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The critical current and the current-voltage characteristic of a superconducting film whose width 
is large compared with the effective penetration depth of the magnetic field is obtained. It is 
shown that at the critical value of the current the nonvortical superconducting state becomes 
unstable and that vortex changes are generated at the edges of the films. The current-voltage 
characteristic of the film shows a voltage jump at a total current much higher than the critical 
value, and the film resistance ahead of the jump is small compared with the normal resistance. 
Pinning can lead to the appearance of voltage jumps also at small currents. 

PACS numbers: 74.40. + k, 73.60.Ka 

1. INTRODUCTION 

Destruction of superconductivity by current in thin 
films is attracting much interest of late. The transition from 
the norma state is "smeared" this case, so that there exists a 
large range of currents, higher than the film critical current 
I,, at which the film resistance is already different from zero, 
but is still lower than the normal resistance (the resistive 
state). 

The nature of the resistive state depends substantially 
on the relation between the width b of the film (the films 
usually are long strips of given width) and the coherence 
length f in the superconductor. In narrow films (supercon- 
ducting channels: b < f ) there arise the so-called phase-slip 
centers, at which a voltage is generated.'-' In broad films the 
magnetic film of the current generates on the edges of the 
film chains of Abrikosov vortices whose motion across the 
film leads to the appearance of resistance. 

In the present paper, this picture is used as the basis for 
finding the critical current and the current-voltage charac- 
teristic (CVC) of a broad superconducting film without an 
external magnetic field at temperatures close to critical. The 
width is assumed large both compared with { and relative to 
the effective depth A, of the penetration of the magnetic 
film into the film. The critical current is determined from the 
condition that the nonvortical current superconducting 
state (the Meissner state) be stable to small perturbations of 
the order parameter. Instability sets in at a certain value of 
the vector potential at the edge of the film, and the critical 
perturbation is found to depend periodically on the longitu- 
dinal coordinate. Such an analysis permits also an estimate 
of the time of the instability development that leads to gener- 
ation of the vortex chain at the film edge. 

To find the CVC we investigated the viscous motion of 
the vortices in the film. We used the hydrodynamic approxi- 
mation that becomes valid already at current cloase to criti- 
cal (if the degree of supercriticality is low). We have intro- 
duced the densities of the vortices and of the average current, 
which depend on the transverse coordinate, and write down 
the macroscopic equations that connect these quantities 
with the average electric field E in the film. We obtain thus 
the dependence of the voltage drop along the film on the total 
current I. 

When the current is increased the vortex density in- 
creases and the current distribution becomes more and more 
uniform. At a certain current value (considerably exceeding 
the film critical current I,) the current density becomes 
equal to the critical not only at the edges, where the vortices 
are generated, but also in the middle of the film. Although 
the distance between vortices is in this case still large com- 
pared with the coherence length (the vortex cores do not 
overlap), the vortical superconducting state becomes unsta- 
ble and the film goes over jumpwise into the normal state. 
We obtain the corresponding values of the current and of the 
voltage jump. 

We investigated also the effect of pinning on the critical 
current in the CVC of a broad superconducting film. To this 
end, a phenomenological pinning force was introduce into 
the equations, of viscous motion. This force has little effect 
on the vortex generation at the film edges, where the current 
density is high (equal to the critical density), but slows down 
the vortices and decreases thus the differential resistance of 
the film. At a certain value of the pinning force it becomes 
capable of stopping the chain of vortices at the center of the 
film, where the current density is lowest. At larger pinning 
the critical current increases, and a voltage appears jump- 
wise across the film, since stationary motion of a definite 
vortex structure sets in right away. The effect of the pinning 
on the transition of the film into the normal state is weak. 
The current density is everywhere large in this case and the 
principal role is played by the interaction of the transport 
current. 

