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The asymptote is found for the imaginary part of a Green's function of a particle emitting a large 
number of acoustic phonons near its decay threshold. The quasiclassical tunneling trajectory, 
which gives the main contribution to the appropriate functional integral, corresponds to imagi- 
nary times and imaginary coordinates of the particle. 

PACS numbers: 63.20.Mt 

1. INTRODUCTION 

As is seen from the work of Pitaevskii,' an external par- 
ticle, interacting with phonons in He I1 (or in a solid), has a 
threshold of decay to an acoustic phonon at that point of its 
spectrum E (p) ( p  is the momentum of the particle, E, is its 
energy) where the velocity v(p) = (aE /ap), become equal to 
the velocity of sound. At high momenta, where aE /dp > c, a 
damping appears (c is the velocity of sound) and a finite 
imaginary part in the reciprocal of the Green's function 
G -'(p, w) 1, = ,, ,, of the particle. In this connection, we can 
raise the question of the threshold for the appearance of an 
imaginary part in the Green's function: Im G(p,w,(p)) = 0, 
p >pc, similar to what was done in the work of Pitaevskii and 
one of the authors2 for the single-particle Green's function in 
He 11. 

We limit ourselves to the consideration of positive dis- 
persion of the acoustic phonons so that their spectrum is 

o (k) =ck (l+ykZ), y>0, (1.1) 

since the assumption y < 0 leads to a decay threshold with 
emission of phonons having a finite momentum at a point 
preceding p = p,, w = E @,); dE /ap < c on the curve of the 
spectrum of the particles. In this case, the condition of decay 
at any point of the plane w,p with the emission of n phonons 
has the form 

o= (k,) +E (p-k), k= Z k , .  (1.2) 

It is easy to show that there is an minimum number of phon- 
ons n(p, w) for each p, w corresponding to the emission of n 
identical phonons2: ki = k/n, pllk. Actually, expanding 
E (p -k )nea rp -  k=p, ,  weobtain 

whence we find 

It is then seen that the choicep - k =pc  corresponds to the 
minimum n(p, a ) ,  namely, 

n2=cy (p-p,) "60, 6o=o-E ( p , )  -C (p-PC). (1.3) 

At small Sw the discarded terms in the expansions of 

E (p - k) and w(ki) are small and (1.3) makes the principal 
term in the expansion of n2 in powers of Sw. 

Thus, the tangent to the curve of the particle spectrum 
at the threshold point of decay into acoustic phonons deter- 
mines the threshold of appearance of the imaginary part of 
the Green's function of the particle G (p, w) at a momentum 
greater than the critical (see Fig. 1). At Sw < 0, the decays are 
impossible, since we have assumed that below the threshold 
p = p, the function G (p, w) has a pole at w = E ( p) and is real 
outside the spectrum curve, as is usually done in decay the- 
ory.' 

The purpose of the present work is the calculation of the 
asymptote of the imaginary part Im G ( p, w) near the sound 
line Sw = 0, when a large number of phonons with small 
momentum are emitted. This quantity will determine the 
absorption of the external field with amplitude p and fre- 
quency w if this latter interacts weakly only with the particle 
and does not interact with the phonons. Moreover, the prob- 
lem is of methodological interest, since it allows us to per- 
form more detailed calculations than in Ref. 2 if we assume 
that the phonons do not interact with one another. 

A problem of similar form was considered in Ref. 3 for 
the probability of light absorption with formation of exci- 
tons in semiconductors. However, the law of conservation of 
momentum was not important in Ref. 3 and the analysis was 
carried out at finite temperatures. We shall consider only the 
case of the zero temperature. 

In what follows, we shall assume that the phonons do 
not interact and that we have a set of units in which y = 1, 
f i =  1 , c =  1. 

2. FORMULATION OF THE PROBLEM WITH THE HELP OF A 
FUNCTIONAL INTEGRAL 

The interaction of a particle with acoustic phonons can 
be obtained by expansion of its energy in the small change of 
the density of the liquidp', in the form 

FIG. 1. 
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where we haveintroduced the notation E '(p) = (b'E /b'p)p and 
added the usual term p v (v is the velocity of the liquid) 
connected with the Galilean invariance in the liquid (and 
absent in a solid). The interactions with the shortwave exci- 
tations enter into the energy spectrum of the particle E (p) 
and will not be considered below. Along with this, we as- 
sume that the particle has the effective Hamiltonian 

H ( p ,  q )  =E ( p )  +Hint ( P ,  P'IP, T )  (2.2) 

while the change in the density p'/p and the velocity poten- 
tial p, which is defined by the relation v = Vp, must be taken 
at the point of location of the particle, i.e., at x = q(t ). 

