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A theory of a two-dimensional electron-hole system in a strong magnetic field is developed. Three 
different models are considered, whose common distinguishing feature is electron-hole asymme- 
try. It is shown that this asymmetry influences radically the system properties. It leads to an 
exciton interaction that does not vanish when the momentum of the exciton relative motion tends 
to zero. As a result, the scattering amplitude diverges at small momenta, and magnetic biexcitons 
appear at arbitrarily weak asymmetry. The thermodynamics of such a system in the Hartree-Fock 
approximation is similar in many respects to the thermodynamics of a monopolar system. The 
high-temperature phase is the homogeneous one, and the low-temperature phase has the charge 
density waves. The homogeneous phase with exciton pairing is absolutely unstable. 

PACS numbers: 71.35. + z 

1. INTRODUCTION tion with exciton pairing is found to be asymptotically exact, 
and the exciton gas noninteracting. This made it possible to 

Progress in the production of thin semiconductor and determine the Green functions and the thermodynamics of 
semimetal layers has prompted the development of a theory the exciton gas4 as well as its wave f ~ n c t i o n . ~  
of quasi-two-dimensional systems. In these, the size quanti- We consider below nonsymmetric models. This means 
zation connected with the layer thickness d is so strong that that some or all of the matrix elements of the e-e, e-h, and h- 
the electrons e and (or) holes h occupy a small number of h interactions do not coincide. It is assumed also that 6 is 
two-dimensional bands (one band in the quantum limit). large and all the cyclotron frequencies w, sE2/A (6); state 
These studies were reviewed by Ando et al.' mixing exists therefore within one system of Landau levels. 

Among the most important topics in this field are the It will be shown below that under these conditions the type 
structure of the ground state with allowance for the e-e in- of asymmetry does not influence the basic qualitative results. 
teraction and the phase transitions induced by changes of the It is important that the complete cancellation of the interac- 
temperature T, of the electron density p (per unit surface), tions, which made the exciton gas practically ideal, vanishes 
and of the magnetic field 6. The ground state of a monopolar in the nonsymmetric models. The exciton-exciton scattering 
system at lowp and Tis a Wigner crystal. Its stability region amplitude now diverges when their relative velocity de- 
broadens when 6 is large and is oriented along the normal v creases; formation of two-dimensional magnetic biexcitons 
to the layer plane xy (611vllz). Such a system is quasi-zero- becomes possible. Calculation of the thermodynamic prop- 
dimensional: the spectrum of the single-particle states in it is erties by the H F  method has shown that when the tempera- 
discrete and strongly degenerate. Under these conditions the ture is lowered the homogeneous state becomes unstable and 
e-e interaction is particularly substantial. Fukuyama et a1.' vanishes, accompanied by formation of CDW. In this re- 
have shown by the Hartree-Fock (HF) method that in the spect a nonsymmetric bipolar system is similar to a monopo- 
quantum limit (with respect to d and 6) there exist in the low- lar one. In particular, at an asymmetry - 1 the scale of 
temperature phase, in a wide range of p, charge-density T,,,, -E2//2 (6) is preserved. The differences are connected 
waves (CDW) with a melting temperature T,,,, -E2/A (6).  mainly with the behavior at v g  1: according to the Earnshaw 
Here A (6) = (~fi/e$)"~ is the magnetic length, Z2 = e2/x, theorem a classical crystal cannot be made up of magnetized 
and x is the permittivity. We introduce the degree of level electrons and holes that are far from one another. Exciton 
filling v = ps(@), where s(6) = 277A '(6) is the area per quan- formation is energywise disadvantageous. It will be shown, 
tum state. The Landau level is completely filled at v = 1. It however, that at low Ta  homogeneous exciton phase is abso- 
was shown3 that at v x l  the CDW go over into a Wigner lutely unstable in the HF approximation. 
lattice made up of "Landau circles." Owing to their infinite Calculations for several asymmetric models have 
mass, the lattice is classical. shown that the basic qualitative picture is practically the 

In a neutral bipolar system there exists, besides the e-e same. It appears that the results are quite common and are 
and h-h interactions, also an e-h attraction that can lead to valid for a large class of asymmetric models. Real systems 
exciton pairing. This complicates the problem but adds to it have considerably asymmetry. One can therefore count on 
new interesting aspects. The simplest model contains one their behavior being correctly describable by the results of 
electron band and one hole band with an isotropic dispersion our calculations. 
law-we call this model symmetric. It was developed by To be specific, we consider below three models. In all 
Lerner and Lozovik; for the latest results see Ref. 4. This cases the system is assumed thin enough (d(A (G)), therefore 
model leads to the absence of interaction between excitons at all the film levels but the first are excluded from considera- 
rest in the limit d 4 ,  @+a. As a result, the H F  approxima- tion. The electrons are assumed to have zero spin. 
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FIG. 1.  A) Arrangement of levels in a semimetal plate. 
Thick lines-filled levels, thin-partially filled, dash- 
dot--empty. B) Arrangement of levels in a degenerate se- 
miconductor. The level markings are the same as in Fig. 

F~ A. C) Band scheme in PIN structure. 

C 

Model A. Homogeneous semimetal film with one elec- 
tron valley and one hole valley. The dispersion law in the 
valleys is quadratic, but is isotropic in the (k, , k, ) plane. To 
simplify the equations the principal axes of the ellipsoids are 
assumed parallel (we direct thex andy axes along them). The 
electron and hole effective masses me, , me, and mhx , mhr 
are different, withPe #Ph ; herePe = (ma /me, ) ' I4  and sim- 
ilarly for Oh. The degree of degeneracy of the Landau levels 
is S /s(@) (Sis the plate area). This degree is the same for both 
valleys; therefore, owing to electroneutrality, an equal num- 
ber of e and h levels is filled. The interelectron interactions 
are significant only in the presence of partially filled levels. 
In model A this is possible at 6 such that a pair of resonantly 
close levels is produced (Fig. 1A). The levels n = 2 and 
m = 2 are partially filled by electrons if their mismatch 6 is 
comparable with T and (or) with the e-e interaction. 