2. CRITICAL CURRENT OF FILM 

So long as the value of the total current does not exceed 
the critical value of Ic ,  the film is in the Meissner state. The 
order parameter, the current density j, and the vector poten- 
tial A depend then in a definite manner on the transverse 
coordinatex, and the modulus of the order parameter differs 
from zero everywhere in the film. These relations are ob- 
tained from the Ginzburg-Landau equations, which are best 
written in dimensionless units: 

- 2  
x e~ V2F+F(1-F2-Q" =O, (1) 

rot rot Q=-F2QG (2) 8 (x) 8 (8-x). (2) 
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Here x,, = A,,/{ is the effective Ginzburg-Landau param- 
eter renormalized for a film of thickness d smaller than the 
magnetic-field penetration depth A (A,, = A */d ); the dis- 
tances are measured in units ofA,, (6 / b  /A,,); Fis the modu- 
lus of the order parameter and is measured in units 

AGL=[8n2T(T,-T)/7% (3)]"; 

Q=A-%=; vx 
is the gauge-invariant vector potential (,y is the phase of the 
order parameter) and is measured in units of po/2n6 (p, is 
the magnetic-field quantum). The film is a strip of width b, 
the transverse coordinate is measured from the edge of the 
film, and z is the coordinate perpendicular to the plane of the 
film (the film is assumed to be infinitely thin in this direc- 
tion). The right-hand side of Eq. (2) is the expression for the 
density of the superconductng current. 

The boundary conditions for the system (1) and (2) are 
the conditions for the vanishing of the derivative of the mo- 
dulus of the order parameter and of the transverse compo- 
nent of the current density at the edges of the film: 

aF/ax 1 ,,,, i=O,  Q, I ,=,, s =O. (3) 

Usually in the film &,%( and the Ginzburg-Landau 
parameter x, % 1. In this case, at distances large compared 
with ( from the edges of the film, the gradient term in (1) can 
be neglected, so that the modulus of the order parameter and 
the vector potential are connected by the relation 

FZ=l-Q2. (4) 

The distribution of the vector potential is obtained from 
Eq. (2), which must be solved at a given value of the integral 

(of the total current) and under condition that the magnetic 
field vanish far from the film (curl Q = 0 as x, z-a). The 
vector potential is directed along they axis and decreases 
monotonically along x from the edges towards the center of 
the film. Its value Q = Q,, (z = 0) in the film is obtained from 
the equation 

When finding the critical current we shall be interested 
in the distribution of the potential at distances small com- 
pared with 2 ,  (x( 1) from the film edges. In this region, the 
asymptotic solution of (5) is of the form 

The vector potential Qo at the edge of the film is determined 
the total current in the film I. 

We investigate now the stability of the Meissner state to 
infinitely small perturbations of the order parameter f and of 
the vector potential q. Such a question was first considered in 
Refs. 3 and 4. We use for our problem a method developed 
for the determination of the maximum magnetic field for 

superheating the Meissner state of a bulky supercond~ctor.~ 
Linearizing the system (1), (2) we have 

-3  
x.. VJj+i(l-3FZ-Q') -2FQy=0, (7) 

rot rot q=- (F2q+2i1.'Q) 6 (2 )  8 (x) 0 (6-2). (8) 

Equations (7) and (8) correspond to the condition that 
the second variation of the free energy vanish at the extremal 
point determined by the Ginzburg-Landau equations (1) 
and (2). The existence of nontrivial solutions of Eqs. (7) and 
(8) means that the extremum point is a saddle point and that 
the Meissner state is unstable. 

The critical perturbation turns out to be localized at 
distances from the film edge that are small compared with 
A,, . We can therefore substitute Eq. (6) and the correspond- 
ing expression (4) for the modulus of the order parameter in 
(7) and (8) to obtain the unperturbed potential. For the same 
reason, we can neglect the magnetic self-field produced by 
the perturbation of the potential q. This gives the connection 
between the components q, and q,, of the potential in the 
film: 

and makes it possible to neglect the component q, of the 
potential. The critical potential is found to depend on the 
coordinate y direction along the film. 

