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The T, @) and T,  (n) phase diagram is constructed for a number of anisotropic systems that 
undergo electronic or superconducting transitions to an incommensurate structure of the soliton- 
lattice type (T,  is the critical temperature of the  transition,^ is the chemical potential, and n is the 
number of particles). It is shown that at all temperatures the solution obtained by Brazovskii et al. 
[JETP Lett. 31,456 (1980)l and by Horvitz [Phys. Rev. Lett. 46,742 (1981)l at T = 0 in the one-di- 
mensional Peierls model is exact also in a number of two- and three-dimensional models. The 
transition between a commensurate phase and a soliton-lattice phase is considered. This is a first- 
order transition at fixed p and of second order at fixed n. The line of this transition and the 
superheating and supercooling lines are obtained. The results are used to analyze the experimen- 
tal data, which points to formation of soliton lattices in antiferromagnetic chromium and in quasi- 
one-dimensional systems with spin-Peierls transition. The realizability is considered of soliton 
structures in quasi-one-dimensional superconductors of the (TMTSF),X type, where the ex- 
change field plays the role of the chemical potential. 

PACS numbers: 74.10. + v, 71.30. + h 

I. INTRODUCTION 

Substantial progress was made recently in the study of 
the properties of quasi-one-dimensional systems that un- 
dergo a Peierls-type structural phase transition. In Refs. 1 
and 2 the structure of the ground state was obtained for the 
continuum Peierls model at T = 0 and with bands slightly 
deviating from half-filled. This structure has the form of a 
soliton lattice with a period that is not commensurate with 
period of a purely doubled phase. 

It is shown in this paper that the solution obtained in 
Refs. 1 and 2 is exact also at finite temperatures. This makes 
it possible to construct the phase diagram and find the tem- 
perature of the transition from the doubled phase into the 
soliton-lattice phase. This is a second-order phase transition 
in the case of systems with a fixed number n of the particles, 
and a first-order transition if the chemical potential p is 
fixed, except for two special points-the beginning and the 
end of the T,  (p) curve. 

We discuss below the features of the phase diagrams for 
a number of physical systems, but we are mainly interested 
in the case of a fixed chemical potential. An important cir- 
cumstance is the possibility of obtaining exact solution for 
certain two- and three-dimensional models. We consider the 
following systems. 

1. Metals with almost flat sections of the Fermi surface, 
which become congruent upon translation by a vector Q. It is 
assumed that in one of the directions the width WII of the 
electron band that forms the flat section is large compared 
with the band width W, in the transverse direction. The 
presence of Fermi-surface sections other than the congruent 
ones leads to preservation, as a whole, of the three-dimen- 
sional character of the electric and maganetic properties of 
the metal even upon the onset of one-dimensional charge- or 
spin-density waves (CDW or SDW). This situation obtains, 

for example, in chromium. The constants of the interelec- 
tron and of the electron-phonon interactions are also suffi- 
ciently isotropic, although the electron motion near the flat 
sections of the Fermi surface is quasi-one-dimensional. In 
this case transverse (to Q )modulation of the CDW or SDW is 
possible, in contrast to Ref. 3, where soliton solutions at 
T = 0 are considered in a quasi-one-dimensional Peierls 
model with a strongly anisotropic coupling constant. 

2. Quasi-one-dimensional organic compounds that un- 
dergo spin-Peierls  transition^.^ Within the framework of the 
XY the role of the chemical potentialp responsible 
for the appearance of the soliton lattice is assumed by an 
external magnetic field H. 

3. Quasi-one-dimensional superconducting in an ex- 
changefield, which undergo a transition to the inhomogen- 
eous Larkin-Ovchinnikou-Fulde-Ferrell (LOFF) state.697 In 
this case the "non-one-dimensionality" must be large 
enough to separate the superconducting and structural in- 
stability channels (in all real quasi-one-dimensional com- 
pounds this condition is satisfied with large margin), but at 
the same time not strong enough to preserve the quasi-one- 
dimensional character of the electron spectrum. More pre- 
cise criteria for the realization of a soliton lattice in quasi- 
one-dimensional superconductors are given below. 