The asymmetry is introduced into model A by the ine- 
quality 8, #Ph . 

Model B. Homogeneous semiconductor film with a dis- 
persion law that is isotropic in the (k, k, ) plane but is non- 
quadratic (narrow-?and  emi icon duct or). The electron Ha- 
miltonian is H = H ( j 2 ) ,  where $ is the 
kinematic-momentum operator. The fact that H is not qua- 
dratic does not alter the eigenfunctions, but the energy spec- 
trum becomes nonequidistant. The energy of the s-th level is 

Ed (4)  =H ( ( 2 ~ + 1 )  fi2/h2 (4) ) . (1) 

It is assumed that the electrons are degenerate and that at 
equilibrium n lowest Landau levels are fully occupied; the 
remaining levels are free. By irradiation or by other means, 
N electrons are transferred from level n to the next level 
m = n + 1 [(m,n) excitonl-see Fig. 1B. The nonequidis- 
tance of the spectrum excludes resonance between the ener- 
gies of two (n + 1, n) excitons and one (n + 2, n) exciton; this 
fact will subsequently turn out to be important. It is assumed 
that the time of formation of the spectrum of the interacting 
system (of excitons, CDW, etc.) is significantly shorter than 
the time to establish equilibrium between different Landau 
levels. A modification of this model is a spin exciton-when 
the spin on level m is opposite to the spin on level n. 

In model B the asymmetry is produced by the inequality 
n#m. 

Model C. Two inversion layers separated by an insula- 
tor layer-the PIN structure considered in Ref. 6 in connec- 
tion with an analogous problem. The scheme is shown in Fig. 
1C; x,, x, and xp are the dielectric constants. The spectrum 
in the Nand Pregions is quadratic, isotropic, and with equal 
effective masses. Such a scheme is conceivable also at equi- 
librium, if the Fermi level Fis  so placed that inversion layers 
are produced in the P and N regions. The applied field a, 

however, permits regulation of the carrier density (and of the 
positions of the Fermi quasilevels F, and F,); at low tunnel 
transparency of the film I the system is quasistationary with 
arbitrarily large relaxation time. 

In model C the asymmetry is produced by the inequa- 
lity x, +xp and by the fact that the e-h attraction is weak- 
ened, compared with the e-e and e-h interactions, because of 
the presence of a layer with d, 2 d, where d and d, are the 
thicknesses of the inversion layers and of the insulator; the 
derivations become simpler at d(d,. 

2. HAMlLTONlAN AND SCHRODINGER EQUATION 

We obtain in this section the Harniltonian and the 
Schrodinger equation for a system with two partially filled 
Landau levels, n and m>n; the meaning of the notation is 
clear from Sec. 1 and Fig. 1. We use the Landau gauge 
A, = @x, A, =A, = 0; the electron charge equals hereafter 
- e. To simplify the equations, we transform to dimension- 

less coordinates x and y and wave vector p, =p: 

X + X ~  (4) .  y - t ~ k ( @ ) ,  P - = + P ~ - ~  (4) .  (2) 

We denote the dimensions of the normalization region by 
L, = L, =L = S -'. The wave functions +bSp (s = m,n) are 
then 

qSp (x, y) =L-"aeiPYcp8 (B (x+p) ) , (3) 

where q, are the normalized oscillator functions: 

cp. (s) = (2"s!13 -"e-zvaH. (x) . (4) 

The factor P, equal tope or Dh, appears in the model A (Sec. 
1); in the remaining models P = 1. 

The interelectron interaction operator is 
1 

B ~ , , ~ = ~  JJ dr. Q $+ (r.)i'  (a) ~ ( s - r ~ ) & ( r ~ ) y ( r , ) .  (5) 

where r, and r, are two-dimensional vectors, and the anni- 
hilation operator is 

6 (r) = [Znpqnp (r) + i r n p ~ ~ m p  (r) I .  (6) 
9 

The interaction potential V(r) is understood as the effective 
potential averaged over z with a weight determined by the 
wave function of the film level. Its detailed form will not be 
given, and we use only the fact that V(r) = V(r). Substitution 
of (6) in (5) yields 

where 
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h A 

V, is obtained from V, by the substitution m-n, and 

Umn= u m n  (PP~PI'P~) dmp+GpL~n~1,dm~~9 (9) 
9~1~1 '9 '  

The matrix elements in (7)-(9) are defined in terms of the 
functions (3): 

VI*,S,~I~ (PP~PI'P') 

The condition p + p, =pi  + p', which ensures momentum 
conservation, is included in the definition of the summation 
sign. Integration in V,,,,, say with respect to r,, includes 
both wave functions $, (r,) and $,.(r,). They are greatly 
separated in p-space in case A and in r-space in case C. 
Therefore V,,,, ~0 in models A and C, while V,,,, #O 
only in model B (and furthermore only for a non-spin exci- 
ton). 

h 

The matrix elements in Hint can be expressed in terms of 
the Fourier components of the potential 

The calculation scheme is demonstrated in Appendix 1. The 
results are given in Eqs. (12)-(17) 

V, is obtained from V, by the substitutions m-n, qt-tq;, 

Vee = Vhh ; 

Vmnnm (PP~PI'P') 

1 
=-- j 

2nL 
dq,V,h(q) wm(q:) ~n(qh~)ex~{iq=(P-Pi)). 

