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Second harmonic generation by a transverse ultrasonic wave of frequency 38 MHz is investigated 
both experimentally and theoretically for the case of an antiferromagnet with spin flip (TmFeO,). 
The efficiency u,, /u, for transformation of the fundamental into the second harmonic increases 
strongly upon approach to the spin-flip region from the symmetric phase side, and reaches - 20% 
for a strain u, - At higher strain (u, > 3 X an anomalous behavior of the second- 
harmonic signal is observed. This can apparently be ascribed to its reaction on the initial sound 
wave. By precise orientation of the magnetic field (accurate to + 57, it was possible to discern and 
investigate two mechanisms of effective acoustic nonlinearity. One is related to the "purely mag- 
netic" anharmonicity of the spin system, and the other to the nonlinearity of the magnetoelastic 
coupling. 

PACS numbers: 43.35.Rw, 75.80. + q, 75.50.Ee 

1. INTRODUCTION 

Intensive experimental investigation of the nonlinear 
acoustic phenomena at ultrasonic frequencies in magnetic 
crystals has been stimulated by Refs. 1 and 3, in which a 
large value of the elastic anharmonism was predicted in anti- 
ferromagnets (AF) with magnetic anisotropies of the easy 
plane type. The magnetoelastic dynamical nonlinearity can 
be large even in the hypersonic range of frequencies3 if the 
point of intersection of the spectra of magnons and phonons 
falls in this region-the so-called magnetoacoustic reso- 
nance. The nature of the anharmonism in both cases is due to 
a significant nonlinearity introduced into the elasticity by 
the magnetic subsystem via the magnetostrictive interac- 
tion. It turns out here that the effective third-order elastic 
moduli C',ff can be lo3 times (or more) greater than the ordi- 
nary values of the purely elastic nonlinearity for solids, and 
depend strongly on the external magnetic field (and also on 
the external mechanical stresses). It follows from theory '9' 

that the nonlinearity of the ultrasonic magnetoelastic waves 
should be especially large in an AF with a large exchange 
field HE and with low ("soft") frequency of antiferromagnet- 
ic resonance (AFMR). The best known example of such AF 
is hematite (a-Fe203) in its easy-plane phase (T, < T <  T,), 
for which different nonlinear acoustic effects are observed: 
doubling of the frequency and acoustic sound dete~t ion,~ 
self-action5 and nonresonant interaction6 of sound waves, 
stimulated Raman scattering of sound.' 

The presence of a soft mode of AFMR is characteristic 
not only for easy-plane AF, but also for crystals experiencing 
a second order spin-flip phase transition. In these materials, 
for example, in rare-earth (R) orthoferrites RFeO,, there are 
additional possibilities of the action on the nonlinearity by 
such parameters as the direction of the magnetic field and 
the temperature. For the study of these possibilities, we have 
investigated the simplest of nonlinear effects-the doubling 
of the sound frequency-in a single crystal of thulium ortho- 
ferrite (TmFeO,). This system has a spin-flip temperature 
range 82-94 K that is convenient for experimentation, and 

the sound velocity changes in it significantly in this range.8 
The latter suggests the possibility a large values of the non- 
linear acoustic effects. 

The spin flip in orthorhombic TmFeO, takes place in 
the absence of a magnetic field H in the following way. The 
antiferromagnetism vector 1 is directed at temperatures 
T < Tl = 82 K along the c axis of the crystal (the c phase) and 
at T >  T2 = 94 along the a axis (a phase). In the intermediate 
temperature range T1 < T < T,, the vector 1 rotates smoothly 
from one of these axes to the other (ac phase). At H = 0, the 
temperatures Tl and T, are points of second-order phase 
transitions. 

