this velocity depends only on the ratio (K /I )'I2 

from which it follows that I- g/cm (K is Frank's mo- 
dulus, - dyne/cm). 

It is possible that I is much greater in lyotropic liquid 
crystals. It is now well known6 that the structural units re- 
sponsible for nematic order in such systems are not the indi- 
vidual molecules, but molecular aggregates that are cylindri- 
cal in shape and contain a large number of particles. 

In any case, it seems to us that the basic formulation of 
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the problem of high-frequency NLC dynamics, with the pa- 
rameter values chosen above, makes sense in relation to the 
possible synthesis of new materials with previously unattain- 
able physical constants. 

Let us estimate the terms in the second equation in (1): 

Ioz--yo+xaH2. 

Numerical calculations (see below) show that the suitable 
parameter values are such that, with the left-hand side - 1, 
the coefficients on the right-hand side of the symbolic equa- 
tion (2) are 5 X and respectively. Hence, it follows 
that 

7/(1o) -5.10-$, x,Hz/(Zo2) -10-', (3) 

Taking y- P, I- g/cm, X, -5 x cgs, and 
H-5X lo4 G, find from (3) that the frequencies that are 
important for our purposes are 

0-10's-I. 

We are entitled to neglect spatial derivatives in any specific 
problem that involves frequencies exceeding the frequencies 
of the natural NLC modes. It is known that there are two 
modes in nematic  crystal^,^ namely, 

~I-Kqzlrl, at-9q2/p, (4) 

wherep is the density (in g/cm3) and q is the effective viscos- 
ity. The slow mode (frequency w, ) is connected with the re- 
laxation of the director, and the fast mode wf determines the 
viscous damping of shear waves, as in ordinary liquids. For 
the above parameter values, wf /ws  - lo4, so that the fast 
mode is the most "hazardous." To satisfy the homogeneous 
approximation, we must have 

o j ~ i o 7  S-! (5) 

This inequality actually signifies that the entire process 
of changing the state of a liquid crystal can be divided into 
two time intervals. Initially, up to time -pL 2/q (L is the 
thickness of the nematic crystal), we can neglect gradients 
and use (1). For longer times, on the other hand, we can 
usually neglect the inertia I of the rotation of the director 
and everything is determined by the gradient terms. 

Condition (5) is satisfied when wave vectors q < lo2-lo5 
cm-' are important. Thus, sufficiently thick cells 
(L k - low3 cm) with ordered NLC must be used. 

Suppose that (5) is satisfied and let us analyze (1) for 
y = 0. The latter simplification is necessary to enable us to 
find the form of the effective potential. A general solution, 
obtained with the aid of a computer, will be considered in the 
next section. 

It is readily seen from the first equation in (1) that 

Thus, the set of equations given by (1) with y = 0 reduces to 

This has the following constants of motion: 
Hn-const, P - 6  (Hn) 2=const, 

the form of the equation of motion of a particle in a certain 
potential. In fact, it follows from (6) that 

We can now transform the right-hand side with the aid of the 
last equation: 

(Q [IW HI ) z=H2Q2- (HQ) '-W (Hn) '. 
When Hn=C2 and n2 = C, + ~ ( H I I ) ~ ,  we obtain the fol- 
lowing equation of motion for the variable Hen = v: 

(dyldt) z+VeV=~~n~t ,  (8) 

V,,=Gy'f (C,-6H2) yz, PC,-C,2=const. (9) 

It is clear from (9) that, when C, - 6 H 2  < 0, and 6 > 0, the 
effective potential (regarded as a function y) has minima at 
the two points f [(6H - C,)/6] 'I2 (see Fig. 1). The essential 
point is that the effective potential has one minimum and one 
degenerate minimum when it is looked upon as a function in 
the space of the order parameter, i.e., a sphere with identical 
diametrically opposite points. The two minima in the vari- 
able y coalesce in the space of the order parameter because of 
the indistinguishability nt, - n. The maximum 
y = H-n = 0 corresponds to a circle, i.e., a set of directors 
that are perpendicular to H. This result requires some eluci- 
dation. In fact, in statics, there is only one minimum 6 > 0 
( y = 0, i.e., H-n = 0). When 6 < 0, the minimum is absent 
altogether, and the smallest value occurs for Hlln, i.e., 
y = H. The situation illustrated in Fig. 1 is connected with 
the motion of the director. When the vector n executes rapid 
"rotation," the minimum effective-potential configuration 
occurs for y # 0. 