For each component of the potential of the critical per- 
turbation this dependence turns out to be stronger than the 
dependence on the transverse coordinatex, so that the corre- 
sponding derivatives can be omitted. 

Transforming to the Fourier representation with re- 
spect to the coordinate y (with a corresponding wave number 
k ), we obtain from Eqs. (7)-(9) for the component q,, (x ,  k ) of 
the perturbation potential 

The condition that the total current be invariant yields the 
boundary condition for this equation 

and we are interested in solutions that decrease towards the 
interior of the film. 

The significant values are k%l,  and with logarithmic 
accuracy the solution of Eq. (10) is an Airy function 0: 

(12) 
and the boundary condition (11) gives the connection 
between k and Qo 
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where {, = - 1.02 is the point of the first maximum of the 
Airy function. 

Equation (13) allows us to find the minimum value of Q, 
at which the instability sets in 

1 2 In x 
Q . . = ~ [ I  1'3 + - ( 3 n ) - " ( - t o ) " ( ~ ) ' ]  3 (14 

"A elf 

and the corresponding value of k 

It follows from (7) and (8) that a similar instability sets in at 
Q, = W,, for the transverse component of the potential and 
for the modulus of the order parameter. 

The critical value of the potential Q,, at the edge of the 
film turns out to be close to 1/14. The corresponding current 
density j = Q ( l  - Q2) at the edge of the film is close, at the 
onset of the instability, to the density of the pair-breaking 
current of a one-dimensional superconduction channel ( j  is 
measured in units of 31/3jc/2, where j, = p,/12fln2A 2f ). 
The critical perturbation is localized in the region 

-Ya - -'h 
xo--ke In 'v, ke-XeS In-lk xeff 

at the edge of the film, and oscillates along the film with a 
period 

(We recall that the length is measured here in units of A,, .) 
To determine the total current I, at which the potential 

at the edge of the film reaches the critical value we must 
know the distributions of the current and of the potential in 
the entire film. At distances larger than A,, from the film 
edges, the current density is already much lower than criti- 
cal, and Q< 1. On the other hand, this is precisely the region 
that makes the principal contribution to the total current. 
The corresponding solutions of (5) are of the form 

Q= (Z/Io) E'"x-'~ (8-x) -IA. 
I \ 

Using the exact solution6 of the linearized equation (5), we 
can match this solution to the function Q (x) given by (6) near 
the edge. As a result we obtain for the critical current the 
expression 

31 3 
I,= (213~) '"Io, I, = - nj.d(heff b)'". 

2 (16) 

Estimates show that allowance for the nonlinear terms in (5) 
can change the coefficient in (16) by not more than 30%. A 
similar expression for the critical current was obtained in 
Ref. 7 from an estimate of the condition for the vanishing of 
the Bean-Livingston barrier to the entry of the vortex into 
the film. 

So long as the total current in the film is less than the 
value of I, (and accordingly Q, < Q,, ), the film is in the 
Meissner state. Only widely separated vortices penetrate in 
this case through the barrier and, moved by the transport 
current, produce an exponentially small fluctuating resis- 
tance of the film. At a current I, (and correspondingly at a 
potential Qoc ) instability sets in. The periodic perturbation of 

the potential and of the order parameter begin to increase, 
and the Meissner state is destroyed. 