The tensor of linear elastic moduli k2 and the spectrum 
of the AFMR thulium orthoferrite have been investigated in 
detail in Refs. 8-12; in this case, a significant change in k2 
was observed near the phase transitions. This change is con- 
nected with the appearance of magnetoelastic interaction 
under conditions of softening of one of the magnetic modes.8 
In TmFeO,, as also in other rare-earth orthoferrites with a 
high NCel temperature T,, the magnetic subsystem is "more 
stiffly" elastic, i.e., the maximum velocity of the magnons is 
larger than the sound velocity. Therefore, near the phase- 
transition points, the condition of magneto-acoustic reso- 
nance is satisfied for sufficiently low sound frequencies. Pre- 
liminary experimental results, indicating a large acoustical 
nonlinearity in TmFeO, near the spin reorientation, were 
published by us previously.13 

2. EXPERIMENTAL METHOD 

The sample of TmFeO, was cut from a single crystal 
grown in the Moscow Power Institute by the method of cru- 
cible-free zone melting with radiation heating, and had the 
shape of a prism of cross section 6x 6 and length 12 mm 
along the a axis of the crystal. To decrease the inhomogene- 
ity of the magnetic field inside the sample (Hla), its edges 
were rounded off along the entire length at a radius of 4 mm. 

The excitation and detection of transverse sound with a 
wave vector kJJa were accomplished by attaching identical 
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piezotransducers at the opposite ends of the sample. Each 
transducer consisted of a plate of X-cut LiNbO,, thickness 
50p, glued by means of a thin layer of low-temperature ep- 
oxy resin DFM-135 to a molybdenum-glass substrate into 
which was soldered a molybdenum electrode of 2 mm diame- 
ter which determined the cross section of the sound beam. A 
niobium film of thickness 0.5 p served as the second elec- 
trode. It was deposited by cathode sputtering on the surface 
of the holder with the plate. Niobium was chosen because of 
its high adhesiveness and mechanical strength. Thanks to 
the large electromechanical coupling constant that is char- 
acteristic of lithium niobate, the described converter has an 
appreciable bandwidth. l4 In our case the double-conversion 
losses amounted to 22 dB at a frequency of 33 MHz for the 
primary wave and 70 dB for the frequency of the second 
harmonic. The acoustical contact between the transducer 
and the sample was achieved by means of a thin layer of 
Apiezon-N vacuum grease. The error in the setting of the 
polarization of the transducers relative to the axes of the 
sample did not exceed 5". 

The echo-pulse method of measurement ("in transmis- 
sion") was employed with a pulse duration 7- 1 ps  and repe- 
tition rate - 100 Hz. The signal of the supply HF generator 
was amplified to a level of - 100 W and fed to the input 
transformer through a second-harmonic filter and a loop 
matching transformer. The second harmonic appearing in 
the sample was recorded by the output transducer and by a 
receiver with a bandwidth of 4 MHz, while the detected sig- 
nal was observed on the screen of an oscilloscope. The mag- 
netic field was produced by an electromagnet placed on a 
rotatable platform, the axis of rotation of which could be 
inclined by several degrees from the vertical in two mutually 
perpendicular planes. The field was set with an error not 
exceeding 5' with respect to the crystallographic axes. The 
supply system of the magnet assured a field stability 
-2X low4. The temperature of the sample was kept con- 
stant in the range 65-130 K by a precision thermoregulator 
with a relative error of less than 1 mK. The absolute error of 
measurement of the temperature did not exceed 1 K. Local 
overheating of the sample by the sound pulses did not exceed 
2 mK. 

3. EXPERIMENTAL RESULTS 

Doubling of the ultrasonic frequency at H = 0 

Before investigating the behavior of the second har- 
monic of the sound in the spin-flip region it was necessary to 
determine very accurately the temperatures T I  and T, of the 
transitions in the absence of the field. For this purpose, we 
used the well-known increase of the sound attenuation at the 
point of the spin-flip phase transition.I5 Far from the region 
of spin flip, the observed series of the fundamental-frequen- 
cy echo signal was ideal and up to 100 pulses could be record- 
ed (quality factor of the wave was 2 lo4). When the tempera- 
tures T I  or T2 were approached (from below and above 
respectively) the sound absorption increased abruptly (Fig. 
la), so that the temperatures of the transitions could be re- 
corded with an error of not greater than 10 mK. Near the 
transitions, the envelope of the echo series differed signifi- 

FIG. 1. Temperature dependences of the fundamental-frequency signal 
u,  passing through the sample (a) and the amplitude of the second-har- 
monic signal u,, (b) at H = 0. The inset shows the region of transition T2 
with tripled temperature scale. 

cantly from exponential; in fact, just as in Ref. 8, a modulat- 
ed series was observed with a temperature-dependent shape 
of the envelope. Therefore, for measurement of the sound 
attenuation, we used the amplitude of only the first sound 
transmitted pulse. 