To find the stationary modes of (I), let us rewrite it in 
terms of the new scalar variables 

from which, after some simple rearrangement, we obtain (for 
r#o) 

d a 
-,(Hn) =D, - G2=2 (Hn) D-2yQz, 
dt dt 

d 
(11) 

-D=- (Hn)Qz+ (Hn)H2[1-H-2(Hn)2]-yD. 
at 

As before, let us substitute y = 0. In terms of these variables, 
we then have the equilibrium stationary solution 

Hn=O; D=0; P2=H2- (Hn) Z. (12) 

Moreover, the conditions Hen = 0, D = 0, n2 arbitrary, cor- 
respond to neutral unstable equilibrium. Figure 2 shows the 
phase diagram in terms of the variables H.n, D, and nZ. 

where6 = X, /I. These constants can be used to rewrite (1) in 
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FIG. 1 .  The form of the effective potential Ye,. 



FIG. 2. Thick lines show stationary solutions. The f2 axis is unstable 
when dissipation is taken into account, and the parabola given by (12) is 
stable. The point P corresponds to the region of unstable director dynam- 
ics. The thin line shows a typical trajectory, attracted by the stable station- 
ary solution given by (12). The broken line shows a typical trajectory cor- 
responding to high frequencies fl (above P )  that breaks away from the 
unstable stationary solution. 

We note that the stationary solution f lZ = HZ - (Hn)' 
is similar to the so-called WP-mode in the dynamics of 
He3 - B. Moreover, the effective potential (subject to the 
above restrictions) resembles the dipole energy. 

Hence, by analogy with the situation in He3 - B,1-3 we 
may expect nontrivial dynamics, described by (1 I), even for 
y = 0. 

In the next section, we shall give a numerical analysis of 
the dynamics of nematic liquid crystals under the conditions 
described above (i.e., in an external field of about lo4 that is 
sufficiently strong to produce an effective potential with two 
minima, and such that we can neglect all spatial distribution 
gradients). Actual physical effects will be examined in Sec. 4. 

3. Equations (1 1) provide us with a graphic description 
of the dynamics of nematic crystals in the space of the varia- 
bles flZ, H a ,  D = Hf l  Xn. The first step is to consider sta- 
tionary solutions that are obtained by omitting dissipative 
terms proportional t oy  and by equating the right-hand sides 
of (1 1) to zero (see Fig. 2). 

Numerical analysis shows that there are two distinct 
states of motion, namely, those above the point P at which 
stationary solutions cross, and those below this point. In the 
region above P, the system tends to reach the neighborhood 
of the stable stationary solution (12) in a short time T and 
then to oscillate around it in the form of a gradually damped, 
long-lived mode. In our calculations, the material constants 
I ,  y, ,yo were taken to be I = lo-' g/cm, y = P and 
X. = 5 X lo-' cgs. The time T was of the order of 100ps. The 
lifetime of the long-lived mode was 400 ps. The number of 
complete periods observed during this time was 3-4. For the 
more favorable parameter values y = 0.005 P X, = 
cgs, the time T was 65 ps, the lifetime was 150 ps, and the 
total number of periods was about 15. The dynamic charac- 
teristics of the state of motion are thus more clearly defined 
in this case. 

It is important to note that the value used for y was 
somewhat lower than the viscosity of "normal" NLC's. So- 
lutions of liquid crystals can be used to produce such low 
viscosities. The reduction in y will, of course, be accompa- 
nied by a reduction in X, . However, the numerical results 
are much less sensitive to the value ofx, . Moreover, even for 
the usual viscosities of liquid crystals, the assumption of cha- 

FIG. 3. Values of the director n correspond to points on a unit sphere. The 
n* - n symmetry is taken into account by the indistinguishability of 
antipodal points. The maximum of V,, corresponds to points on the equa- 
tor shown by the thick line. The thin line 2' shows a trajectory corre- 
sponding to an approach to Pin the space of the variable f2 ', Ha, D. The 
equator is a limit cycle for Y. 

os and the presence of long-lived modes remain valid. All 
that happens is that there is a reduction in the lifetime, the 
number of periods, and so on. 

