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The oscillations of a liquid ferromagnet are considered. The spectra of small-amplitude oscilla- 
tions are determined. The simplest nonlinear waves (Riemann waves) are analyzed, as well as 
stationary discontinuities of two types: a) AlfvCn waves and the corresponding rotational discon- 
tinuities; these motions are similar to the corresponding motions in an ordinary magnetohydro- 
dynamic medium. b) Extraordinary waves, and the plane-polarized discontinuities corresponding 
to them. In the extraordinary wave the points with the larger magnetic induction B move with a 
greater velocity. Discontinuities in the Riemann wave arise in sections of increasing B. The 
discontinuity velocity exceeds that of the extraordinary wave in an unperturbed liquid and is less 
than that of the extraordinary wave behind the discontinuity. 

1. EQUATIONS OF MOTION OF A LIQUID FERROMAGNET 

At the present time, there is no doubt of the possibility 
of the existence of liquids that are ferromagnetic at the atom- 
ic level. The question of their experimental observation has 
been covered in detail in Ref. 1; the prospects of the use of 
liquid ferromagnets as ideally soft magnetic materials was 
also discussed there. A number of researches 24 are known 
that are devoted to the unperturbed state of a ferromagnetic 
liquid; the problem of the oscillations of such a liquid has not 
been considered to date. At the same time, the oscillations of 
a liquid ferromagnet should be very unusual, differing both 
from the spin waves in a solid ferromagnet and from the 
magnetohydrodynamic waves in a conducting liquid in the 
presence of an external magnetic induction. The present 
work is devoted to the study of such oscillations. We shall 
consider oscillations of small amplitude, the simplest nonlin- 
ear oscillations-Riemann waves and their evolution, and 
also ferrohydrodynamic discontinuities. 

We emphasize that we deal with a liquid which is a 
ferromagnet at the microscopic level. Therefore, we use for 
the magnetization Eq. (IS),  which leads to a significantly 
anisotropic (depending on the frequency and the wave vec- 
tor) relation between the magnetic induction B and the mag- 
netic field intensity H, and also to the possibility of the exis- 
tence of spin waves. Thus, the considered problem differs 
from the widely treated problem of oscillations of the so- 
called magnetized liquid, in which the phenomenological 
isotropic connection B = p H  has been introduced, wherep 
is a function of the magnetic field, temperature and density. 
Without citing the broad literature on a magnetized liquid, 
we shall indicate only three of the (chronologically) latest 
researches.'-' 

We first write out the equations of motion of a magneto- 
hydrodynamic medium with an arbitrary relation between B 
and H. Following Ref. 8, we have 

div B=O, 

a P - + div (pv) =0, 
a t  

wherep is the density, v is the hydrodynamic velocity, s is the 
sound velocity and d /dt =d/dt + vd /dr. If the hydrody- 
namic medium possesses spontaneous magnetization M,, 
then we can add the equation of motion of the magnetic mo- 
ment to these equations: 

where M = (B - H)/4a is the magnetization, g is the gyro- 
magnetic ratio and He' is the effective field. Assuming the 
liquid to be isotropic, we get for He' 

Hetf =H-aAM, (1.5) 

where a is the constant of exchange interaction. 
It is known that the unperturbed hydrodynamic medi- 

um is characterized by two quantities with dimension of ve- 
locity: the sound velocity s and the AlfvCn velocity 

v,= (BH/4np)". (1.6) 

Even in very strong fields (H- 103kOe) at p -  10 g . ~ m , - ~  
we have v, - 104cm/sec, while s - 3 X lo5 cm/sec. There- 
fore, the sound (more precisely, the fast magnetosonic) wave 
does not actually interact with the AlfvCn wave (see Ref. 9). 
Therefore, we shall not linger on this subject. In the study of 
the remaining waves, we can set s+ w . The equation 

1 
s2n grad p = -n[rot M] +n(M (nV)H) 

