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The propagation of ultrashort pulses along a nonlinear light guide containing resonant impurities 
is considered in the single-mode approximation. It is shown that the presence of impurities alters 
qualitatively the character of the evolution of such pulses, an evolution that can be described by 
the generalized Maxwell-Bloch equations. The formation of optical solitons as well as self-in- 
duced-transparency conditions is possible only if a certain relation exists between the light-wave 
frequency and the parameters of the nonlinear medium. 

PACS numbers: 42.80.Mv, 42.65.G~ 

Substantial progress was achieved quite recently in 
methods of producing extremely short optical pulses (down 
to several dozen femtoseconds". Such a pulse is considerably 
shorter than all the characteristic relaxation times in matter 
(we shall call it an ultrashort pulse-USP). A USP is usually 
characterized by a high electic field intensity, so that nonlin- 
ear optical effects frequently take place, such as the onset of a 
soliton propagation regime. Under intensive study at present 
is also the passage of optical pulses through light guides, 
where for practical purposes the aim is to produce as short 
pulses as possible. By using USP it is possible to transmit 
information at very high speed. To offset the broadening due 
to the dispersion of the group velocities it was proposed2 to 
make the light pipes of a material having a Kerr-type dielec- 
tric constant, i.e., quadratic in the electric field. The pulses 
are transformed in this case into solitons and it is estimated3 
that the expected information-transmission rate is of the or- 
der 0.01 Tbit/sec over 20 km. 

However, practically all materials used for light-guide 
fabrication contain impurities that contribute to the radi- 
ation-absorption ~pec t rum.~  Owing to the inhomogeneous 
broadening of the impurity energy levels there is always a 
group of levels that are at resonance with the radiation trans- 
mitted through the light guide. The losses due to the reso- 
nant absorption decrease greatly if the pulse duration is 
made shorter than the characteristic relaxation times of the 
resonance ~ t a t e s , ~  i.e., if the pulse is made ultrashort. This 
phenomenon, known as self-induced tran~parency,~ was 
considered for light guides in Ref. 7. There, however, the 
Kerr-type nonlinearity and the linear dispersion spreading 
were not taken into account. In sufficiently long light guides 
this approximation may turn out to be invalid. 

In the present paper, with a single-mode light guide as 
the example, we consider the influence of resonant absorp- 
tion in the self-induced transparency on USP propagation in 
a Kerr-type nonlinear medium. We show that resonant im- 
purities (simulated, as in Ref. 7, by two-level atoms) alter 
radically the condition of propagation of a USP as a soliton. 

The evolution of a USP moving through a light pipe in 
the z direction is described by equations that generalize the 
known Maxwell-Bloch equation5: 

iEZ-e,aETT+e2gI E I 2E+(o)=0 ,  ( la)  

oT=i60+ifEu, (lb) 

u,=2if ( o E * - o * ~ ) .  i 1 4  

The subscripts Z and T denote derivatives with respect to Z 
and T:Z = z/La , T = t - z/v, where La is the resonant-ab- 
sorption length5 and v is the USP propagation velocity in the 
linear approximation. The term in ( la)  with the second deri- 
vative with respect to T describes the USP dispersion spread- 
ing and the coefficient a is the ratio of the length of the reso- 
nant absorption to the dispersion 

L,=4!3tP2/ I a2k2 ( 0 )  / d a 2  I. 

The self-action effect is taken into account by the third 
term in (la). The coefficient g is equal to the ratio of the 
absorption length to the Kerr length 

L , = ~ C ~ / ( ~ ~ W ~ R , , ~  1 GI ) . 
Here p is the light-guide propagation constant, w is the fre- 
quency of the carrier wave, t, and R ,  are the duration and 
the maximum amplitude of the USP at z = 0, a n d i ,  is the 
effective nonlinear susceptibility responsible for the Kerr ef- 
fect. In contrast to a uniform infinite medium, where the 
Kerr susceptibility X ,  is constant, the effective susceptibil- 
ity depends on the mode of the wave propagating in the 
light guide. If the electric field of the wave is written in the 
form 

where e is the polarization vector, A (z,t ) is a slowly varying 
complex amplitude, and @ (x,y) is a function that determines 
for the given mode the transverse distribution of the electric 
field in the light pipe, t hen i ,  is defined as the average over 
the light-guide cross section: 

The mode function @ (p) is obtained for each specific light 
guide, being the solution of the corresponding boundary- 
value problem.8.9 The interaction of the radiation with the 
resonant impurities is characterized by the dimensionless 
constant f = d ~ , t ,  ?i-', where d is the effective element of 
the dipole transition between the resonant states: 

The angle brackets in ( la)  denote summation over all the 
normalized frequency detunings S = t,, do from the center 
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of the inhomogeneously broadened resonant-absorption 
line, where Am is the difference between the pulse carrier 
frequency and the central frequency of the atomic transition, 
and E = A  /Ro. 

In the_ variables that describe the resonant impurities, 
just as in g, the dependence on p is separated: 

piz=o ( z ,  t )  @ ( p )  , p1i-pzz=u (2 ,  t )  Q ( p )  . 
Here pq are the density-matrix elements of the two-level 
atoms (j,i = 1,2). 