States in which the trajectory in the f12, H-n, D space 
enters the neighborhood of the point P occupy a special posi- 
tion. To visualize their dynamics more clearly, we must con- 
sider motion in the space of the order parameter. As noted 
above, in the case of a nematic crystal, this space is the unit 
sphere in three-dimensional space with identical antipodal 
points. If we take the external field H along the z axis, the 
effective potential (9) will have a maximum on the equator of 
the sphere, i.e., for H-n = 0, and a minimum at the antipodal 
points at the north and south poles (see Fig. 3). 

Thus, the peculiarity of the liquid-crystal situation gen- 
erated by the initial SO (3) symmetry is reflected in the degen- 
eracy of the maximum of the effective potential. A similar 
situation occurs in 3He - B, where the dipole energy plays 
the role of the effective potential.' As a result of the degener- 
acy of the maximum of the potential, the scattering of trajec- 
tories by it does not lead to the appearance of domain walls 
and has the attributes of continuous scattering, as a result of 
which two initially closely spaced trajectories can diverge to 
a finite distance in a finite time. Hence, if the liquid crystal 
specimen is prepared so that trajectories describing the dy- 
namics of the system in terms of the variables flZ, Hen, D 
reach the neighborhood of P, the spatial homogeneity of the 
distribution of the director will be disturbed by the small 
spatial inhomogeneities that can be neglected at the initial 
time, in accordance with the estimates made in Sec. 2, and 
the turbulization of the system may be expected in the space 
of the order parameter. 

Turbulization can be encouraged by an external period- 
ic magnetic field of frequency and amplitude corresponding 
to motion in the neighborhood of the point P. We have con- 
sidered an external field H = Ho + h, where 
h = O,lHo cos 0.250t, Ho = lo4 gauss, 0 = 10' Hz. The re- 
sults are shown in the form of the histogram of Fig. 4. It is 
important to note that the shape of the histogram reflects the 
chaotic nature of the state that, nevertheless, still fits into the 
framework of the spatially homogeneous approximation in- 
troduced in Sec. 2. In a real experimental situation, it may be 
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FIG. 4. Histogram showing the distribution of the initial separations 
between points forming a square lattice in steps of 0.0000025, with 121 
points on the (D, L? ) plane. The separation between the points after 300ps 
intervals is shown along the abscissa axis, and the number of pairs of 
points that have separated to a given distance is shown along the ordinate 
axis. Histogram a shows the distribution of separations for arbitrary pairs 
of points, and histogram 6 for initially neighboring pairs of points. 

expected that the resulting chaos leads to the development of 
spatial inhomogeneities and turbulization of the system in 
the space of the order parameter. This form of orientational 
turbulence is now well known in connection with electrohy- 
drodynamic instabilitya4 

It is interesting to note the following nonlinear state 
that corresponds to director angular velocity greater than 
,yo H2/Z. We shall suppose that R>x0 H2/Z, so that, in the 
first approximation, it may be considered that i2 = const 
and the vector n rotates around the v = i2/lf2 I axis with 
angular velocity 0% 1. We now take the average over this 
configuration of the equation that follows from the second 
equation in (1): 

d 
1- Q=-yQ+% (Hn) [ ~ x H ] ,  

dt  

where the average off is given by 

and $ is the phase of the vector n in the course of its rotation 
around v. The result is (omitting the angle brackets) 

d I 
I--Q=-yQ-- QXH 

dt 2 

It is convenient to rewrite this equation in the form of 
two equations, namely, one for f2 = and the other for 
v = n / a :  

From these equations, it follows immediately that: (1) the 
lifetime in this "average" state is of the order of l /y ,  (2) the 
angle between v and H is constant, H v  = const, and (3) the 
vector v rotates around H with the instantaneous angular 
velocity 

The important point to note is that, for the values ofZ, f2, H, 
x0 that we have considered, the angular velocity w, is - 1, 
i.e., much less than f2. The configurations H.v = 0 and Hllv, 
for which v = const, should be particularly noted. Comput- 

er calculations performed for the original system given by 
(I), which is exact within the framework of our model, show 
that the change in v for these values of y andx, , H does not, 
in fact exceed 90- 1 80". 