The instability-evolution time can be stimated by using 
the nonstationary Ginzburg-Landau equations. It suffices 
for this purpose to add to the left-hand side of (7) the term 
- 12df /at and to their right hand side of (8) the term 

(-aq/at) s ( 2 )  e (XI e (6-51, 

where the time is measured in units of the relaxation time 
T,, of the order parameter.8 Taking the Laplace transform 
with respect to time and proceeding in accord with the anal- 
ysis described above we find that at Q, > Q,, Eqs. (7) and (8) 
have solutions that now satisfy the boundary conditions in a 
definite range of values of k. The fastest to grow, however, is 
the mode with k =kc ,  in proportion to exp (pot), where 
p, = 2 4 7  and E = (Q, - Qoc)/Q, is assumed to be small. 
With logarithmic accuracy, the time of instability evolution 
is given by 

T =  (7/2)  T ~ ~ E - '  ln ( A G L l A f l  ) , (17) 

where A,, is the characteristic scale of the initial fluctuation. 
The instability development leads to formation of vor- 

tex chains at one edge of the film. The transport current 
moves the vortices to the center of the film, where they are 
annihilated by oppositely directed vortices produced on the 
other edge of the film. At low supercriticality, the repulsion 
forces of the vortices with like direction prevent generation 
of a next chain at the edge before the first chain is annihilated 
at the center. When the current in the film is increased, a 
second chain of vortices can be generated, etc. Unfortunate- 
ly, the linear equations (7), and (8) do not make it possible to 
track the formation of the vortex chain at the edge of the 
film, and it is impossible to analyze the nonlinear equations. 
It is relatively easy, however, to investigate the vortex mo- 
tion (and to obtain the CVC), for even at a low degree of 
supercriticality the vortex density is high enough and the 
hydrodynamic approximation is valid. 

3. CURRENT-VOLTAGE CHARACTERISTIC OF FILM 

The quasistationary picture of the viscous flow of a vor- 
tex "fluid" can be described with the aid of hydrodynamic 
equations. Such an equation is obtained from the condition 
that connects the average magnetic field induction nq, 
(where n(x) is the vortex density, to which we ascribe a defi- 
nite sign that depends on their polarity) with the averaged 
linear current density i(x). This connection is given by the 
generalized London equation9: 

We note that in this and succeeding sections we reckon the 
coordinate x from the center of the film and measure it in 
units of the film half-width b /2. 

The right hand side of (1 8) can be obtained by using the 
continuity equation for the vortex fluid: 
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where v is the velocity of the vortex. It means that the num- 
ber nu of the vortices passing through a unit length of film 
per unit time is constant. Recognizing that the passage of 
each vortex changes the phase x of the order parameter by 
  IT, and taking into account the Josephson relationx = 2 eV, 
we obtain - nu = E /qO, whereE is the average electric field 
strength in the film (the voltage is V = EL, where L is the 
film length). 

On the other hand, the velocity of the viscous motion of 
vortices is determined by the current density'' 

v=-q-'qoi sign x, (20) 

where 71 is the viscosity coefficient, and the expression sign x 
indicates that the vortices of opposite polarity move opposite 
to one another in different halves of the film. For the right- 
hand side of (18) we obtain ultimately 

Since the width b of the film is assumed to be large com- 
pared with Re, , the gradient term of (1 8) is small in almost 
the entire region of the film. Neglecting this term, we can 
easily invert the integral equation (1 8), and it is convenient to 
separate the current density io(x) produced by the transport 
current at the critical value I,. As a result we obtain for . . 
i, = 1 - lo 

where I is the specified value of the total current. 
The current-voltage characteristic of the film is ob- 

tained from the following boundary condition: at the edges 
of the film the current density i( + 1) must equal the critical 
value io( + 1) at which the instability sets in. Substituting 
accordingly in Eq. (22) the value i,( + 1) = 0, we can find the 
connection between I and E if the current distribution i(x) is 
known. 

At low supercriticality (when A1 = I - I,) is small 
compared with I,), Eq. (22) can be solved by perturbation 
theory. In this case the current density i(x) under the integral 
sign in the right-hand side is assumed equal to the current 
density io(x) in the Meissner state. The edges of the film make 
a small contribution to the inegral with respect to x',  and in 
the region 1 - x2>Reff /b  the following asymptotic expres- 
sion holds for the current density: 

i, ( x )  = (21,lnb) (1-2')-'". (23) 

Substituting this expression in (22) we obtain 

This expression has singularities at the edge of the film at 
x = + 1 as well as halfway at x = 0. They are eliminated 
when account is taken of the gradient term in (1 8). (For ex- 
ample, the singularity near an edge is '.'cut off' but substitut- 
ing the value 1 - x2-Re,/b.) The condition i,( + 1) = 0 can 

then be satisfied by relating I and E so that the coefficient of 
the singular term vanishes, and allowance for the gradient 
term leads only to corrections small in the parameter Re, /b. 