4. Two-band anisotropic semiconductors that go over 
into an "excitonic dielectric" state. The semiconducting 
character of the spectrum is assumed to be due to interband 
hybridization, and the band extrema are assumed to coincide 
in momentum space. In the absence of hybridization the sys- 
tem would be a one-dimensional semimetal, while the trans- 
verse mass and the effective two- or three-dimensionality are 
governed by the hybridization parameter y,,. Such a system 
can go over into a ferroelectric or current state if the order 
parameter is real or imaginary, re~pectively.~ 
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2. BASIC EQUATIONS FOR THE CASE OF CDW AND SDW IN 
THE ONE-DIMENSIONAL APPROXIMATION 

We consider first a model of a metal with almost flat 
sections of the electron and hole Fermi surfaces. The elec- 
tron spectrum takes near the Fermi surface the form 

et ( k )  =s ( k z ) + q  (k , )  -pi, EZ (k+Q)  =-E ( k z )  + q  (kL)+p, ,  

(1)  
where Q is a vector in the direction of the z axis and makes 
the electron and hole Fermi surfaces geometrically congru- 
ent at 7 = 0 andp, = p,. The quantity ~ ( k ,  ) is the transverse 
corrugation of the Fermi surface and has in the strong-cou- 
pling approximation the form 

q (k , )  = Wx cos k,a,+ W y  cos k,a,. (1') 

For simplicity we assume hereafter that W x  = W Y  = W 1 .  
All the remaining symbols are standard. 

A similar model was considered in Ref. 3 under the 
assumption of a drastically anisotropic effective interaction 
constant, when the order parameter is only a function of the 
coordinate z. In the case of an almost isotropic interaction 
constant the order parameter can change also in the trans- 
verse direction. At lp - p, / = p< W , ,  , W, < W 11 the elec- 
tron and hole Fermi surfaces weakly corrugated planes. The 
model Hamiltonian of such a system is 

where g is the effective interaction constant and depends 
little on the momenta. It is assumed that W, )A (r), so that 
the onset of one-dimensional CDW or SDW does not violate 
substantially the three-dimensionality of the system. 

The eigenfunctions of the Hamiltonian (2) satisfy the 
Schrodinger equation 

The exact eigenvalues En and eigenfunctions (r) can be 
obtained in the three-or two-dimensional case only for an 
extremely limited class of potentials, A = A ,eiQz . In the case 
of CDW the solution with the potential A = A ,eiQz corre- 
sponds to pure doubling (Q = v/a, ) in the Peierls model. In 
the case of SDW this solution describes a linearly or helicoi- 
dally polarized antiferromagnetic structure. More compli- 
cated solution types are connected with slow spatial modula- 
tion of the order parameter A (r). We separate A (r) and 
$,,,, (r) the "fast" factors 

A ( r )  =A ( r )  exp (iQz+iQ,p,) , p,=ix+ j y ,  

Y , , , , (r )  =cp,,,,(r) exp [*iQz/2+iQ,pL/2].  
(4) 

We assume next that A (r) is a purely real function that de- 
pends only on the coordinate z. By the same token we ex- 
clude from consideration for the time being solutions with 
slow spatial modulation in a transverse (relative to thez axis) 
directions. These solutions will be considered later. 

It is convenient also to transform to the Fourier compo- 
nents q ~ , , ~  (z, q1 ) with respect to the transverse coordinate. As 
a result we have the following system of equations: 

After transforming to the sum and difference 

qa='Iz[q ( Q A + Q ~ / ~ )  * q (qA-QA12) I 
and substituting 

( p i . = = f t , 2 ~  exp z - z [.:; I 

expressed in standard fashion in terms of the eigenfunctions 
of the Hamiltonian (2), we easily obtain the self-consistency 
eauation 

we arrive at a system of equations for the functions f ,,,, (q, ): 
< ,  

where En are the eigenvalues of the purely one-dimensional 
Hamiltonian obtained in continuum Peierls model after dis- 
carding the "fast" exponentials with the band close to half- ('I filled; n(x) is the Fermi distribution function. 

It was assumed in Ref. 3 that Q, = 0, in view of the 
Thesystem (7) is obtained from (5) with allowance for (6) abrupt decrease of the interaction constant at Q, #O. In our 

by squaring the right and left parts. It is analogous to the case the effective constant depends little on Q,, so that the 
purely one-dimensional case, but now E is replaced by vector Q, should be chosen such as to minimizen (at fixedp) 
E - 7 + (q, ). By varying the thermodynamic potential a, or F (if the number n of the particles is fixed). The function 
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)I+ (QJ = WL cos quau cos - Qrax + w ~  cos qzaz cos - 
2 2 

vanishes at Q, a, = Qy a, = IT (this corresponds to pure dou- 
bling in the trasverse direction). 