This fact is not wholly without interest in view of the 
fact that the average ( n ,  n, ) that determines the permittivity 
of the crystal is equal to 1/2(S, - vi v, ). 

4. We shall now examine possible experimental obser- 
vation of the above effects. As already noted above, the nec- 
essary condition for this is the of a magnetic field 
producing an effective potential in the space of the order 
parameter, with one minimum and a degenerate maximum 
(a circle). The same field orders the liquid crystal. Moreover, 
since we are ignoring all spatial gradients, the field must be 
strong enough to exceed the frequencies of the characteristic 
inhomogeneous motions of the director and velocity. The 
estimates introduced in Sec. 2 show that these conditions 
are, in fact, satisfied for experimentally practicable values of 
H, i.e., lo4-lo5 G and for liquid-crystal thickness of lo-' 
cm. However, this effective potential is meaningful only dur- 
ing the motion of the director. In addition to the static field 
H, we must therefore apply a perpendicular pulsed field or 
some other disturbance of comparable (or, better still, 
greater) strength. This will give rise to the rotation of the 
director that will produce an initial state with f2 '#O. The 
field is then turned off and the motion of n, discussed in the 
last section, will begin. It is also important to remember that 
transverse (relative to the initial orientation) rotations of the 
director necessarily lead to the motion of the liquid-crystal 
mass itself, and to the appearance of nonzero gradients. 
However, the attenuation of the velocity v occurs more ra- 
pidly than the attenuation of the motion of the director.' 
This means that a state with O#O, is possible for times that 
are sufficiently long in comparison with those found in the 
last section, but the gradients are then absent (and v = 0). 
During this interval of time, the attenuation of the director 
has the asymptotic form t -'I2, whereas the attenuation of 
the velocity is-t -312. 

In principle, an initial state with i2 # 0 can also be set up 
in other ways. Director motion with sufficiently high fre- 
quencies will also occur4 under the conditions of dielectric 
EHD instability. This will, of course, be accompanied by the 
motion of the liquid: v#O. However, for the reasons given 
above, the turning-off of the electric field is followed by a 
time interval (sufficient for our effects to occur) during 
which n#O, but gradients are no longer present. The third 
way of producing the required initial state is to apply a com- 
bination of a static field and a coplanar rotating field 
ho cos wt. It is that, in this case, there is a critical 
frequency w, -,yo h2/y such that, for wgw,, the rotation of 
the director occurs in step with the frequency w but, for 
w > w,, there is a delay given by 

It is clear from this formula that, when w ) ~ , ,  we have 
a' = 0, i.e., rotation of frequency much higher than w, is not 
possible. In the most favorable situation (from our point of 
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FIG. 5. Schematic curves showing the transmission coefficient as a func- 
tion of time. 

view), o, - lo6 - lo7 s-' (ho- lo4 - lo5 G), which lies in 
the required frequency interval. Thus, we shall consider that 
the state with #O has been produced in some way. Next, as 
already noted, there are two possible types of behavior. Ei- 
ther the system takes up one of the branches of the stationary 
mode (Fig. 2) and follows it for a relatively "long" period of 
time, or it reaches an unstable point and "dephasing" begins 
(close states become separated), i.e., chaotic motion sets in. 
Let us begin with the first situation. This behavior can be 
observed in a number of ways. For example, one can measure 
the intensity of light scattered or transmitted by a cell. The 
intensity of light transmitted by the cell and the analyzer 
depends on the anglej3 between the polarization vector in the 
incident beam and the original direction of the director, and 
the phase difference A@ between the ordinary and extraor- 
dinary rays that is acquired within the cell (see, for example, 
Ref. 10, where estimates are given for the times for which the 
different deformations of the director must be turned on and 
off): 

]=lo sin2 sin2 (l/,A@), 

where J, is the intensity of the linearly polarized light inci- 
dent on the cell. The phase difference A@,  on the other hand, 
is determined by the difference between the principal eigen- 
values of the matrix E~ = E ~ S ~  + &,ninj. The average 
( n ,  n, ) over the period is directly related to 0. The intensity 
J will therefore vary in the course of motion along the sta- 
tionary mode as shown schematically in Fig. 5. The same 
average appears in the so-called dielectric g factor, on which 
the dielectric relaxation is found to depend. In all cases, the 
time dependence has the characteristic nonmonotonic seg- 
ment. The simple average (ni nj ) over the basic solution cor- 
responding to the absence of dissipation is evaluated in the 
Appendix. 