As a result we have for the initial section of the CVC of 
the film 

E=Ee (1-Zc) /Ic, I-ZcKzc. (25) 

Thus, the initial section of the CVC turns out to be linear, 
and its slope E, is smaller the closer the temperature to T, 
and the larger the film width b. 

With increasing current, its density can differ notice- 
ably already in almost over the entire film from the Meissner 
distribution io(x). To obtain the CVC it is then necessary to 
solve the nonlinear integral equation (22). At I> I,, however, 
this equation can be easity written in dimensionless form in 
such a way that we get for the CVC from the condition 
i,( f 1) = 0, accurate to a numerical coefficient C, 

E=CE,(I /I , )  ', I , .  (26) 

Thus, at a high degree of supercriticality the CVC of the film 
becomes a parabola. 

Formula (26) for the CVC of the film remains valid so 
long as current density inside the film is everywhere less than 
the density of the pair-breaking current. With increasing 
current, however, this condition is violated. To find the cur- 
rent limit I, we investigate the current distribution at I > I,. 
The current density has a maximum at x = 0 (midway in the 
film), since the current density produce by the vortices is 
added to the Meissner distribution (23). Each vortex de- 
creases the current density in the film by an amount a rP2, 
where r is the distance from the vortex. For a chain of vorti- 
ces the decrease of the current density is now hyperbolic, 
oc r-', and the integral over a large number of chains di- 
verges loarithmically midway in the film. The asymptotic 
current distribution at I>I, near the middle of the film can 
be obtained from Eq. (22): 

and the current density midway in the film (the maximum of 
the current density) is obtained with logarithmic accuracy 
by substituting x-Re,/b. Equating the value of i(0) to the 
critical current density i, = j,d, we can obtain from (27) the 
maximum value of the electric field in the film, and then 
calculate with the aid of (26) the corresponding maximum 
current. As a result we obtain 

Z,=Cbdj, In-'" (blh ) . (28) 

When the total current in the film reaches the value I,, 
we get on entirely different picture of the stationary viscous 
flow of the liquid of the vortices from the edge of the film 
(where they are generated) to its middle (where vortex anni- 
hilation takes place). Although the distance between the vor- 
tices is still large 

n-''%> (Aeff g )  '" In"' ( b/Aerr ) , 

the current density produced by them midway in the film 
becomes equal to the pair-breaking-current density. An in- 
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stability similar to that produced at the edge of the film at the 
critical current is then produced midway in the film. 

This instability can also be analyzed with the aid of Eqs. 
(7) and (8). The instability appears at a critical value of the 
vector potential Q, close to 1/1/5 (the correction to this value 
are small relative to the parameter x,', just as in Eq. (14); it 
leads to formation of infinitely small fluctuations of the or- 
der parameter. The development of the instability, however, 
unlike near the edge of the film at a current I,, does not 
permit formation of a chain of vortices. The appearance of 
such vortices would lead to a decrease of the value of the 
potential Q midway in the film, but would increase its value 
at the edge. Thus the steady-state picture of the viscous mo- 
tion of the vortices, at which Q exceeds nowhere the critical 
value, becomes impossible, and the film goes over into the 
normal state. A jump should be observed on the CVC of the 
filmatI=I,.  