(13) 

In these formulas 

q~=$a-zq~+$~qu21  qh2=~h-2q~+$h2q~l (I4) 

i.e., for models B and C we have q: = q; = q2; 

~m (q2) =e-qZ"Lm (q2/2), P= (p+pJ) /2, 
pi= (Pl+piJ)/2, q,=pf-p, 

(15) 

and L, is a Laguerre polynomial; w, is obtained from w, by 
the substitution m+n. The last matrix element (at 
8, = Bh = 1) is equal to 

Vmnnpn (PPIP'PI') 

- m 

where 
m-n 

wmn ((2) = + (f ) .-m2 {L:-. (g)}' = w n m  (q2) 

L ", is an associated Laguerre polynomial. 
Introduction of different potentials Vee , Vhh , and Veh 

for the e-e, h-h, and e-h interactions takes into account the 
possibility of x, = x,  in the PIN structure and of weaken- 
ing of the Veh on account of the I layer. The sign of Veh is 
reversed, since it corresponds to attraction (Veh <O). Al- 
though V(q) has two-dimensional Coulomb behavior at large 
q, V(q) a q- ', we shall asume that it becomes regularized at 
small q (e.g., through screening), and tends to a constant 
value. 

A 

Using the obtained Hint, we can write down the Schro- 
dinger equation. If the vacuum is defined as a filled n-th level 
and empty p-th level, i.e., 2, + 10) = 6, (0) = 0 for all p, 
the wave function with N excitations takes the form 

the summation is over all sets of N wave numbers pi and pi 
( l ~ i ,  j<N). It  is convenient to reckon the energies of the 
electrons in the states 6, +lo) and 2,10) from the unper- 
turbed values of the energy of the corresponding levels, i.e., 
their positions in the absence of interelectron interactions. 
The Schrodinger equation is then 

and after rather complicated algebra (see Appendix 2) it 
takes the form 

where 

or, after transformation with the aid of (12)-(17) 

Here and below the term with w,, need be retained only in 
case B, when V,,,, #O. In connection with the transition 
from summation to integration, the matrix elements are re- 
defined in terms of the quantities contained in (12), (1 3), and 
(16), in the following manner: 

We have left out of the constant Po the overall energy shift 
due to the electron interaction on the n level when the latter 
is completely filled. The second term of (21) is cancelled by 
that part of the third term which stems from (13). The last 
term of (22) differs from zero only for a zero-spin electron in 
model B. 
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We shall hereafter refer to (20) as the Schrodinger equa- 
tion in the Landau representation (LR). It is the starting 
point for the solution of the problems considered below. 

3. SCHRODINGER EQUATION IN THE EXCITON 
REPRESENTATION 

The next problem is the onset and interaction of exci- 
tons in a bipolar magnetized system. An exciton in a magnet; 
ic field, owing to its electroneutrality, has a momentum k 
whick is an integral of the motion and whose components I;, 
and ky commute with each other and with the Hamilton- 
ian.'-' The representation in which the operator k is diag- 
onal will be called the exciton representation (ER). The con- 
nection between the LR and the ER is via a Fourier 
transf~rmation.'~~" Since we are about to investigate the 
scattering amplitude, a task possible in practice only in the 
presence of axial symmetry, we exclude model A from consi- 
deration in Secs. 3 and 4. 

The transition to the ER is technically simplest if Eq. 
(20) is written for a system with one electron and one hole. 
Only the third term of the left-hand side of (2) differs then 
from zero, and after transformations, with account taken of 
(10) and (13-17) and with change of variables, Eq. (20) re- 
duces to the form 

x exp{-iq.q,)C(~+q~, p1+qU) 

= (8-8o)C(p, P') (24) 

where we must put q, = q in (22). It can be seen from (24) 
that in the integral terms both arguments of the function C 
are shifted relative to the right-hand side by the same quanti- 
ty-the integration variable qy . This suggests the transfor- 
mation used in Ref. 11, namely a transition to the sum and 
difference variables: 

p+pt=2u, p-p1=kU, C(P, p')=C(u, ku) (25) 

followed by a Fourier transformation with respect to u: 
OD 

f (k) = I du exp (-ik.u) c (u, k,) . (26) 
- 00 

The transformation (26) effects the transition to the ER, and 
k is the exciton momentum. The variables k, and ky will be 
called the exciton variables. 

Following the transformation (26), the function f in the 
left-hand side of (24) remains outside the integral sign (i.e., 
enters as a multiplier). Therefore (26) jointly with (20) and 
(22) defines the energy spectrum of the exciton: 

E:: (k) ~8 + J$$ V e h  ( 0  wrn (4') wn (q2) 

1 x exp (iqk) - - Tr ,h  (k) wmn (k2). (27) 
23t 

The second term12 in (27) corresponds to the same exciton- 

motion mechanism as that of the Wannier-Mott exciton, 
namely correlated band motion of the electron and hole. 
This motion can be obtained also in the two-particle prob- 
lem. The third term, on the contrary, corresponds to the 
Frenkel mechanism, i.e., to virtual recombination of an e-h 
pair at one point and its production at another. Such a con- 
tribution exists also for the Wannier-Mott exciton and is 
called resonant (or exchange),I3 but in the latter it is smaller 
than the exciton Rydberg by the parameter ( a / ~ , , ) ~  (a is the 
lattice constant and a,, is the exciton radius). Here we are 
faced with a situation in which both contributions are com- 
parable at k -  1, for the theory has a single lengthil(4). Since 
virtual recombination presupposes the possibility of quan- 
tum transitions between the electron and hole levels, transi- 
tions excluded from models A and C, they have no resonant 
contribution. 

The magnetoexciton momentum is proportional to the 
distance between the electron and hole  circle^.^ Therefore 
exciton dissociation corresponds to the limit as k+a , when 
the second and third terms in (27) vanish and E zL ( co ) = 0,; 
in other words, 0, is the energy shift produced in the sepa- 
rated e-h pair by the interelectron interactions. The e-h in- 
teraction in the exciton is accounted for by the last two terms 
of (27). We note that when n = 0, m = 0, and k = 0 the first 
two terms of (27) cancel out (this follows from the form of the 
Laguerre polynomials), and the third term is zero; therefore 
E (0) = 0. This means that for the quantum numbers n = 0 
and m = 1 the energy of the exciton at rest, with allowance 
for all the electron interactions, coincides with the energy of 
an e-h pair having the same quantum numbers, but in the 
non-interacting system. Since exciton production in model B 
can be set in correspondence with cyclotron resonance, a 
definite analogy exists with Kohn's quasiclassical result,14 
that o, is independent of the e-e interaction. Our result, 
however is valid in the opposite limiting case of the quantum 
limit (I: = 0). 