The nonspreading nonlinear pulses correspond to the 
soliton solutions of the system (1). To find the condition for 
the existence of such solutions, we must find at what ratio of 
the parameters in (1) this system admits of the Lax represen- 
tation,'' i.e., can be written in the matrix form 

L,=A,+ [ A ,  L] , (2) 

for a certain pair of matrices i and 2. the Lax pair i and 2, 
besides depending on E, a ,  and u,  must contain an arbitrary 
constant that assumes the role of the spectral parameter of 
the method of the inverse problem 2f scattering theory. '' 

Following Ref. 10, we choose L and 2 in the form 

The constants a,, a, and A, B, and C (which are functions of 
E, a,u, and E,) must be chosen such that (2) coincides with 
(1). Taking (3) into account, we can rewrite (2) in expanded 
form 

AT=alEC-a2E*B, (44 

B,+2ihB=a,Ez-2alEA, (4'3) 

CT-2ihC=a2Ez*+2azE*A. (44 

Let B and C have the form of the linear combination 

B=<b,a>+b,E+baE,, C=<ci~')+czE*+c,ET*, (5) 

where the unknown coefficients bj and c, ( j  = 1,2,3) depend 
only on A. Substituting (5) in (4b) and (4c) and equating the 
coefficients of a ,  a*, ET,  E F, ETT and E *,, we can find with 
allowance for (1) that 

5,=ai/ (6+2h), b,=-2ha,~,a, b3=-ia,s,a, 

c,=az/ (6+2h), ~ ~ = - 2 h a ~ ~ ~ a ,  cS=ia2~ta (6)  

and 

Thus, 

Compatibility of (8), (7), and (4a) imposes constraints on the 
parameters of the problem, i.e., the following conditions 
must be satisfied: 

e2g=2cliazeia, fz=-ai~a2. 

Hence 

- ~ ~ ~ ~ g = 2 a f ~ .  (9) 

Since a and g are positive by definition, Eq. (9) leads to a 
relation for the signs of the Kerr susceptibility and of the 
dispersion constants: E ~ E ,  = - 1, meaning simply that self- 
action and dispersion of the group velocities should lead to 
opposing effects. In dimensional variables, Eq. (9) takes the 
form L,/L, = 2 f or 

The only condition for the constants a, and a, is the require- 
ment that the spectral problem of the inverse scattering 
problem be anti-Hermitian.'' Hence a, = a, = if. 

Were there no resonant impurities in the light guide, 
soliton existence would be ensured by the following equali- 
ties: 

By suitable choice of nondimensionalizing parameters, the 
system (1) would reduce to a nonlinear Schrodinger equa- 
tion, as in Refs. 9 and 8. The presence of resonant impurities, 
on the other hand, changes the situation radically: a 2a  pulse 
of self-induced transparency should simultaneously be also a 
soliton of the nonlinear Schrodinger equation, and the am- 
plitude and duration of the 2?r pulse should be precisely such 
that the corresponding self-action (due to the Kerr effect) 
would lead to total cancellation of the dispersion spreading 
of the USP. 

The condition for the existence of a soliton solution of 
Eq. (1) is quite stringent. However, by varying the frequency 
of the carrier light wave within the limits of the inhomogen- 
eously broadened resonance line it is possible to attain satis- 
faction of the condition (9) [or 9(a)]. 

The result is valid also in a homogeneous medium. In 
this case it suffices to replace 2 a n d i  by the trued andx, . 
Let the light guide be uniform in the sense that the dipole 
moment d and the Kerr susceptibility x , are independent of 
the transverse coordinates x any. Then 

I % I I F = F I ~ G ( I / ~ ~ ,  

where the explicitly separated geometric factor F' = I,I,/I: 
reflects clearly the difference in the condition (9) between an 
unbounded homogeneous medium and the light guide. Here 

where the modulus has been left out, since for a regular di- 
electric light pipe without a metallic shield we usually have 
@ *(p) = @ (p), as is indeed assumed in the present paper. 
This restriction is not essential and its generalization is tri- 
vial. The appearance of a geometric factor is typical of prob- 
lem of integrated and fiber optics. It is useful to estimate its 
influence on the condition for the existence of solutions of 
(1). For the fundamental mode a good approximation of @ (p) 
is a Gaussian function of 1 pi, having at half-maximum a 
width equal to the effective thickness of the light pipe. For a 
fiber with parabolic transverse distribution of the refractive 
index this is at any rate the exact r e ~ u l t . ~ . ~  It  turns out that 
for this choice of @ (p) the geometric factor F'= 8/9. Of 
course for each particular light guide and particular mode 
the value of F will differ but it is not likely to deviate greatly 
from unity. 
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To conclude, it is useful to point out two examples of 
nonlinear propagation of USP in a light guide; their analysis 
is also based on the model considered here [on the system 
(I)]. In Ref. 12 a pulse broadened as a result of group-velocity 
dispersion was narrowed down by using an intermediate cell 
with resonant atoms (sodium vapor). The same can be ac- 
complished by introducing resonant impurities in some seg- 
ment of the light pipe. The absence of a cell with alkali-metal 
vapor makes such a light-pipe line more convenient to use. 

As repeaters for signals transmitted over light pipes it is 
natural to use an amplifier similar to a laser amplifier. A 
light-guide segment containing resonant impurities whose 
population is inverted by optical pumping is precisely such 
an amplifier. The evolution of the USP is described in this 
case by the system (I), but with reversed sign of the resonant- 
level population difference. A very similar situation arises 
also in the problem of self-induced transparency when light 
beams are scanned over the surface of a nonlinear medi- 
um.13.14 
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