In temperature intervals of width - 3 K adjoining T I  or 
T2 from the side of the ac-phase, irregular jumps in the signal 
were observed, evidently due to the presence of a domain 
structure. The temperature hysteresis of the observed sound 
absorption in the ac-phase (see Fig. la) is probably also due 
to the domain structure, while the smoothness of the plot of 
the signal of fundamental frequency u, (T)  that passed 
through the sample, in the center of the ac-phase, can be due 
to coupling of the magnetic and elastic subsystems, which in 
the given method obviously masks the jumps of the domain 
boundaries, and which is weak for the given region. A de- 
tailed study of these questions was not our intention. All the 
subsequent study of the acoustic nonlinearity was carried 
out only for the a- and c-phases. 

A second-harmonic signal is practically absent from the 
spin-flip region. This indicates both a weak coupling of the 
magnetic and elastic waves at these temperatures, and a 
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FIG. 2. Temperature dependences of the amplitude of the second harmon- 
ic near the spin-flip region at H = 0; 0-low-temperature phase, I Ilc, a- 
high-temperature phase, I /la; u, = 3  x 10W6. 

small natural anharmonism of the elastic subsystem. As the 
temperature of reorientation is approached, the signal in- 
creases approximately in proportion to AT -,, where 
A T = T - T, in the a-phase and A T = T, - Tin the c-phase 
(Fig. 2). At the point of the deep minimum of the u,, ( T )  
curve (see Fig. 2, A T z 2  K, and also Fig. 1, TZ  80 K) the 
temporal phase of the second harmonic presumably changes 
by ?r judging from the behavior of the envelope of the signal 
on the screen of the oscilloscope. 

Doubling of the ultrasonic frequency at H#O. 

Upon superposition of an external magnetic field of ar- 
bitrary direction, the a- and c-phases are mixed, none of the 
phase transition is realized in pure form, and a soft mode 
does not develop in the system. The nonlinear acoustic ef- 
fects are small here. But if the field H is directed strictly 
along the c axis, only the c-phase vanishes," but the a-ac 
phase transition remains. The temperature T,* at which the 
transition occurs depends on the value of H in the following 
way:T: = T2 + P2 H,." A similar situation occurs in the 
case H 11  a for the c-ac transition; here TT = T, + 0, Ha.  
The coefficients PI and P,, which we determined from the 
data of the temperature measurements of the sound attenu- 
ation in the region of phase transitions (see the previous sec- 
tion) at different external fields, amounted to 0.56 deg/kOe 
and - 0.68 deg/kOe, respectively. The temperatures TT 
and T: of the phase transitions do not depend on the projec- 
tion Hb of the external field on the b axis of the crystal, 
within the limits of accuracy of our experiment. 

The most characteristic feature of the acoustic nonlin- 
earity that arises upon the application of the external field is 
that the amplitude u,, of the second-harmonic signal exper- 
iences the increment ii,, , which is an odd function of Hb . In 
the study of this incremental signal, we must distinguish it 
against the background of the initial signal that exists with- 
out the field. The measurement procedure in the a-phase 
reduces to the following: the value of the signal u,, is deter- 

FIG. 3. Angular dependences of the second harmonic signal ir,, in the 
high-temperature phase (AT = 4 K) at u, = 6X lo-' for several values of 
the field: C H  = 4.5 kOe; A-H = 3 kOe; A-H = 2 kOe; 0-H = 1.4 
kOe. 

mined in the field (O,Hb ,H,); then the field is rotated in the 
(bc) plane and the signal is measured in the field (0, - H,, 
H,). The half-difference ii,, of these signals represents in 
pure form the manifestation of a second-harmonic genera- 
tion mechanism that depends on the external field. In the c- 
phase, the measurements were carried out in similar fashion; 
however, the field was rotated in the (ab ) plane from a value 
(Ha , H b  ,O) to (Ha, - Hb ,O). 