We note that, as i2 decreases along the stationary mode, 
the departure from the condition for the validity of (1) be- 
comes greater. Finally, the same average (ninj ) appears in 
the spectral intensity of the scattered light. During the life- 
time of the stationary state, the scattered line is a superposi- 
tion of three Lorentz curves and not the usual two. The addi- 
tional contribution is much narrower than the curves 
connected with the slow nematic and fast hydrodynamic 
modes (determined by i2 '). However, ifthe assumptions that 
enable us to neglect gradients are valid, only this additional 
contribution should, in fact, be noticeable. 

In the case of the second type of (chaotic) behavior, 
close states (orientations) begin to diverge. This corresponds 
to spontaneous appearance of defects (disclinations). The 
turbulization of the motion effectively signifies that the sys- 
tem behaves analogously to an isotropic phase (i.e., birefrin- 
gence, splitting of NMR lines, and similar anisotropic char- 
acteristics are no longer present). 

The effects suggested above have not, as yet, been veri- 
fied experimentally in a direct manner. 

It may be simpler to investigate these processes by ex- 
amining the resulting textures, rather than by studying di- 
rectly the time-transient state. In fact, the assumption of 
homogeneity is equivalent to the assumption that the above 
behavior (for example, chaotic behavior) occurs indepen- 
dently at each point in space. The observed texture, on the 
other hand, depends on the parameters of this motion at each 
point, and is obtained by averaging the inhomogeneous 
equations over the periods of fast motion. A detailed exami- 
nation of these questions will be given elsewhere. 

Finally, we note a further and more methodological 
motivation for the present work. The point is that there is a 
large number of publications (see the references at the end of 
Ref. 11) on director waves in liquid crystals. All these papers 
investigate the linearized equation of motion with allowance 
for inertial terms. On the other hand, the analysis given 
above shows that all the nontrivial effects connected with the 
moment of inertia occur only because of the nonlinearity of 
the equation of motion for the director in the external field. 

All the effects discussed above are, of course, connected 
with the assumption that I #O, and do not occur for I = 0. 

We also note that observation of the nonlinear state for 
0 % ~ ~  H ' / I  may serve as a way of direct determination of I, 
since (ni n, ) is determined by the instantaneous angular ve- 
locity given by (1 3). 

The authors are greatly indebted to B. Ya. Zel'dovich 
for his rigorous but valid critique of the original version of 
this paper, and to I. E. Dzyaloshinskii, L. P. Gor'kov, and L. 
N. Shur for discussions of the revised version. 

APPENDIX 

The quantity ( n i n j )  can be evaluated by taking the 
average over the stationary solution. We have (see above) 

From this, it follows that n rotates locally around H (at con- 
stant angle). The expression for n can therefore be written in 
the form 

ni ( t )  =Rijn:, b . 2 )  

where R i j  is the rotation matrix. Without loss of generality, 
we can take the z axis in the direction of the field: 2 = H/H. 

Next, we use the following simple fact. If li is a unit 
vector rotating with constant velocity around L (L2 = I), 
and gL = 0, then 

In our case, 

n=2 cos O+m sin 0, m2=1, (-4.4) 
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where (2 )  = 1, (m) = 0. From (A.3) and (A.4), we have 

(ninj)=iiij cos2 04(mimj> sin2 0 

=tii3tij3 cos2 0-1/26i3tij~ sin2 0+'/a6u sin2 0 

[since (mimi )  = 1/2(SU - i i$ ) ] .  
Thus, 

(ninj> ='I2 (6u+6is6rs cos 20). (-4.5) 

The difference between the eigenvalues of the matrix 
E~~ = € d i k  + E, (n ink  ) is given by 

A='I2e, cos 20, OG06'/2n, ('4.6) 

i.e., A varies between - E,  and + E, as the motion takes 
place away from P and along the stationary mode. 
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