The next step is to express the N-exciton equation (20) in 
terms of exciton variables. This calls for applying the trans- 
formation (25), (26) to all N pairs of variables (p i ,  pl). In each 
term of the sum, the transformation with respect to the var- 
iables that do not enter in Vand U is carried out in standard 
manner. The transformation with respect to the remaining 
variables calls for more cumbersome calculations by a 
scheme given in Appendix 2. The final result is 

where 
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Here w, , w, , w,, , Eex r E  and 8, are defined by (15), 
(17), (27), and (21), in Secs. 3 and 4 we have q: = q; = q2. In 
the symmetrical model 

Since the sets of variables in C and in f are different, the 
Pauli antisymmetry conditions, which is standard for C, 
viz., 

C(. . . pi . . . pj . . . ; . . . pi'. . . pjr . . .) 
= -C (. . . pj . . . p i .  . . ; . . . pi' . . . pj' . . .) , 

is not trivial f o r j  Its final expression for each pair of argu- 
ments k, and k, is 

it is equivalent to the interchangep,-+p, of the arguments in 
the function C. Corresponding to the symmetry of C with 
respect to the double perrnutati~np~ep,,  p,!q; is the con- 
dition 

Equations (32) and (33) were first obtained in Ref. 5, but 
cited there without proof; the latter is outlined in Appendix 
3. 

The antisymmetry equation (32) must be compatible 
with the Schgdinger equation (28). To this end, the total 
Hamgtonianz j?ust commute with th%antisymmetry oper- 
ator L, i.e., [H, L ] = 0. The operator L is determined frgm 
(32): the right-hand side of (32) is, apart from the sign, Lf. 
Since the transform2tions s e  cumbersome, we present here 
only the results. If H, and Hz are the operators correspond- 
i g  20 tke $ - s t  two terms in (29), we have 
[ H I ,  L ] = [Hz, L ] = 0, i.e., each of these terms is invariant. 
On the contrary, the last term of (29) is the reciprocal of that 
term of (28) which contains E,,; the terms with w, w, and 
w,, in (30) are then transformed into the corresponding 
terms in (27)-the integral term into a nonintegral and vice 
versa. 

4. TWO-EXCITON PROBLEM-SCATTERING AMPLITUDE 
AND BlEXClTON 

As applied to a system of two excitons with total mo- 
mentum K = k, + k, = 0, k, = - k,sk ,  Eqs. (28) and (29) 
lead to 

where f (k) r f (k, - k). The equation (34) for the biexciton 
contains the indices of only two Landau levels, m and n. This 
is a consequence of the spectrum anharmonicity (Sec. 1) that 
eliminates the resonance between the energies of two 
(n, n + 1) excitons and one (n, n + 2) exciton, a resonance 
that would complicate the equation. 

The antisymmetry equation (32) for the function f (k) is 
of the form 

It was shown in Ref. 11 that in the symmetric model Eqs. (34) 
and (35) have an exact solution f (k) = 6(k) - ( 2 ~ ) ~ ' .  

The next problem is to determine from (34) the two- 
exciton scattering amplitude. We solve it for the case of slow 
excitons, when the system energy is % = 2Eex (k0)-+2Eex (0) 
(k, is the momentum of the colliding excitons). It is assumed 
here that the absolute minimum of (27) is reached at k, = 0. 

Having no general proof, we advance arguments for 
claiming that in a number of important situations this as- 
sumption is valid. We take Veh (q) to be of constant sign; it is 
then obvious that Veh (q) < 0. In models A and C, the third 
term of (27) is absent, and the section is a minimum at k = 0 
if n = m. In model B, the third term predominates at small k 
if V (q) is regularized at q( 1 (see Sec. 3); since w,, > 0 accord- 
ing to (17), this term is positive and increases with k. We put 
therefore below Eex (0) = min Eex (k ). 

The distinguishing feature of (34) is that it is its own 
Fourier transform, i.e., in contrast to the usual situation this 
equation does not have two representations, since the coor- 
dinate and momentum representations are identical. This is 
what makes the problem unusual, and a nonstandard meth- 
od must therefore be used to solve it. 

It was noted in Sec. 3 that k is proportional to the dis- 
tance between the electron and hole Landau circles. I' There- 
fore the region of large k (k> 1) corresponds to almost free 
particle. In this asymptotic region the first two terms in (34) 
are small because of the rapidly oscillating factors 
exp( + i q x  k v). Using (27), we represent the third term of 
(34) in the form 

which enables us to expand the slow factor f (k - q) in terms 
of the small parameter q/k, since the characteristic scale q, 
which is determined by the preceding integration with re- 
spect to p, is equal to g- 1. Retaining the terms -(q/k )2 

inclusive and integrating over the angles, we obtain the fol- 
lowing expression for the third term: 

Substituting in (34) and using the fact that E,, (k)-+go as 
k+w, we get 

Af (k) +ko2f (k) =0, (36) 
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where 

Thus the exciton motion at infinity is asymptotically 
free and is described by the Bessel equation (36). Its solution 
are Bessel functions of argument k,k. 