The causal Green's function of the particle, in the limit 
of vanishing density of the particle, is identical with the re- 
tarded Green's function, and, according to F e ~ n m a n n , ~  can 
be written in the form of the functional integral 

where 
QO t 

S p  (goto) = J P dq-  J [ E  (P) +HintIdt, 
0 0 

and we have used the Hamiltonian formulation. The Green's 
function g(qoto) describes the process of propagation of the 
particle from the point (0,O) to the point (qo,to) in the classical 
phonon field p', p .  If we average (2.3) over the zero-point 
vibrations of the phonon field with the help of functional 
integration with weight exp (is,, ), where the action for the 
phonons has the form (see, for example, Ref. 4), 

(2.4) 
then we obtain the Green's function of a particle interacting 
with the phonons. We shall be interested in the imaginary 
part of its Fourier transform 

[exp (iota-ikq,) g(qo to )  

Using the invariance of S,,, under the substitutions t-+ - t, 
x-t - x, we can transform this expression to the form 

Since the emission of a large number of phonons is difficult, 
the imaginary part of the Green's function should be small 
and we can use the saddle-point method for the calculation 
of (2.5) near the sound line. Since the phonon variables enter 
in the operation quadratically, we must directly substitute 
the saddle-point valuesp', 6 in the total expression and omit 
the corresponding integration over the phonon variables; 
such an operation corresponds to the exact integration over 
the phonon  variable^.^ The saddle-point values are deter- 
mined also by the extremum conditions for the total action 
with respect to the variablesp', p,p, andq, which provide the 
equations for the liquid: 

a@' - + pAp=-pV,6 ( x - q  ( t )  ) 0l(t)  0  ( t o - t ) ,  
a t  1, t>O e ( t ) =  
dT 1 1 - + - (pJ -2Ap' )  =-E' - 6  ( x - q  ( t ) )  O( t )O( to - t ) ,  
at P P 

and the equations for the particles: 

Moreover, variation of the integrand of (2.5) with re- 
spect to to and g, yields 

a- ( E  ( p )  -Hint) 1 t,=0, k o - p  (to) =0. (2.8) 

Using the linear dependence of Hint on the phonon variables 
and Eqs. (2.6), it is not difficult to obtain the relation 

so that for the imaginary part, we obtain 

Here we have omitted the pre-exponential factor arising 
from integration overp, q, to, go near the saddle-point values, 
gin, is the value ofH,,, on the saddle-point trajectoryp, ij,p1, 
+, given by (2.6)-(2.8). 

3. DETERMINATION OF THE SADDLE-POINT VALUES 

For the determination of the saddle-point values we 
must solve Eq. (2.6) by means of the corresponding Green's 
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I FIG. 2. 

function for the equations of acoustics. By correspondence 
with the diagram technique, we should choose a causal func- 
tion. It can also be assumed that the temporal contour for 
S,, is slightly shifted to the left in the complex t plane in 
order to allow continuation from real positive t onto negative 
and conversely, from the negative real t to imaginary posi- 
tive (see Fig. 2). Then the choice of the Green's function of 
the phonons D (t - t ', x - x') will be determined by the re- 
quirement of the vanishing of,?, @ at the ends of the contour 
C' .  Without adducing the corresponding standard calcula- 
tions, we write down directly the equation for the phonon 
variables that yield the necessary solution of Eqs. (2.6) in the 
form of a Fourier integrals: 

where q(t ) = q, q(t ') = q', p(t ) = p, p(t ') = P'; = kc,, c: 
= 1 +2k2,  

- - E' (p') +ckkp' 
exp{-ioh(t-tf))exp{ik(x-q')), 

2ick 

Bk (t-t', X-q') 

E' (p') k+chkpf - - exp {iok (t-t') ) exp {ik (x-q') ). 
2ick 

Substituting (3.1) and (3.2) in Eq. (2.1) for Hint, we obtain 

IIi,, 

~exp[- io,  (t-t') +ik(q-q') ] 

ta 

+ I d t ' [ ~ '  (p) k+pkch] [ET(p') k+plkc.] 
1 

However, it is necessary to remember that in (3.3) and 
similar expressions the small t ' - t and the singularities as- 
sociated with them are insignificant, since they correspond 

to emission of shortwave phonons, the effect of which is al- 
ready taken into account in E ( p), which is the exact energy of 
the particle with account of such interactions. Therefore, the 
corresponding functions should be regularized at small 
t ' - t .  