We have studied the dependence of the signal ii,, of the 
second harmonic on the value of the magnetic field and its 
direction in the (bc) plane, which is set by the angle q, mea- 
sured from the c axis, with the amplitude of the strain in the 
primary wave kept constant. The angular dependences 
shown in Fig. 3 are well approximated by the curve ii,, a H, 
= H sin q~ in the range of fields H < 2 kOe. In a narrow 

range of angles ( + 5") near e, = 90", a sharp decrease in sig- 
nal was observed, which can be attributed to the onset of 
weakly ferromagnetic domains at H, = 47rM,, m r ' z  70 Oe. 
The walls of these domains absorb and scatter the sound 
strongly. The experimental dependences of the signal ri,, on 
magnetic field at fixed values of the angle p (Fig. 4) are de- 
scribed by an expression of the form C,, a H ' v 2  in the range 
offields 0.7-4.5 kOe. It was also possible for us to investigate 
the dependence of ii,, on the temperature of the sample. As 
follows from Fig. 5, the growth of the signal ii,, as one ap- 
proaches the temperature T, follows a ( T  - T2)-3 law. De- 
parture from the ( T  - T2)-3 law begins at T - T2 5 4 K and 
is probably due to the gradual inclusion of magnetoelastic 
damping. l3.I4 

Measurements in the c-phase show that the depen- 
dences of ii,, on Hand Tare similar to those obtained for the 
a-phase. However, the effectiveness of conversion into the 
second harmonic is approximately half as great. 
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FIG. 4. Dependences of the second-harmonic signal ti,, in the high-tem- 
perature phase (AT = 4 K )  on the value of the field at u, = 6 x for 
two values of the angle p: M Y ,  0--15". 

In the measurement of the efficiency of conversion of 
the primary wave into its second harmonic, the absolute val- 
ue of the strain u, in the primary wave is determined by the 
relation 

where Q = (Pi,, - P,,, ) DS; Pi,, and P,,, are the H F  powers 
incident on and reflected from the transducer;B is the coeffi- 
cient of electromechanical conversion; S is the cross section 
of the sound beam;p is the density of the crystal, and v ,  is the 
speed of sound. To find the strain u,, in the wave of the 
second harmonic, a calibration of the detecting transducer 
was carried out. In this case, this transducer operated in the 
"reflection" mode. Measurement of the electric parameters 
contained in (I),  and also of the output signal of the detector, 
enabled us to determine the sensitivity of the receiving chan- 
nel of the apparatus to the strain u,, . The conversion effi- 

FIG. 5. Temperature dependences of the second harmonic signal ti,, in 
the high-temperature phase: u, z 6  X p = 45"; 1 Ila: 0-H = 2 kOe, 
C H  = 4.5 kOe. 

FIG. 6.  Amplitude dependences of the strain ti,, in the high-temperature 
phase: H = 4.5 kOe, q = 45", 0 - A  T = 5 K ,  O--T = 1.7 K ;  C T  = 0.2 
K .  

ciency u,,/u, measured in this way at u,=u ~ 6 . 1 0 - ~ ,  
AT=4K andH, =3kOeamountedto -3%. 