The free motion over large distance permits the scatter- 
ing problem to be formulated in the usual manner. The 
asymptotic forms of the incident and scattered waves 

gh ( k ,  c p )  =eibb + F(k.9 c p )  eiak 

IF 7 

where q is the azimuth, Fis  the scattering amplitude, and k, 
is a parameter that determines the energy E (k,) of the scat- 
tered excitons. A phase-shift analysis leads to a two-dimen- 
sional analog of the Faxen-Holtsmark formula. l5 If the po- 
tential is symmetric, the angle functions are 
@ I - - r-'I2 cos (14) ), and the radial functions can be chosen 
in the form of linear combinations of the Bessel functions 
J, (kk,) and Y, (kk,). At k) 1 the function $, , (k ) is a linear 
combination of the functions 

Using the expansion of the plane wave 

and canceling the converging wave, we obtain the connec- 
tion between the partial amplitudes SI (k,) and phases 61 (k,): 

exp (-in/$) 
(Lo' = (2nk0)'/2 - I  Sl=exp(2i6l). (40) 

We shall consider below only the s-wave. In this case, 
averaging (38) over q ,  we obtain 

- 1 2" 
p,(k) = - J dcp+, ( k ,  cp) =I. (kk.) + F.0 @k.  

ix- (41) 
2n 0 

Also simplified for the s wave is the condition (35) for the 
function f (k) = f (k ): 

* dq f ( k )  =- J - f ( q )  ei"=- 
2n j dq q ~ o  ( q k ) f ( g )  ; 

-m 

(42) 
0 

we have integrated here over the angle. 
We apply now the general relations (38)-(41) to the 

problem considered. In the spirit of scattering theory, we 
choose according to (41), at k>l ,  the incident wave to be 
J,(kk,); the scattered wave is described by the Hankel func- 
tion H!'(kk,). It will turn out later to be most important that 
these solutions are valid in the entire k R 1 region, and there- 
fore, in the limit as k 0 4 ,  practically in the entire range of 
the values of the argument kk,. 

The next step is to construct, starting from J, and Ha' ,  
functions that satisfy the condition (42). According to for- 
mula 7.14.1(9) of Ref. 16, indefinite integrals of the two Bes- 
sel functions are obtained and expressed anew in terms of a 
product of two Bessel functions. This allows us to calculate 
the integrals 

and verify that the singularities in the right-hand sides of 
these equations stem from the region k> 1, where the solu- 
tions J,(k,k )and H !)(k,k ) are asymptotically exact. The sin- 
gularities were therefore obtained rigorously, while the cor- 
rections - k, appear only in the factors preceding them. 
Equation (42) makes it also possible to reconstruct from the 
right-hand sides of (43) and (44) the functions J, and H !I, 
i.e., the procedure is self-consistent. The solution of (34) can 
therefore be written in the form 

+c (k.) [H:" (k.k) + 
kZ- ko2- i0 

It contains one unknown constant c, which is determined by 
the condition that (45) satisfy (34) at small k- k,. After sub- 
stituting (45) in (34) it is necessary to compare the values of 
the different terms. The first bracket in (45) makes a contri- 
bution - 1. The function J, must be substituted in (34) in the 
terms with single integration; since all the w(q) are large only 
if q 5 1, we can put k = 0 and k, = 0 in J,(k,q) and in the 
arguments of the exponentials. The term 28 (k - kg)  must 
be substituted in the resonant term. The situation is similar 
for the second bracket in (45), except that when H !)is substi- 
tuted it can be assumed that 

and that the term obtained by substituting the last term of 
(45) into the resonant term of (34) also contains a large loga- 
rithmic factor. The nonintegral term can be omitted as k-0, 
since its order of magnitude, on account of the last term in 
(45), is c, but we shall show presently that c- Iln k,l 1. 
The principal terms yield the equation 

where 

It follows from (46) that 
n i  

c (k,)  ss: - ln k,. 
2 

(48) 

Substituting c(k,) in (45) and using the expansion 
2 I l l  

H:" ( k o k )  a (-) e - i n / 4 e i u  at k0k>1, 
nkok (49) 

we obtain, from a comparison with (41), for the scattering 
amplitude in the limit k o 4  
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According to (40), Fo(ko) determines the s-scattering phase 
shift: So = 77/2 In k,. Thus, in the nonsymmetric model the 
amplitude and phase have a universal behavior as k 4 ,  the 
amplitude increasing without limit. This result is typical of 
the two-dimensional problem-ln k, in the potential scatter- 
ing amplitude is replaced by In k,(a), where a is the radius of 
the potential. 

Let us clarify the result of choosing the constant c of the 
solution (45) in the form (48). In the significant integration 
region in (34) we have k 5 1 therefore 
Jo(kd) + cH !'(kd) z 0, as follows from the expansion at 
k d <  1, i.e., the f (k ) terms that are leading at k- 1 are can- 
celed out in the principal order. 

In the symmetric model the result is qualitatively differ- 
ent: F o ( k o ) 4  as k 0 4 ,  and Eq. (48) does not hold, for G = 0 
according to (31). The result for Fo was obtained in Ref. 11; 
here c a k i and F(ko) a k i'' as k 0 4 .  The result is under- 
standable also from (34), where (3 1) causes the integral terms 
to vanish as k o 4 ,  and the nonintegral terms describe the 
free motion of these excitons. 

Biexciton formation, just as exciton scattering, is deter- 
mined by Eq. (34), except that now 8 < 2Ee, (0). The fact that 
the scattering could be considered only in the limit ko<l 
means that analytically one can find only weakly bound 
states with spatial scale a-'$1 or with binding energy 
EB = 2Eex (0) - < 1. Accordingly the asymmetry inherent 
in the Hamiltonian should be weak (but finite) for some rea- 
son or another, i.e., JG 141. 

To solve the problem we return to Eq. (36), but replace 
in it k i by ( - a,). Its solution is then the Macdonald func- 
tion Ko(ak ), and the use of condition (42) leads to the func- 
tion [see Ref. 16, formula 7.14.2(39)] 

fa ( k )  =KO ( a k )  - 11 (k2+a2).  (51) 

When (5 1) is substituted in (34), Ko(ak ) makes the main con- 
tribution to the integral terms and can be replaced in them by 
Ko(aq)z - In a ,  since the important values correspond to 
q- 1. On the contrary, the second term in (5 1) is important in 
the nonintegral terms. Taking (37) into account, we obtain 

-G ln a= (EB+ka/M) / (kz+a2).  (52) 

This equality holds for all k 5 a only if 

1 ( a )  = ( M G ) ,  E B = ~ 2 / M .  (53) 

Thus, at 0 < G < 1, biexcitons are produced. This criterion 
can be satisfied, for example, in the model C if n = m and 
Vee = Vhh z - Veh . 