According to (3.3), the quantity Hint is complex for real 
times and realp, and q, while the conditions (2.8) require that 
Hint I t o  = w - E (k,) < 0, since w is close to the sound line 
Sw = 0 (see Fig. 1). However, it is easy to see that at purely 
imaginary times and coordinates q(t ), the interaction Hint, 
according to (3.3), becomes real. 

In order to find the correspond continuation of (3.3), we 
assume that the motion of the particle takes place along a 
straight line parallel to the real vector ko(pIlko, qllk) by virtue 
of the isotropy. Moreover, we shall assume that the velocity 
of the particle is everywhere positive and, correspondingly, 
q(t ) > q(t ')at t > t '. In the case of continuation on imaginary q 
and t, this leads to the result that Im q(t ) < Im q(t ') at Im t 
Im t ', while, according to (2.8), the momentum and velocity 
of the particle will be assumed to be real. The integrals in 
(3.3) are already written down so that the continuation is 
easily carried out for each of them. We consider the first 
integral 

where we have transformed to spherical coordinates in k 
space. Replacing k, = k cos 8 by - ia/aq(t ) and carrying 
out the integration over the angles (do = d p  sin Ode ), we 
obtain 

Upon continuation to purely imaginary q and q', the first 
term in the curly brackets becomes exponentially large in 
comparison with the second if Im(ql - q) is large. Therefore, 
only this term need be taken into account, since only large 
q' - q and t ' - t are important in the problem. It is easy to 
see that the substitutions t- - i ~ ,  q- - ix, to = - i ~ ,  ef- 
fect the necessary continuation both for HI and for the sec- 
ond integral H2 which enters into (3.3). Shifting the origin of 
the imaginary time by - ~ d 2 ,  we obtain 
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where, using the fact that large value of I T  - 7'1, Iq - q'l and 
correspondingly, small values of k, are important, we set 
ck = c0 = 1, wk = c0k (1 + k 2). Moreover, in differentiation 
with respect to x it is necessary to differentiate also f where- 
as when differentiating with respect to{ the variable x can be 
regarded as constant. The quantity Hint does not change in 
the transformation T- - T, x+ - IC( - T), p(r)+p( - T). It 
is easy to see that both the boundary conditions (2.8) and the 
equations of motion (2.7) are transformed into themselves in 
such a representation. Therefore, the saddle-point solution 
itself must satisfy the evenness condition 

p ('C) = p  (-'C) , x ( T )  =-x (--'C) . 
Since the principal contribution to integrals determin- 

ing Hint are made by the regions near & 7,/2, then it is seen 
that 

where 

and consequently we chose the required continuation. We 
now introduce the function 

that enters into Hint. The important quantity in it is the as- 
ymptote at large {, which we can find by the saddle-point 
method: 

The function D ({,T) has a singularity at small T, correspond- 
ing to the interaction with the shortwave phonons (large k in 
the integral). This interaction is presumed to have already 
been taken into account in the form of the function E ( p), and 
the function D is assumed to be regularized at small T; thus, 
a t f= f l=OwehaveHin t  = 0. 

It is seen from Eqs. (3.4) and (3.5) that Hint becomes 
small at small{ (T) = = x - T and consequently the solution 
of Eq. (2.7) should have the form pictured in Fig. 3, where the 

FIG. 3. 

inner region corresponds to f z 0, p z p ,  , HI,, z 0. Only near 
the ends does the interaction become significant, since HI, 
increases and accelerates the particle up top = k, and emis- 
sion of the phonons takes place during acceleration. 

In the following, we shall see that the straight-line por- 
tions are large, so that x(~,/2)zc(~,/2)){ (~,/2). By virtue of 
this fact, it suffices when differentiating in Eq. (3.4) to differ- 
entiate the exponential in D and,  if we want to find the next 
higher-order term, differentiate the factor ({T)"~. We shall 
regard the remaining factors as constants, since their differ- 
entiation yields small corrections to the exponential that de- 
termines Im G (kw). 

For this same reason, we can assume that the funda- 
mental contribution to the integral over T' for H,,, is made 
by the region in which 6-6' is maximal, i.e., the vicinity 
+ r0/2, if{ increases monotonically with T; the latter condi- 

tion is satisfied in the case of the spectrum shown in Fig. 1 
(i.e., when d2E /dp2 > 0 a tp  >p,). I fdE /dp is nonmonotonic 
at k, > p  >p,, then { - { '  is maximal at certain interior 
points and the integral must be taken by the saddle-point 
method. In what follows, we shall limit ourselves to the case 
of monotonic d E  /dp, which is true in every case in a suffi- 
ciently small vicinity ofp, . 