4. STRONG NONLINEARITY 

All the results given above were obtained in the region 
of weak nonlinearity, i.e., at u,, xu, .  The reserve power at 
our disposal enabled us to proceed to the region of strong 
nonlinearity, where u,, - u, . Figure 6 shows the amplitude 
dependence of the second harmonic signal for several tem- 
peratures; here the level of input H F  power was set by a 
calibrated attenuator, and a similar attenuator maintained 
the signal at the input of the detector at a constant value, 
thus eliminating a possible nonlinearity of the receiving 
channel of the apparatus. Far from the a-ac transition (curve 
I), the quadratic dependence u,, a u;,  which is typical of 
the regime of weak nonlinearity, was satisfied up to the max- 
imum strains achieved. As the transition point was ap- 
proached, departure from this law was observed initially 
(curve 2), and then an anomalous behavior of the second- 
harmonic signal (curve 3). The anomaly consisted of an ini- 
tial deep minimum in the signal at large strains u,, and the 
echo pulses observed here had a strongly distorted shape (see 
Fig. 7). 

5. THEORY 

Rare-earth orthoferrites constitute AF with four sub- 
lattices formed by the ions Fe3+; however, the basic proper- 
ties of these A F are frequently described within the frame- 
work of a model with two sublattices M, and M,. The energy 
density W is written down in the form of a sum of the densi- 
ties of the kinetic energy due to the variable part of the elastic 
displacement U, the potential energy density F, and the Zee- 
man energy density: 

w = * / , ~ u ~ + F - ~ M ,  (mH) . 
The potential energy density includes the magnetic Fm , the 
elastic F, and the magnetoelastic F,, components: F = Fm 
+ Fe + F,,. For orthoferrite crystals (space group D::)  

each component can be represented in the form 
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FIG. 7. Oscillograms of the second-harmonic signal (the first two pulses of 
the echo series), obtained under various conditions of input HF power and 
corresponding to the anomalous segment of curve 3 on Fig. 6 at the power 
level 0 dB, the strain is - u, - 5 X lov5. 

F,=2M0 (HEm2+Dim,l,-D3mzl,+1/zA11,2 

+'/ZC,1z2+1/~Az1,1+i/rCzl~4+i/zGl~lz2), (2a) 

F.='lz ( C , ~ U , ~ + C ~ Z U , , ~ + C ~ ~ U , , ~ )  +C~~U,U, ,+C~~U,U~~ 

f Cz3uuuuzzf 2C4,uy~+2C6sUs>+2Ceeuz~, (2b) 

1.'rne=2 [ (Biiu=+Bizu,,+B,suzz) ~ ~ + B s s ~ ~ ~ ~ ~ l ~  

+ (Bz,u,+B~zuyy+Bzs~zz) 1,2+BeeuX,lsl, 

+ (B3iu,+B3zuu,+Bs,uz.) 1,2+B44~,~l,l~l. ( 2 ~ )  

Here p is the density of the crystal; m = m, + m,; 
1 =m,  -m2; m, = M, /21MjI, [Mil = M p  arethevaluesof 
the magnetization of the sublattices ( j  = 1,2); HE is the ex- 
change field; Dl  and D, are the Dzyaloshinskii fields; A , ,  C, 
andA,, C,, G the fields of the bilinear and biquadratic anisot- 
ropies; C, and B, are the elastic and magnetoelastic moduli. 
The coordinate axes x, y, z are directed along the axes a,b,c, 

respectively, of the crystal. The elastic anharmonism proper 
is not taken into account in Eqs. (2b), since, under the condi- 
tions of our experiment, it turns out to be small in compari- 
son with the anharmonism introduced into the elastic sys- 
tem by the magnetic system. For this same reason, we can 
neglect the geometric nonlinearity in the strain tensor u, 
and take 

~~=~/~(au,~a~,+au,/a+,). 

We shall carry out calculations as applied the experi- 
ment described above for the case of the a(r4)-phase in the 
field H = (0, H,, Hz). The calculation for the c(r,)-phase is 
analogous and differs from the a-phase only in the notation 
(I; and r4 are defined, for example, in Ref. 9). 

It is convenient to go from the variables m and 1 in Eqs. 
(2) to the new variables 

The quantities my' and rnp are the components of the vectors 
m, and m, in the "intrinsic" set of coordinates bound to the 
equilibrium directions of the magnetizations MI, and M,,, 
while the axes f ,  and f 2  are directed along M,, and M,,, 
respectively. 