The formation of magnetic biexcitons in the case of 
weak binding apparently indicates that they exist in a wide 
range of parameters. Since the bond between them is not 
valent, it does not saturate and one can expect formation of 
clusters of several excitons (polyexcitons). Their (planar) 
structure is entirely different than that of needle-like mag- 
netic polyatomic molecules." 

5. HAMlLTONlAN OF BIPOLAR SYSTEM IN THE MAGNETIC- 
SUBLATTICES REPRESENTATION 

We transform now the Hamiltonian system into a new 
basis: we replace the Landau functions by functions that cor- 

respond to the magnetic-sublattices representation (MSR). '' 
This allows us to consider from a single viewpoint various 
pairings that occur in a bipolar system in a magnetic field, 
and the ensuing structures. 

The transition from tke LR (Szc. 2) into the MSR is by 
introducing the operators T,, and Te2 (a, and a, lie in the xy 
plane) in accord with the definition 

h 

($(r) is an arbitrary function). The operators Tei commute 
with the electron Hamiltonian in the LR [it can be verified 
that they commute with them on the complete system of 
functions (3)]. They commute also with one another if 

[ a , ~  az]v=2nt, t - integer. (55) 

Choosing a, and a, that satisfy the condition (55) with t = 1, 
we obtain the basis of the magnetic lattice. The reciprocal 
lattice vectors b, = a, X v and b, = v X a1 make up the basis 
of the reciprocal lattice. We choose the vectors ai : 

al= (a,=, a , , ) ,  a,= (0 ,  a,,),  a142,=2n. (564 

Then 

The new basis functions, obtained as linear combinations of 
the functions (3): 

9. (r) = ( $ ) ' exp {iy (kv+la,d +ikxalzl 
I 

are normalized to [ (2~ )~ /S ]6 (k  - k') and form a complete 
system if k is chosen within the limits of the cell (b,,b,). The 
functions $, satisfy in the basis (56a) the condition 

F.9, ( r )  =exp (ika) g k  (r) . 
The corresponding new operators 

h 
(58) 

anticommute on [ ( 2 ~ ) ~ / S l S ( k  - k'). The operators B, are 
obtained from the operators 2, also by Eq. (58). Equations 
(57) and (58) correspond to choosing the field operators in the 
form 

The integration here and below, if its limits are not indicated, 
is over the reciprocal-lattice cell. 

The conversion of the Hamiltonian from the LR to the 
MLR entails unwieldy transformations. We present the final 
result, but will demonstrate the transformation scheme in 
Appendix 4. It+ccan be seen from the Appendix that the trans- 
formation of Hi,, includes a transition from the quantum 
numbers p, which vary in the interval ( - CQ, CQ), into the 
quasimomentum k, which varies within the limits of the reci- 
procal-lattice unit cell. The transformation formula for the 
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h 

operator A,,  as follows from (58), is of the form 
i' i 

Ak+,=Ak exp { i k ~ .  + P QXQ, - atuQv-inlllzJ9 (60) 

where Q = I,b, + 12b2 is an arbitrary reciprozal-lattice vec- 
tor. We t r - n s f o p  also from the operators B,  to the hole 
operators C ,  r B  ,,? . Then, apart from an insignificant addi- 
tive constant, 

S2 dk, dkz 
v e e  ( 9 )  wm2 (q:) H*., 2  =-~j-- (23-t)' (2n)' f - (2n)' 

- w 

dk, dk, dq 
7 Veh ( 9 )  Wmn ( q )  +SZ J J ~ W  J (2n) 

- w 

The transformations carried out above were exact. 
Now, however, we change to the Hartree-Fock (HF) approx- 
imation. This is conveniently done by introducing the vacu- 
um mean values 

(Ak+&, \ = - (2n)z  6 (k-k.)  9. ( k )  , 
S 

( h ) z  x ( k )  8 (k -k t )  . (AkCrf>= - 
S 

For the first two mean values we have, according to (62), 
$;h, ( k )  = $e,h, (k), and since their Fourier transforms (the e- 
CDW and h-CDW are real), we have also 
U,,,, ( - k) = $e,h, (k). Reality is ensured by choosing the op- 
erator phases. When substituting (62) in (61) it must be recog- 
nized that since thezange of variation of q is infinite, mean 
values of the type ( A  ,f A, + ) occur, and can be expressed 
with the aid of (60) in tzrms of the mean values (62). After 
these transformations, Hi,, takes the form 

dk ~:I,=-s J - { E ~ ' ( ~ ) A ~ + A ~ + E ~ ' ( L )  c ~ + c ~ - A  ( k )  
(2n)" 

+ v h h  ( Q )  wn"(QhZ) 1% (Q )  l 2  
+ZV,h(Q) wmn(Q)$e(Q)$hw(Q))r (65) 

S dk 
h z = ~ J -  {ern (k) *e ( k )  +en ( k )  9, ( k )  -2A ( k )  x ('1 1. 

(66) 
We have used here the notation 

dk 
@e(h)  ( Q )  = ~ ~ e x p { i [ k ~ l v ) ~ ~ ( , )  ( k ) ,  

dq em,., ( k )  = j -i~;;i". V"(hh) ( 9 )  w:(n) (q:(q) %W (k+d 7 ((j8) 
- m 

The Fourier componeFts $ejQ) are connected with the elec- 
tron density p, (r) = ($+(r)$(r)) by the equation [cf. (60)] 

In (64), E; (k) and E; ( k )  have the meaning of the energies of 
the electron and h$e elementary excitations, while A (k) 
stands for the gap; H 6, should be diagonalized, while $, , 
$, , andx must be self-consistent with the solution obtained. 
The terms h ,(,, should be calculated for each of the solutions 
and taken into account when the thermodynamic functions 
of the different phases are compared. 