A formal analysis of the functions R (q+)  and F ( q + )  
shows that at all temperatures T the conditions q + = 0 real- 
izes the state that is energetically most favored at W, )A 
(this relation is assumed satisfied in the model considered). 
Such a result is obvious, for the condition q +  = 0 corre- 
sponds to the best geometric congruence of the electron and 
hole Fermi surfaces. 

For two- and three-dimensional systems with CDW or 
SDW at WII > W, >A the problem of findingd (z) can thus be 
reduced to one that is exactly solvable at all temperatures. In 
the case of the Peierls model it is necessary also to take into 
account the law of conservation of the number n of the parti- 

ized (A, is the superconducting gap at T = 0). The situation 
changes in the exchange field, which plays the role of the 
chemical potential. It will be shown below that when the 
exchange field H exceeds a threshold value Hc = ~ A , / I T ~ ,  
the energy minimum corresponds to the solution A (z) - sn z 
of the soliton-lattice type. The appearance of an inhomogen- 
eous state of superconductors in an exchange field was pre- 
dicted in Refs. 6 and 7, but neither an exact solution for A (z) 
nor the field of the transition from the homogeneous into the 
inhomogeneous state could be found there. In quasi-one-di- 
mensional superconductor the problem can be solved exact- 
ly and the (T, H)  phase diagram of the inhomogeneous state 
can be constructed, in contrast to the three-dimensional 
case.6s7 We write down the Bogolyubov equations for the 
functions8 (u, , v, ) [the equations for (u, , v ,  ) are similar in 
form apart from the substitution H-+ - HI: 

cle~. ' -~ In our case we can consider also a situation wherein it E U , = ( ; - ~ ) U + - A ~ ~ ,  - E V ~ = ( ^ E + ~ ) U ~ + A * U , .  
is the chemical potential ,u which is fixed (this is valid if (9) 

electron-hole pairing takes place only on a small part of the Here A (z) = A (z) exp(iQ,p, ) (only solutions of this type are 
Fermi surface or there exists an additional zone with large considered), & = p ,  2/2m + 77(P1 ), h = pBH. We make the 
density of states on the Fermi surface). substitution: 

3. BOGOLYUBOV-DE GENNES EQUATIONS FOR QUASI- ut=irt+(z. pI)exp (-ip,z+i- 
ONE-DIMENSIONAL SUPERCONDUCTORS IN AN 2 
EXCHANGE FIELD 

The equations describing a Peierls transition in a system 
with a nearly half-filled band are analogous to the Bogolyu- 
bov-de Gennes equations in the quasiclassical approxima- 
tion in the theory of ~uperconductivity.~ All the exact solu- 
tions for the order parameter A (z) are therefore applicable to 
one-dimensional superconducting systems in the self-consis- 
tent-field approximation. The ground state, however corre- 
sponds to the solution A = const. This means that all the 
solutions of the soliton type could correspond only to excited 
states of the system in quasi-one-dimensional systems the 
energy of such excitations turns out to be infinitely large, 
since the purely one-dimensional solution A (z) has an energy 
NE,, where N is the number of filaments and E, = 2 A d r  is 
the soliton energy. These solutions can therefore not be real- 

(10) 
The equations for ii, +, fi, + and ii, -, 6, - are similar, and 
we retain hereafter only the equations for ii, +, 6, + and omit 
the superscripts + and - . 

Transforming to Fourier components with respect to 
the transverse coordinatep, , we obtain 

It can be seen right away that the system (1 1) is equivalent to 
the case (5) for CDW and SDW, accurate to the transforma- 
tion Q, - IT-Q, . The equation for the superconducting or- 
der parameter A (z) is also obtained from (8) by a suitable 
substitution. Thus, in the case of superconductivity, even 
when no account is taken of the current connected with the 
choice of A in the form A (r) - exp(iQ,p, ), the most suitable 
solution in accord with $2 is the one with Q = 0. The pres- 
ence of a current when the phase of the order parameter is 
not fixed (i.e., Q, #O), leads to an additional energy loss. 