The transition from the x, y,z representation to the 
g, 7, f representation is realized by a transformation con- 
sisting of two rotations: 

%==*rn:v cos 8-rnvqv sin 0, 

mVY=mVEv cos 9- (mvcv sin B*m,qv cos 8) sin 9, (4) 

mVL=mVEv sin 9-k (m:~ sin &m,% cos 8) cos -$. 

The upper sign in (4) corresponds to the transformation x, y, 
Z- J1, 7,, f ,; the lower corresponds to x, y, z-g2, v2, 6,. 
The usual normalization conditions 

(m, 1) so, m2+12=1 ( 5 )  

for the variables m;.. take on the form 

(rnVEV)'+ (rn,q,)2+ (mvt*.)Z=l/p, v=l ,  2. (6)  

It is evident that the small oscillations of the components rn? 
are quadratic in m5;and mp; therefore, the condition (6) is 
conveniently rewritten in the form 

m.,tv= ['/&- (m,Ev) 2- (my") 2]'h='/2- (m:~)~- (myqv)Z. (7) 

Thus, the expression for the energy density can be writ- 
ten with the help of (7) in the form of a function W(A9,  &", 
2 6 ,  2") of four (instead of the initial six) "magnetic" varia- 
bles. From the equilibrium conditions 

it is not difficult to obtain the equilibrium values of the cant 
angles, which in the case of a weak magnetic field (H(2HE) 
are 

0% (Hz+ D3)  HE, $m-Hw/ (D3+Hz). (9) 

The quadratic part F K' of the magnetic energy density has in 
the notation of (3) the form 
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where 

It is seen that in the case Hy = 0 ( @ = 0) the variables sepa- 
rate. Equation (10) can be further simplified by transition to 
the Hamiltonian variables (such an approach is completely 
analogous to second quantization): 

followed by diagonalizations with the help of the u,  v trans- 
formation 

a=u1c+vic*, b=u,d+v,d'. 

The quadratic form (10) becomes 

F?' =2Mo (Qtc*c/y+Q2d'd/y), (12) 

where 

Qt=7 [Hz (Hz+D,) +2 (Ds-Di) (Hz+Ds) 

are the frequencies of the quasiferro- and quasiantiferromag- 
netic branches, respectively, of the spin-wave spectrum; y is 
the magnetomechanical ratio; 0, ,,, and 0, ,,, are the mag- 
netoelastic gaps in the spectrum of the spin waves for which 
expressions are given in Ref. 16. 

The variables A", Y a  are expressed in terms of c, c* 
and d, d * in the following fashion: 

The quasiferromode of the spin waves is strongly con- 
nected with the sound, since this mode softens at the point of 
the a 4  phase transition. The upper branch of the spin waves, 
remaining of high frequency, is weakly coupled with the 
sound; however, in the presence of the component H,, of the 
external field, the modes become mixed, and this can be re- 
flected in the character of the dynamical magnetoelastic 
coupling. 

The inequality 0 > a : ,,, is the stability condition for 
the considered magnetic field (1 /la), while the point 
0, = a,,,, corresponds to the a-ac phase transition, since 
this is a second-order transition. The linear magnetoelastic 
dynamics of the orthoferrite at H = 0 was investigated 
theoretically in detail in Ref. 16. In the presence of the field 
H = (0, H,, Hz), the temperature T2 of the a-ac transition is 
shifted: 

while the c-ac phase transition vanishes as such, since the 
symmetry of the system is the same on both sides of T,(O) at 
Hz #O. The equation for the speed of the sound-like wave 
(with polarization u,) in the a-phase, obtained in Ref. 16 
and given by 

remains valid also at H = (0, Hy,  Hz) if we can write the 
AFMR frequency entering into it in accord with (13). 