It  is convenient to carry out the diagonalization in a 
representation with a fixed chemical potential; we introduce 
therefore 

p, and p,, , as well as the electron and hole energies, are 
reckoned from the corresponding unperturbed levels (Sec. 
2). Putting 

Ern ( = +  en ( k )  '&s+En'(k), (73) 
h 

we represent the operator part of H in the form 

-A ( k )  (Aret+Cr+Ak+) ). 

(74) 
It is diagonalized by the Bogolyubov uv pansformation for 
fermions. In terms of the new variables, Hop takes the form 

dk {&,  ( k )  cir+ar+e2 ( k )  t k + C k } + f h 3 ,  (75) 

where ~ ~ ( k )  and e2(k) is the spectrum of the quasiparticles 

while 

1069 Sov. Phys. JETP 58 (5), November 1983 Yu. A. Bychkov and E. I. Rashba 1069 



The diagonalized Hamiltonian consists thus of a non-opera- 
tor term 

and two operator terms in (754, corresponding to Fermi 
quasiparticles with average occupation numbers 

<ci,+cid=n(el (k) ) = [I+exp (el (k)/T)] -', (79) 
and analogously for (2; 2, ) with the replacement 

6. THERMODYNAMICS OF A BIPOLAR SYSTEM 

We consider first the general calculation procedure. 
According to (76), (73), (69), and (70) the spectrum of the 
quasiparticles is expressed in terms of the functions $,(, , and 
X. To close the system, we must express in terms ofell,, both 
the functions which have according to (62) and (71) the 
meaning of the electron and hole distribution functions, and 
x (k). Calculation of the mean values using the uu transfor- 
mation employed on going from (74) to (75) yields 

It follows from (71) that (Q = 0) are the mean densities 
of the electrons and holes, which are equal by virtue of the 
electroneutrality: 

p=~& (0) =qh (0) =v/2n. (82) 

Equations (80) and (81) form jointly with (67)-(71) a 
closed system that makes it possible in principle, given the 
chemical potentialsp,,,, , to obtain $,(, andx as well as the 
energy spectrum, and formulate the thermodynamics (it as- 
sumed that the quasi-equilibrium assumptions made in Sec. 
1 are valid). Thus, the thermodynamic potential f2 is equal to 

In the general case, however, this program is not realizable; 
we consider below the most important cases. 

The chemical potentialsp,,,, are fixed by the condition 
(82). For example, in a spatially homogeneous case it follows 
from (67), (71), and (82) that +be = $, = v, x = const. Ac- 
cording to (73) and (76), these equations are satisfied at 

We consider now particular cases. 
I. Homogeneous system without pairing (A = x = 0). 

From (84) and (82) we have 

In this case [recognizing that Vee (0) = Vhh (0) = - Veh (O)] 
the potential f2 is equal to 

where 

and analogously for E n .  According to (68) and (69) one can 
express in terms of (87) also 

after which it follows from (85) that: 

pm+ y =-Ev-2T In (v-'-I), 

We introduce also the pressure 9 = - f2 / S  [f2 is defined by 
Eq. (86)l. 

The usual criterion for the stability of the system is 

where 

TI (v) ='IzEv (1-v) 

(Fig. 2). The condition for the existence of the two phases is 

9 (To, V) =9 (To, v') , 

The last equation corresponds to equilibrium relative to the 
e-h pair transitions. The solution of Eqs. (92) is of the form 

vf=l-v, To(v)='/LE(1-2v)[ln (v-'-I), (93) 

with TO(v))T1(v) (Fig. 2). The region TI < T <  To corre- 
sponds to a metastable high-temperature phase. We did not 
investigate the sign of the surface tension. 

2. Homogeneous system with pairing (A #O). From (70), 
(8 I), and (84) follows an equation for the gap: 

v 
FIG. 2. Phase diagram of bipolar system T = T(v) ,  Tin arbitrary units: 
T,--line of equilibrium between two homogeneous phases, T,-lower 
limit of existence of metastable homogeneous phase, T,-solution for the 
exciton gap, T,,,-line of absolute instability of homogeneous phase 
with respect to CDW formation. 
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At the instant when the gap vanishes we have 7 = { [see 
(76)l; using (85), we obtain for the transition temperature 

The sign of the difference To - T, is determined by the 
expression 

E+2Eo=E,,+E,+2E,+2Eo=E, (96) 

which in models A and C, where E, = 0, is equal to 

In model A we have Vee = Vhh = - Veh and the integral is 
positive. In model C we have n = m and an electrostatic cal- 
culation such as in Ref. 6 yields Vee(q) + Vhh (q) 
+ 2Ve, (q) > 0. In case B, when E, #O, calculation shows 

that at n = 0, m = 0, and at a Coulomb interaction, expres- 
sion (96) is also positive and To > T,. Thus, in all the cases 
considered E > 0 and To > T,. There remains, however, the 
region To < T, < TI, where in principle anomalous pairing is 
possible against the background of the metastable state (Fig. 
2). We shall prove that such a phase is absolutely unstable. It 
can be shown that at A # 0 we have 

2n (QIS) ='12Ev2+% (T) , (97) 

where f ( T )  does not depend on Y. The pressure is then 
9 = - L! /S ,  and its derivative is 2?r(b'9/dv), = - EY < 0 
on account of E > 0. 