43% (1.7) 

(n is a unit vector along the direction of the propagation of 
the wave) is then separated, while Eqs. (1.2)-(1.4) reduce to 
the form 

p=const, div v=0. (1.8) 

where the index 1 denotes the components of the vectors 
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perpendicular to the n direction. The relations (1.1) and 
(1.8)-(1.10) form a complete set of equations for the descrip- 
tion of the oscillation of a ferromagnetic liquid in the range 
of frequencies and wavelengths that are remote from the re- 
gion of sound (and the associated magnetosonic) waves. We 
shall call such oscillations ferrohydrodynamic. 

2. FERROHYDRODYNAMIC WAVES OF SMALL AMPLITUDE 

In an unperturbed ferromagnetic liquid, 

B=Bo=Ho+4nMo, MO l/IIo, 

where H, is the external magnetic field. We shall use below a 
system of coordinates in which the unperturbed value of the 
hydrodynamic velocity v, = 0. 

For the determination of the spectra of the ferrohydro- 
dynamic oscillations, we should linearize Eqs. (1. l), (1.8)- 
(1.10) and seek small perturbations of the quantities in the 
form exp { ik - r - iwt J . Without giving the corresponding 
linearized equations, we immediately write down the disper- 
sion equation 

0'-0' (Q+02) 2+02~B2k2  (Q+og) [sin2 8 (Q+oB) 

+ (li-cos2 0) 81 -u~'k'Q (Q+uI sinZ 0) =0, (2.1) 
where 

vB2=Bo2 cos2 8/4np, 02=4ngM0, Q=g(H0+MOak2) (2.2) 

(8 is the angle between the vectors k and M,). 
Equation (2.1) defines three branches of oscillations. In 

the absence of spontaneous magnetization (a, = 0), these are 
the spin wave, the Aflvtn wave, and the slow magnetosonic 
wave. 

In the longwave limit (k-+O), in accord with (2. I), the 
following three types of oscillations are possible: 

a) uniform precession of the magnetization with veloc- 
ity 

o =gBo; (2.3) 

b) an Alfvtn wave, 

o = ~ v A  cos 0, 

where v, is determined by Eq. (1.5), and 
c) an estraordinary wave, 

We note that in the ground state H, = 0 and k(lM,, the 
Alfvtn and the extraordinary waves vanish. In this case, in 
place of these waves, two waves appear with quadratic dis- 
persion laws: 

If at H, = 0 the vectors k and M, are not parallel, then the 
extraordinary wave is characterized as before by the phase 
velocity v,, while in place of the Alfvtn wave, a wave ap- 
pears with the quadratic dispersion law 

3. SIMPLE (RIEMANN) WAVES 

We now consider the simplest nonlinear ferrohydro- 
dynamic waves-Riemann waves, in which all the quantities 
characterizing the medium are functions only of one of 
them, and this quantity in turn depends on the time t and one 
of the coordinates x .  Riemann waves are of interest for two 
reasons: first, they allow us to follow the evolution of the 
form of the initial perturbation and, second, only such waves 
can abut (in the absence of discontinuities) to the unper- 
turbed medium. For each of the variable quantities X in the 
Riemann wave, we have the following relation: 

A=-VX', (3.1) 

where Vis a variable depending on the quantities character- 
izing the liquid (the dot indicates differentiation with respect 
to time, while the prime indicates differentiation with re- 
spect to a spatial coordinate). 