The nonlinear phenomena of the considered system at 
low (ultrasonic) frequencies are due to the anharmonism of 
the magnetoelastic coupling of the form 

~ $ , 2 ' = 2 [  (B3t -BII)  ulx+ (BjZ-BIz) u",+ ( B ~ S - B ~ S )  ~ z z I  (A")2- 
(17) 

Because of the linear magnetoelastic coupling, which 
has the energy 

FA:) =2B55uxpdq, (18) 

the variable strain u,, excites nonresonantly oscillations of 
the variable quasiferromode (since the ultrasonic frequen- 
cies are much smaller than those of the spin waves). From the 
condition d F / d A v  = 0 it is not difficult to obtain 

dq=-B55 (y/Qi) '  (HdMo) GZ. (19) 

Substituting (19) in (17), we find that the magnetoelastic cou- 
pling leads to the effective nonlinearity in the elastic subsys- 
tem 

Fe,,=2B,5' (7IQi) (HEIMO) [(Bsi-Bt ,)  U- 

+ (Bsz-Biz) urn+ (Bs3-Bi3) u,,] u,,2. (20) 

As applied to the experiment described above, let us 
consider an initial sound wave polarized along the z axis, 
with frequency w(f2 and wave vector kJJx  

u,,=L/2~ei("-kz)+ C.C. (21) 

This wave is an external action for the magnetic subsystem in 
the approximation in which the reaction of the magnetic 
subsystem to the elastic system is small. 

The equation of elasticity in this case has the form 

It is important to take it into account that in a real experi- 
ment with a sample of finite dimensions, excitation of trans- 
verse strains u, (t,x) inevitably produces small longitudinal 
components: 

Uaz=XiUzz,  Uw=Xz%z, uzz=XsUxz ( ~ 1 , 2 . 3 ~ i ) .  (23) 

This takes place as a result of the diffraction of the sound 
beam, and can also occur upon misorientation of the wave 
vector k or (and) the polarization U relative to the x and z 
axes, respectively (we shall not consider specially chosen be- 
veled crystals in this paper). Solving (22) by the method of 
slowly changing amplitudes with the boundary condition 
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u,, 1, = , = 0, and after a number of simple calculations, we 
obtain the equation for the amplitude of the strain in the 
second harmonic: 

where L is the length of the sample. 
The equation for the amplitude u,, of the second har- 

monic in the c-phase can be obtained by the substitutions 
D3 ct Dl, A ,  tt C,, Hz t, - Hx in Eqs. (13) and (24). 

In the case H, # O  the spin modes are mixed [see Eq. 
(lo)], but in the approximation linear in $this does not affect 
the frequencies of the AFMR, as is easy to show. The ensu- 
ing additional contribution (proportional to Hy ) to the effec- 
tive nonlinearity of the elastic subsystem, due to the anhar- 
monism of the magnetoelastic coupling, is small in the ratio 
(R,/R,)2<1, since it is determined by processes of linear 
transformation of both the quasiferro- and also the quasian- 
tiferromagnetic branches of the wave spectrum into sound 
waves. 

In principle, another mechanism of effective acoustical 
nonlinearity is also possible due to the "purely magnetic" 
anharmonism F',' (terms of the form ( A Y ~ ) ~ ~ ~ ,  (AV)2Ag 
and so on in the free energy) in conjunction with the pro- 
cesses of linear transformation of spin waves into sound-type 
waves (19). However, as analysis shows, no such mechanism 
occurs within the framework of the considered model, be- 
cause of the rather high symmetry of the magnetic and mag- 
netoelastic interactions. 

6. DISCUSSION OF THE RESULTS 

We first consider the case H = 0. The very existence at 
H = 0 of a second-harmonic signal supports the conclusions 
of the previous section as that longitudinal strains are pres- 
ent in the initial sound wave in addition to the basic shear 
(u,) (at least one of the coefficients~~ in (23) is different from 
zero). The experimentally observed temperature dependence 
u,, a A T - 2  agrees well with the theoretical formula (24), 
since the difference of the constants of the anisotropy 
(A, - C,) is proportional to Tnear the spin-flip phase transi- 
tions, whence it follows that 0: - R :,,, a AT when ac- 
count is taken of (13). 