3. Charge density waxe (at A = 0). Using the definition 
of the free energy F = (Hi,,) - Y T ,  where Y is the en- 
tropy, and Eqs. (63)-(66), we arrive at 

where 
1 xe (Q) =E, (Q) - - V e e  (Q) wm2 (QeZ) 9 

2n 

and analogously for X,  (Q) and En (Q). 
We consider below weak perturbations of the electron 

density: 

$e@) (k) =v+$e!(h) (k) 7 

where (I&, , (k)) = 0. 

where Fo is the free energy of the homogeneous state. Dia- 
gonalizing this form and writing down the condition for the 
onset of a negative eigenvalue for the momentum Q, we get 

CDW are energywise favored at T <  TcDw . Let us compare 
TcDw with T,. Omitting in (101) the first term in the radi- 
cand, we have 

It follows from (102) that in any case TCDw(v)> Tl(v) at 
small Q. It must be emphasized in this connection that since 
(55) quantizes only the area of the magnetic-lattice cell, one 
of the basis vector, say b, = Q, can be chosen to be arbitrar- 
ily small. The result shows that at low temperatures 
T < TCDw (Y) = TCDW (v,Q-+O), the state most favored is one 
with density waves. Since +be (k) #$, (k), these waves are 
CDW. The other phases are at T <  TcDw absolutely unstable 
to the onset of a CDW with an infinitely small amplitude. In 
a monopolar system, CDW are produced via a first-order 
transition at T$bw > TcDw (Ref. 2); it appears that the situa- 
tion is similar for a bipolar system. The ground state can be 
obtained only by numerical calculations for concrete mod- 
els. 

7. CONCLUSION 

We have shown that the e-h asymmetry in the Hamil- 
tonian, regardless of the detailed form of this asymmetry 
(spectrum, interaction, etc.) alters qualitatively the charac- 
ter of the behavior of a bipolar system. An interaction sets in 
between the magnetic excitons and can lead to the appear- 
ance of magnetic biexcitons and possibly polyexcitons. The 
phase diagram is just as radically altered. A state that is 
homogeneous at high temperatures gives way with decreas- 
ing temperature to a state with CDW. It is possible that in 
the region between the To and TcDw curves (Fig. 2) there can 
exist a homogeneous metastable state. A homogeneous 
phase with exciton pairing is absolutely unstable. Thus, the 
thermodynamics of a monopolar system and of an asymme- 
tric bipolar system are similar. The scale of the transition 
temperature TcDw -E-Z2/A (@) is also the same as in a 
monopolar system (Sec. 1). 

APPENDIX 1 

In the simplest case, the determination of the matrix 
elements reduces to calculation of the integrals 

Using the generating function of Hermite polynomials (Ref. 
16, formula 10.13.19), we have 
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after transformation of the exponential and expansion of one 
of the factors in a series (we assume m > n), the right-hand 
side of (A.2) reduces to 

and takes, after simpuncation with the aid of the generating 
function for Laguerre polynomials (Ref. 16, formula 
10.12.19), the form 

From a comparison with the initial expression (A. 1) we ob- 
tain 

I,, ( q ,  q )  = )l~2"n!e-q'/4 ( i q t q )  m - n ~ n m - n  (q) 
APPENDIX 2 

We demonstrate the transformation of the first term in 
(20), leaving out the superfluous variables: 

v. (pipi; pt'pi') = j~ dpi dpi v m  (piP5~iFi) c (FiFj; ~ i 'p j ' )  ; (A.3) 
-m 

after substituting (23), (12), and (IS), introducing the nota- 
tion 

@ (q2)=v~e(q)wm2(q2) l (2n)z ,  

integrating with respect toj, and substitutingl, =pi  - qy , 
we get for the right-hand side of (A.3) 

Replacing next C by 2;' in accord with (25) and changing to 
exciton variables for the pairs of arguments (p i ,  p f )  andp,, 
P,'), we get 

Jdq @ (9') exp {iqr(-q,+ui-u~+'/2kiY-1/2kju)) 

The next step is to take the Fourier transform with respect to 
the variables u, and u, : 

JJ d u  d ~ j  exp {-i (k i=bi+kjx~j))  urn (pipj; pi'pj'). 

After changing the order of the integration, making the sub- 
stitutions ui = v, + qy /2 and u, = vj - qy /2, and trans- 
forming from 2;' to f in accord with (26), we get 

in agreement with (29). 

APPENDIX 3 

The antisymmetry condition for the function C: 

C ( P * P ~ ;  P,'P~') = - C ( P > P ~ ;  pi'pj') , 

rewritten for the function 2;'in the exciton variables (25), is of 
the form 

Fourier transformation of the left-hand side yields directly 
f (k, k,). To find the Fourier transform of the right-hand 
side, it is convenient to use first the inverse transformation 
(16), and introducing the notation qy = u j  -u i ,  
u, + u, = 2u, write 

which reduces, after the substitutions s, = q, + t/2, 
s, = - q, + t/2, to 

i 
xexp iut - - q* (kin-kin) # . 

I 2  

Applying (26) to this expression, rewriting in terms of the 
variables (u, qy ), and integrating with respect to (u,t ), we get 

fi dui du5 exp [ - i (sk ,+uikjS)  ]C (. . .) 
-m 

r exp {- +[9(k-kj) lv)  

in full agreement with (31). 

APPENDIX 4 
h 

We write down the operator V,,, [Eq. (8)] with 
allowance for (12); we change simultaneously from summa- 
tion over the quasidiscrete values ofp to integration: 
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We replace the integration with respect top' along the entire 
axis by integration within the cell (b,,b,) and summation 
over the cells; we denote the variable of integration in the cell 
by k1,: 

OD 

J dpfei-pr+', ,apv 
-m 

01% 

= J dkgv 2 exp{i ( k l v + a l x ~ )  qx) )a:,,+aIx l+q ~ ~ k l u + ~ l ~ ~ ~  
0 I - - - -  

which reduces after an identity transformation to 

This transformation, which introduces the factor S,,, under 
the summation sign, has made it possible to include in the 
integrand the factors contained in (58). It is therefore possi- 
kle to "as~mble" out of the operators 2+ and 2 the operators 
A + and A,  and the factors introduced are mutually can- 
celled, owing to the S,, , symbol, and do not affect the value of 
the integral. We ultimately get in place of the last expression 

dk, 
L J-- eap ( i k g v p ~ ) ~ R q ~ ~ , ;  

2n 

the integration with respect to k, is over the reciprocal-lat- 

tice cell. After substitution in the initial expression we obtain 
the first term of Eq. (6 1). 

"However, k retains here the meaning of a momentum, as can be seen 
from the dispersion law (27). 
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