According to (1.1) and (1.8), we have 

B,=const, v,=const. (3.2) 

Transforming to the system of coordinates in which v, = 0, 
and using (1. I), (1.9), we obtain 

V L = - ~ ~ L ~ ~ , ,  V Z B ~ =  ( ~ , 2 / 4 7 ~ ~ )  H~ (3.3) 

So far as Eq. (1.10) is concerned, in the low-frequency case of 
interest to us (o(gM,), it is equivalent to the following con- 
nection between B and H: 

The velocity Vas a function of the quantities character- 
izing the medium is determined from the condition of the 
compatibility of the resultant equations. It turns out here 
that Riemann waves of two types are possible in a ferromag- 
netic liquid. 

a) Alfven waves, in which M,, H,, B,, do not change, 
while the vectors M, , H, , B, return to the yz plane, remain- 
ing mutually parallel and not changing in value. Thus, the 
Alfvtn waves in the ferromagnetic liquid are actually in no 
way different from the AlfvCn waves in an ordinary magne- 
tohydrodynamic medium. In particular, the velocity of these 
waves 

V= (H,BJ4np) "' (3.5) 

turns out to be constant. Therefore, Alfven waves of arbi- 
trary amplitude propagate without change in shape. 

b) Extraordinary waves. They are plane polarized in a 
plane passing through the direction of the sound propaga- 
tion, and 

(4nM sin 0 cos 0)" 
= %{ (B-4nM sin2 8) - 

H B-4nM cosZ 8 
, (3.6, 

where 8 is the angle between the vectors M, H, B and the x 
axis (the z axis is directed along the normal to the plane of 
polarization of the wave). We see that in the extraordinary 
wave, both the angle Band the length of the induction vector 
B change. The velocity of this wave is determined by the 
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formula 

Using (3.6) and (3.8), we obtain 

Thus, in the propagation of the wave, points with larger val- 
ues of B move with a greater velocity so that discontinuities 
appear on sections where in the magnetic induction in- 
creases. 

4. FERROHYDRODYNAMIC DISCONTINUITIES 

Equations (1.1), (1.8) and (1.9) (together with the rela- 
tions M 2  = const, MIJH) allow us to analyze the stationary 
one-dimensional ferrohydrodynamic discontinuities. Inte- 
grating these equations over the infinitely small range x sur- 
rounding the discontinuity, we find the relations that con- 
nect the jumps in the variable quantities at the discontinuity: 

{M2) =0, {B,) =0, {v,) =0, (4.1) 

V(gJ+Bx{vJ =0, V {BI) = (B,2/4np) {HA), (4.2) 

where V is the velocity of the discontinuity (in the direction 
ofthe x axis) relative to the liquid. Taking it into account that 
MJIH on both sides of the discontinuity, we can show that 
two types of discontinuities are possible. 

a) Rotational discontinuities, in which 

while the vectors M, , B, , H, are rotated, remaining parallel 
to one another. The velocity of this discontinuity is identical 
with the velocity of the AlfvCn wave (3.5). 

b) Plane polarized discontinuity (the magnetization 
wave) at which the magnetic vectors vary in thexy plane (the 
coordinate axes are chosen in the same manner as in Sec. 3), 
whence 

Bi,=Bz tg 09, B,,=B=tg 02, 
Mi,=Msin8,, M2,=Msin02, (4.4) 
Ml,=M cos €4, M2,=M cos 02, 

where el ,  0, are the angles between the magnetic vectors and 
the direction of propagation of the discontinuity in front of 
and behind the discontinuity, respectively. The velocity of 
such a discontinuity is determined by the relation 

sin 02-sin 0i 
'2) = COS, e, (tg 0,-tg e,) . 

The general analysis of Eq. (4.5) is a complicated one. 
We therefore limit ourselves to the case of small but finite 
amplitude. Here 

f (ei, 02) =I-V2 tg 0i. 60, 

where SO = 0, - 8,. In the zeroth approximation in SO the 
velocity Vis identical with the velocity of the extraordinary 
wave, which is determined by Eq. (3.8). In the first approxi- 
mation, dV/dSO > 0. Since dB /dO > 0 and the discontinuity 
sets in accord with Sec. 3 on segments .of increase in B, we 
have 

v,>v>v,, 
where V,, V2 are the velocities of the extraordinary wave in 
front of and behind the discontinuity. 
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