We now calculate H,,, near r0/2. In this case, only the 
quantity H ,  is important, as it contains a large exponential. 
In the calculation of the integral over T' we shall assume that 
the values 

tiI'=~ ('c') +Eo/2gE0/2, 

are significant and carry out an expansion of the exponential 
in D in powers of S{ ' and Sf = - { (T) + f0/2, i.e., 

It will be seen from what follows that S{- ({,/37,)- 1!2<{o is 
significant; hence the third term in the exponential gives a 
small contribution. Moreover, account of the departure of T' 

from - 7/2 gives a correction of order (T' + ~ , / 2 ) ( ~ , / 2 ) - ~  
which is significantly smaller because of the large T, and will 
not be taken into account below. Terms of order Sf /lo also 
arise in the calculation of the dependence of T' of the factors 
that arise in the differentiation of D in Eq. (3.4), which in 
principal order can be set equal to their values at T' = - T,/ 

2. We shall return to this question later since a contribution 
to the exponential in Im G (k,w), which we shall also take into 
account, arises from similar corrections. 

Using the expansion of the exponential in Eq. (3.4), we 
obtain in principal order, 

where 
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0 

I= J d r ' f  ( p r )  exp [-h-'6E ( r ' )  1. (3.7) 
- z o / 2  

In obtaining these equations, we have assumed that the inte- 
gral (3.7) is accumulated from a small vicinity of - r0/2,  and 
we have set the unimportant upper limit equal to zero. 

Using the boundary conditions (2.8), we obtain 

The equations of motion (2.7) near 7,/2 take the form 

They can be integrated in view of the energy conservation 
law 

E ( p )  -cp+Hint=E (ko) -cko+ Hint ( ~ 0 1 2 )  

so that 

The integral I is easily calculated if we transform to 
integration overp and use the first of Eqs. (3.8): 

from which it is seen that the effective region of integration 
over r' is of the order of A. Since we have found I (A ) and, in 
accord with (3.6) A = A  (A, T,), Eq. (3.8) gives the equation 
that connects A and T,. We also need a relation to express A 
and r0 in terms of w and k,. This can be done by solving the 
equations of motion (2.7) with sufficient accuracy, using the 
conditions f (0)  = O,p(O) = p, ; The required accuracy is con- 
nected with the fact that we need to take into account terms 
of order Sw. In addition, it is simpler and clearer to use the 
laws of conservation of energy and momentum for the com- 
plete set of equations (2.6)-(2.7) with exclusion of the phonon 
variables: 

E ( p )  +Hjnt+Hph=~,  p+Pph=ko, (3.12) 

where the energy and momentum of the phonons are 

Using Eq. (3.1) forp', @, we can easily obtain the formulas 

d3k 2c2 ' la 

J A. ( t ;  t ')  dt' J B-r ( t i  t") df', 
t 

d3k 2ck2 1 b 
= 5-- (a , -cok, )  A k  ( t ;  t f ) d t ' J  B- . ( t ;  t")dtl', 

( a n )  p6.h 
0 t 

where we have introduced the small quantity Hph - c Z p h  
a Sw, in order to carry out the calculation with necessary 
accuracy. 

Obtaining the analytic continuation to imaginary q and 
t is completely analogous to obtaining Eq. (3.4), and we write 
out the result directly 

where D is given by Eq. (3.5) 
The basic difference of these formulas from Eq. (3.4) for 

Hint lies in the double integration over T' and T " .  Here, be- 
cause of the properties of the D function, the principal con- 
tribution for values of T in the interior region will arise near 
the ends + 7 J 2  for each of the variables, so that 
Hph (r)gHint  (7) if T is not too close to the ends of the interval 
and the corresponding exponential in D (3.5) is small for Hint 
and large for Hph . As is seen from the answer, the condition 
Hint 4Hph - c Z p h  turns out to be satisfied for the interior 
region and we can neglect the quantity Hint in the conserva- 
tion laws (3.12), so that 

Hph=u-E (PC), (3.14) 
H p h - ~ O P p h = ~ - E  ( p e )  -CO (ko -pe )  =60. (3.15) 

The missing connection between T ,  and A can be ob- 
tained by dividing (3.15) by (3.14), for which it is necessary to 
calculate (3.13) for the case T = 0 .  The calculations are simi- 
lar to those for Hint. Here, however, we require somewhat 
greater accuracy if we want to take into account terms of 
relative order 66 /go. The only difference between (3.13a) and 
(3.13b) lies in the different number of differentiations of the 
function D. Therefore it is necessary to take into account 
only the difference in the corresponding factors, since the 
other corrections are canceled out in the division. We there- 
fore obtain 