We discuss now the feasibility in principle of realizing 
one-dimensional soliton structures in an exchange field in 

quasi-one-dimensional superconductors (it is assumed that 
WII ) W, )A, so that this relation makes the mean-field the- 
ory applicable). The upper critical field Hc2 ', connected with 
the orbital effects in an isotropic superconductor is inversely 
proportional to the coherence length Hc2 ' - @,/CO2, where 
fo  = vF/A0 and Go is the flux quantum. In the quasi-one- 
dimensional case, when the field is directed along the z axis, 
the upper critical field is Hc2 " - @df l  ', where CL = v, /Ao 
and v, is the velocity in the transverse direction. Thus, 
Hc2 " -Hc2 O( WII / Wl )2 and can exceed substantially the 
paramagnetic limit: Hc2 ")H, -A0/pB. The influence of 
the exchange field is in this case decisive in fields H-H,, 
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whereas the orbital effects in these fields are insignificant. A 
similar situation is realized apparently in organic quasi-one- 
dimensional superconductors such as (TMTSF)J (Ref. 10) 
(we have in mind the case of a field parallel to the z axis in a 
sample with a transverse dimension along x smaller than 
A,). We are dealing throughout with magnetic fields 
pBH(wD (aD is the Debye phonon frequency), where the 
BCS theory is valid at any rate. As will be seen from (T, H)  
phase diagram, superconductivity always sets in in such 
fields at a sufficiently low temperature. 

4. SEMICONDUCTING MODEL WITH HYBRIDIZATION: ROLE 
OF THE PHASE OF THE ORDER PARAMETER 

The Hamiltonian of the two-band model with interband 
hybridization is of the form9 

In the models considered above the phase of the order pa- 
rameter A was assumed fixed if it was possible, without loss 
of generality, to regard A as a real quantity. The situation is 
different for the Hamiltonian (12). Let y12 = PI2( - id /dpl ), 
as is the case in the k-p approximation for the Kaane spec- 
trum in the two-band model.9 The hybridization vector P12 
can be chosen to be purely imaginary (PI, = - PI,), but 
then the phase A (z, p, ) becomes real. Three-dimensionality 
of the spectrum is ensured in the model (12) only by the hy- 
bridization. Carrying out the procedure of "squaring" the 
Hamiltonian (12) in analogy with $2, we can obtain the fol- 
lowing system of equations for its eigenfunctions p,,,, (z,q, ) 
under the assumption that d depends only on z: 

Ifd12 is a real order parameter d ,, = A,,, the system (13) 
reduces again to the one-dimensional exactly solvable case 
withthesubstitutionE '-+E - / yl2(q1)l2. ~ u t i f ~  12i~imagi- 
nary and A = - A2,, it is impossible to reduce the problem 
to an exactly solvable second-order equation, in view of the 
presence of crossover terms of the type y12(qL g 2 ] .  A solu- 
tion in the form of a soliton lattice does not satisfy the self- 
consistency equation in this case. It appears that in the class 
of single-period potentials there are no analytic solutions at 
all for the case of an imaginary order parameter, although we 
are unable to offer a rigorous proof of this statement. It is 
curious that approximate solutions can be obtained at 
)yl2)) )A ) and I y12J ()A I by perturbation theory. This makes 
it possible to find (at the accuracy indicated) the structure of 
the current state that arises when the order parameter is 
imaginary.9*10 This question, however, is outside the scope of 
the present paper. 

5. PHASE DIAGRAM AND LINE OF TRANSITIONS INTO THE 
SOLITON LATTICE STRUCTURE 

Thus, for a large class of models of electronic phase 
transitions, including the quasi-one-dimensional supercon- 
ducting transition, the problem of finding the spatial depen- 
dence of the order parameter can be reduced to an exactly 
solvable model at arbitrary temperatures. It is natural there- 
fore to investigate the temperature phase diagram and find 
the region of existence of a soliton lattice. Greatest interest 
attaches to the case with fixed chemical potential p (or its 
analog, a fixed magnetic field in the case of spin-Peierls and 
superconducting transitions). An analytic treatment is possi- 
ble at TgA, or A ,( T, while in the intermediate case a nu- 
merical calculation is necessary [ A ,  is the amplitude of the 
function A (z)]. 

We consider first the case TgA,. The thermodynamic 
potential can then be expanded in the parameter T/Ao, 
where A, is the value of the order parameter at T = p = 0. 