We now obtain a numerical estimate of the efficiency 
u,,/u, of the transformation in accord with (24). We set 
k- lo3 cm- ', C,, - 1012 erg/cm3, Bu - 5 X lo7 erg/cm3, 
HE/Mo-  lo4, L-  1 cm, R,/y-3x lo3 Oe (at A T =  1 K) ,  
and u- lop6. The estimate gives u,,/u, - 102x. 

Thus, the misorientation of k relative to the a axis by an 
anglex- lo, which arises as a result of the diffraction of the 
sound beam, is quite enough for the explanation of the ob- 
served value u,, /u, - 1. This allows us to predict that when 
specially chosen cuts of the crystal TmFeO, are used the 
efficiency of the synchronous generation of the second har- 
monic should increase by 10-100 times. In particular, for the 
longitudinal quasisound wave, propagating in the T ,  direc- 
tion (the notation is that of Ref. 17), an estimate of the pa- 

rameter r of the effective "phonon-phonon" interaction at 
A T-0.1 K givesr EC?~~/C, - 105. Such a strong acoustical 
nonlinearity that depends on the temperature and (or) the 
magnetic field [see (24)] can be of interest for technical appli- 
cations. 

We now discuss the case H #O. The temperature and 
field dependences of the observed second-harmonic signal 
(u,, a Hy /A T 3, suggest the presence of an effective acousti- 
cal nonlinearity mechanism that does not find its explana- 
tion within the framework of the theoretical model consid- 
ered. Such a temperature dependence of the second 
harmonic signal can be explained if we assume the presence 
in the magnetic energy of an anharmonism of the form 

(H is a dimensionless parameter), which, in conjunction with 
the processes of linear transformation of the spin wave into a 
sound wave (19) leads to the following expression for the 
amplitude of the strain in the second harmonic: 

At typical values of the parameters (see above, as well as 
M0z420 Oe and Hy = 5 X lo3 Oe), the estimate (26) yields 
u,,/u, - 10~1~. 

Thus, in order that the Eq. (26) agree in order of magni- 
tude with the experimental u2,/u, -0.1 it is necessary that 
x -  Against the background of the magnetic anhar- 
monism proper, which determines the interaction of three 
spin waves of the quasiferromagnetic branch of the spec- 
trum: 

FA"= -M,H, (m) 2d~, (27) 

which occurs in the nonlinear part of the magnetic energy in 
the model of a two-sublattice AF (but does not lead to an 
effective nonlinearity-see the previous section), the anhar- 
monism (25) is smaller by six orders of magnitide. The reason 
for the appearance of the "purely magnetic" nonlinearity 
(26) can be the interaction of the subsystem of Fe3+ ions with 
the subsystem of rare-earth ions whose surrounding has a 
much lower local symmetry. 

The features of the behavior of the second-harmonic 
signal near the transition point can apparently be attributed 
to the reaction of the second harmonic wave to the primary 
wave, which becomes important at comparable intensities of 
the two components. Under these conditions, since the con- 
sidered waves are propagated with different phase velocities, 
the u,, (u, ) should have an oscillatory character. l 8  

CONCLUSIONS 

1. Rare-earth orthoferrites near spin flip are a conven- 
ient object for observation and investigation of nonlinear 
magnetoacoustical effects. 

2. Two mechanisms of generation of the second har- 
monic are delineated: (a) The first, due to the magnetoelastic 
nonlinearity, is characterized by values of the modulus C ';" 
up to 1017 erg/cm3. The value of the doubling effect and its 
temperature dependence in the absence of a component of 
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the magnetic field along the "difficult" axis (H,, = 0) are well 
described by the phenomenological theory. b) For the expla- 
nation of the second, "purely magnetic" mechanism of non- 
linearity, which appears against the background of the first 
at H,, #O, it is necessary to carry out a theoretical analysis on 
a more complicated model of an antiferromagnetic-evi- 
dently with account taken of the effect of the spin subsystem 
of the rare-earth ions. 

3. An anomalous behavior of the signal in the region of 
strong nonlinearity has been observed, a full explanation of 
which probably calls for a theory outside the framework of 
harmonic analysis. 
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