3 h  
H -AZZ 1 - -- - 3a (3.16) -- ( 4 l o  

where 

the last term in the brackets here is connected with the calcu- 
lation of the corrections that arise in the expansion of the 
factors ( f  " - 6 ' ) / (T"  - T') near the ends of the interval. Di- 
viding (3.17) by (3.16) and using (3.14) and (3.15), we obtain 
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The second relation for the determination ofR and T, is 
obtained from (3.6), (3.8) and (3.11) and has the form 

exp (? ) =T.nhv2B, 

It is then seen hence that the corrections in the connection of 
A with So, contained in (3.19), are important only in the 
exponential. Finally, we obtain the following value for the 
tunneling time T,: 

sn=6o / (o -E(p , ) ) .  

We have omitted here terms of the relative order l/ln 65-  l .  

The quantity 6, = (3r0/R ')(T,; moreover, using Eq. 
(3.4), we can easily show that Hi,, (O)(S5, if we use the rela- 
tion (3.20), which validates the assumptions that have been 
made. 

4. CONCLUSION 

The results we have obtained permit us to calculate the 
principal terms in the exponential for the imaginary part of 
the Green's function. For this purpose, we rewrite Eq. (2.9) 
with account of the fact that for most of the tunneling time 
the particle has a momentump = p ,  and a velocity v equal to 
the velocity of sound c,: 

Im G ( k ,  o)m exp ( o - k o ~ o + p , ~ ~ - E ( p . ) ) ~ ~  L 

Making use of the fact that the principal contribution to the 
rest of the integral is made by regions near the ends of the 
interval, it is easy to make the calculation, using Eqs. (3.8)- 
(3. lo), so that we obtain, finally, 

1 
Im G ( k ,  o )  - exp {-2q,8~-665-" (w-E (p.) ) (- 2  +2a) 

b 

12861-" 5 [ v ( P I  ( P - P C )  +E ( P A  -E ( P )  
a-c (ko-p) -E ( p )  

PC 

which also gives the final result for the imaginary part of the 
Green's function. If we limit ourselves to the principal term 
in the exponential, then 

Im G ( k o )  mexp (-5n In n )  , 

where the minimum number of phonons n is given by Eq. 
(1.3). This result is identical with the result of Ref. 2 for 
decays due to anharmonisms of the phonons. Thus, the con- 

tribution of the anharmonism of the phonons to the imagi- 
nary part of the Green's function is identical, in its principal 
order, with the harmonic part. This same result can be ob- 
tained from an estimate of the orders of the diagrams, as has 
been done, for example, in Ref. 3. The remaining terms in the 
exponential (the contribution of n In In n and so forth) can- 
not be obtained in practice by such a method. 

As a result of the calculations that have been carried 
out, the following physical picture emerges for the tunneling 
process that leads to a finite imaginary part of the Green's 
function of the particle. The tunnel trajectory corresponds to 
imaginary coordinates and times and to real momenta of the 
particle, which is somewhat unusual for quasiclassical prob- 
lems. One most of the tunnel trajectory, the particle moves 
freely with the velocity of sound c,, not emitting any phon- 
ons. Near the start of the trajectory, the particle has a veloc- 
ity greater than the velocity of sound, and begins to acceler- 
ate because of the self-action associated with exchange of 
phonons. At this same moment, emission of phonons takes 
place. The emitted phonons move with a different velocity 
than the particle and move away from it; as a result, the 
interaction is weakened, the particle reaches the velocity of 
sound and from then on the emitted phonons and the parti- 
cle move independently. Thereafter, however, because of the 
weak dispersion, the phonons gradually overtake the parti- 
cle, an intensive process of interaction begins, and the parti- 
cle is again accelerated, taking energy away from the emitted 
phonons. The results of the research can, without significant 
changes, be transferred to the case of the motion of a particle 
in a solid. 

We note that the asymptote that has been found for the 
imaginary part of the Green's function of the particle de- 
scribes the process of absorption of a certain field that can 
directly create such particles. If we are speaking of the scat- 
tering of an external field by these particles (for example, the 
scattering of neutrons), then it is necessary to find the corre- 
sponding expression for the two-particle Green's function, 
which reduces to the calculation of similar but somewhat 
more complicated functional integrals. However, it can be 
assumed that the result does not change essentially in the 
principal order of the number of created phonons. In the 
limit of low density of the particles, their statistics do not 
play a role, since only transitions into distant states are im- 
portant. If we assume that the particles are Bose particles 
and produce a Bose condensate at zero temperature, then the 
found imaginary part describes, accurate to a factor, scatter- 
ing with a transition from the condensate to an excited state 
near the threshold. 
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