Summing with the aid of the known density of states,' 
we get 

1 T "  ' k  
0 = 9 ( 0 )  +2Ao2l%'(O) {- (?;) (c) (14) 

X exp [ - ~ o + ' p '  ] ( ; -- 
T 

where 
y'= (I-y""", 6= ( 1  p1n/2A0) -1, L=ln (417') 

Here D (0) is the potential of the normal phase. 
When deriving (14) we also expanded in powers of y', 

since we are interested in the region near the line of the tran- 
sition from the commensurate structure ("doubled" in the 
case of a Peierls or spin-Peierls transition, homogeneous in 
the case of a superconductor) into an incommensurate one 
(i.e., into a soliton-lattice structure). With increasing p the 
commensurate phase becomes unstable-the vanishing of 
the coefficient of 1/L (the principal term of the expansion in 
y') in (14) determines the line of absolute instability Tc2 (6) of 
the commensurate phase: 

However, the presence of the term - 6 2/2L in (14) 
makes the transition into the soliton-lattice state a first-or- 
der transition. Thus, at a temperature Tcl (6) > Tc2 (6) a soli- 
ton lattice with finite soliton density (yl#O) appears jump- 
wise: 

From (14) we also obtain easily the superheat line Tc3 (6) of 
the soliton lattice: 

Tcs=Tcz [ 1+2 (Tci-Tcz) ITczI. (17) 

To investigate the behavior of the system at A,(T it is 
convenient to use a series expansion in terms of A (2) and its 
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derivatives (the Ginzburg-Landau functional). In the vicini- 
ty of the Lifshitz point T * = 0.3 lA,,p* = 0.6044, (Ref. 11) 
it is necessary to retain the terms A 6 ,  (dA / ~ z ) ~ A  and (d 'A  / 
d ~ ~ ) ~ .  The Lifshitz point is determined by the intersection of 
the line of transitions from the normal phase into the dielec- 
tric (superconducting) one and from the commensurate 
phase into the soliton-lattice phase. Since the solution 
A (z) = A, sn z is exact at all temperatures, it can be substitut- 
ed in the corrresponding functional. The result is 

The coefficients a, A, and B are expressed in terms of di- 
gamma functions (see, e.g., Ref. 12): 

a=ln (TIT,) +40-$ ('/r), A= 1 $2 118, B=+'/24, 

$(I) is the digamma function. 
Analysis of (18) leads to the following result: the transi- 

tion from the normal to the soliton-lattice phase is of second 
order. The transition line is given by the relation ak, 
T )  = A 2/B; near the transition we have A ,4 and y 4 ,  but 
A,/y = Q = const. The superheat line of the commensurate 
phase is given by 

a(T, , ,  p)=0.37AZ(Tc2, p)B-'. (20) 

The transition from the commensurate (homogeneous in the 
case of a superconductor) phase into the soliton-lattice phase 
is of first order along a line T,, that lies somewhat lower than 
Tc2 : 

Finally, the supercooling line T,, (6) is given by the relation 

a(T, , ,  p ) -a (TcZ ,  p) =3.10-7AZ(T,2, p) B-I. (22) 
The (T,p) phase diagram is shown in Fig. 1. 

The intermediate part of the transition line from the 
commensurate to the soliton-lattice phase is drawn approxi- 
mately. In the case of a fixed number of particles n, in the 
Peierls model, the transition between the doubled and soli- 
ton phases is of second order; near the Lifshitz point the 
equation for T (n) is given by the relation 

FIG. 1. 

.An approximate T (n) line is shown as a dash-dot line in Fig. 1 
(in this casep should be taken to mean n). 

6. ROTATION OF SOLITON LATTICE IN TWO- AND THREE- 
DIMENSIONAL SYSTEMS 

We consider now a more general class of solutions for 
A (.z,p, ) in two-or three-dimensional systems. Let the "slow" 
part of A (z, p,) depend only on one coordinate 7 along a 
certain 8 direction making an angle 8 with the z axis. We 
consider for simplicity a two-dimensional case. We trans- 
form into a coordinate frame (7, c ) connected with the (z, y) 
system by an ordinary rotation: 

q=az+ by, b=ay-pz, a=cos 0, p=sin 0. (24) 

We consider first the case of flat sections of the Fermi surface 
and seek A (z, y) in the form 

A(z,  Y )  = ~ ( q ) e x p [ i Q z + i Q ~ v l .  (25) 

The Fourier transforms of the wave functions p,,, with re- 
spect to the variable 6 are conveniently represented in the 
form 

g ~ ,  z (9 .  ~ L ) = @ I .  z ( q ) e x ~ [ i k t  (G-v tdvJI  ; (26) 

v,= W,a, sin (Q,a,/2) = W,a,. (27) 

With respect to the functions G,,, (7) we obtain a system of 
equations completely analogous to (5 ) ,  with the substitution 
uF-v, . Taking the equality a2 + P = 1 into account, as 
well as the fact that the energy gain in proportional to vq , it is 
easy to verify that the most convenient solution is 

mar max 
v,  = ( v ~ ~ + v ~ ~ )  "*) p=vL/vn . (28) 

This means that in the two-dimensional case there is realized 
a soliton lattice rotated through an angle 8, 
= arcsin(u, /u~) away from the z axis. 

Similar reasoning in the three-dimensional case yields a 
soliton-lattice rotation angle: 

&=arcsin [ 2 ~ ~ ~ /  (vFZ+2ijLz) 1 F,= W,a, (29) 

(for simplicity we assume that a, = a, = a, ). 
It is noteworthy that all the equations are valid if 

v, (up, i.e., in the case of an open Fermi surface. It was 
assumed that only a small region of transverse momenta 
near Q, is significant, so that the relations A( W, ( W,, are 
satisfied. If, however, W, - WII , i.e., the system is isotropic, 
nothing definite can be said concerning the A (z, p,) struc- 
ture. In the case of a superconductor in an exchange field we 
have u, = 0 and no rotation of the soliton structure occurs. 
We cannot, of course, guarantee the absence of some specific 
two-dimensional exact solution, but it is hoped that in 
strongly anisotropic superconductors the one-dimensional 
solution considered above is energetically most favored, in- 
asmuch as in the purely one-dimensional case it is precisely 
this solution which realizes the ground state. 

In the case of the model with hybridization, we also seek 
a solution ford in the rotated coordinate system (7,c ). The 
wave functions q , ,  are presented in the form 
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where 

F O ~  (7) we obtain a system of equations similar to (1 3) but 
with the substitutions v,-+6,, PI,-+PI,, where 

cq= [ ~ F ' a ~ f  I P i Z  1 2 f i 2 ]  "', P < Z = P ~ Z V F I C ~  (32) 

The presence of hybridization leads to an energy loss and 
hinders the phase transition; on the other hand, the most 
favorable for the transition is the presence of a maximum 6,. 
It is easily seen from (32) that the maximum value of 6, and 
the minimum hybridization PI, are reached simultaneously 
at f l =  0, i.e., in the absence of soliton-lattice rotation. 

7. CONCLUSION 

We have constructed a phase diagram for an entire se- 
ries of physical models in which a transition into the soliton- 
lattice state is possible. The transition from the commensur- 
ate ("doubled") phase into the soliton phase is of first order 
at finite temperatures and fixed p ,  but of second order at 
T = 0. Recent numerical calculations using a large number 
of harmonics confirm this conclu~ion.'~ We note also that 
the result of Ref. 14, that the transition is of second order at 
fixedp, is wrong. There exist at present a number of experi- 
mental data in evidence of a transition into a soliton-lattice 
phase in real systems. Thus, a transition into a state with an 
incommensurate SDW in chromium and its alloys is accom- 
panied by the onset of higher harmonics of SDW and CDW. 
Analysis of these harmonics,15 based on neutron-diffraction 
data, revealed a distinct modulation of CDW of the soliton 
type. The transition from an incommensurate into a com- 
mensurate (AF,-+AFo) structure in chromium alloys is of 
first order, in agreement with our present resuIts. We note 
that we are speaking only of an approximate comparison, 
since chromium contains an electron "reservoir" of finite 
size, (i.e., the case realized in intermediate between fixed p 
and n). 

Within the framework of the XY model a spin-Peierls 
transition in a magnetic field5 is similar to the Peierls model 
with fixedp. A transition to an incommensurate structure (a 

soliton lattice) in a magnetic field was observed in experi- 
ment: where a substantial difference was revealed between 
the static and dynamic magnetic susceptibilities near the 
critical field H (the latter was substantially smaller). Within 
the framework of the soliton-lattice theory this difference 
has a natural explanation: owing to the large mass of the 
soliton, the characteristic oscillation frequencies of the soli- 
ton lattice are quite low and in the dynamic regime the soli- 
ton lattice may be unable to attune itself to the field. 

Quasi-one-dimensional superconductors in an ex- 
change field can likewise turn out to be unstable to a transi- 
tion into a soliton phase A (z) - sn z. This is in fact the LOFF 
state-in quasi-one-dimensional superconductors it is possi- 
ble to obtain an exact solution of the problem of the transi- 
tion from the homogeneous state to the inhomogeneous 
phase. One can hope that such a state will appear in the 
quasi-one-dimensional organic superconductors 
(TMTSF)J (Ref. 10) in a field parallel to the chains. 

The authors thank S. A. Brazovskii, and L. N. Bu- 
laevskii for a helpful discussion of the results and for valu- 
able remarks. 
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