It can be seen from Eqs. (16) and (28) that I,,, exceeds I, 
considerably. At the same time, prior to its transition into 
the normal state, the film differential resistance at the cur- 
rent I,,, is still small compared with the normal resistance R, 
of the film. Using the known expressions for the viscosity 
coefficient, lo  we have the estimate 

qBocpo2dlE2, 

where u is the conductivity in the normal state. This yields 

We note also that in the present paper no account was taken 
of the nonlinear effects that occur when the vortices move," 
for the viscosity coefficient 17 was assumed to be independent 
of the vortex velocity. This is justified for a zero-gap super- 
conductor or near the transition temperature: 

where 7, is the energy relaxation time; in this case the effects 
are small even at current densities of the order of critical. 

4. EFFECT OF PINNING ON THE FILM CVC 

The inhomogeneities of the electron-phonon interac- 
tion constant, of the mean free path, of the film thickness, 
and others hinder the viscous motion of the vortices under 
the action of the transport ~ u r r e n t . ~ . ' ~  As a result, the mo- 
tion of the entire vortex structure in the film occurs only 
when the current density at each point exceeds a certain 
critical value ip. Usually ip is small compared with the criti- 
cal current density i, . Nonetheless, even weak pinning can 
lead to substantial changes in the film CVC. 

As already noted, near the critical value I, the current is 
not uniformly distributed in the film. Although at the film 
edges the current density is of the order of critical, midway in 
the film, as follows from (23), the current density io(0) = 21c/ 
?rb is relatively small. Therefore even at value of ip on the 
order of i,(O) the pinning influences the film CVC. 

When the pinning is taken into account, the equation of 
the viscous motion of the vortices takes the form 

u=-q-'cpo (i-i,) sign x, (30) 

which differs from (20). This causes also a change in the inte- 
gral equation (22) for the increment i,(x) to the Meissner 
current distribution: 

1 
il  = 

2n2[1-x2]"9 

[ I - ( ~ ' ) ~ ] ' " s i g n x '  dx' 4n 
+-(1-I.)]. (31) 

i (x') i t  (x') i X - X  b 
- 1  

The current-voltage characteristic of the film, with 
allowance for pinning, is determined as before from the 
boundary condition i,( f 1) = 0 for Eq. (31). 

We investigate now Eq. (3 1) at values of ip close to i(0). 
This suffices to understand qualitatively the form of the 
CVC also at lip - io(0)l -io(0). We consider first the case 
when the small dimensionless parameter 

is positive (the pinning forces are not yet able to stop the 
vortices). At low supercriticality AI  = I - I, (I, there are 
then two characteristic current regions. When the current I 
is very close to the critical I,, we have i,(io - i, in the entire 
film region and the quantity i, in the denominator of the 
integrand of (3 1) can be neglected. The integral is then easily 
calculated and we have for the initial section of the CVC the 
expression 

Comparing this expression with (25) we find that at positive 
a allowance for the pinning leads to a decrease of the differ- 
ential resistance of the film on the initial section of the CVC 
by a factor In (l/a2), while the critical current of the film 
remains unchanged. 

With increasing current, the condition (33) is violated, 
and when the inverse inequality is satisfied we have io(0) - ip 
(i,(O). Near the middle of the film the principal role is as- 
sumed in the denominator of the integrand in (31) by the 
function il(xl), which can be seen to be of the order of (7E / 

and to decrease from the middle of the film towards 
the edges. An asymptotic expression for i, can be obtained at 
small values of x' 

On the other hand, as follows from (23), the quantity 
io(x') - i, increases quadratically on going from the middle 
of the film to the edges, a ~,(O)(X')~ at xf(l .  In the region 
x' -x ,  the quantities i0(x1) - i, and i,(xl) become of the same 
order. This is precisely the region that makes, with logarith- 
mic accuracy, the principal contribution to the integral of 
(3 1). As a result we obtain for the CVC of the film 
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It can be seen from (35) that the initial section of the CVC of 
the film becomes nonlinear as a result of the pinning. At 141, 
the influence of the pinning is insignificant, since the current 
density is everywhere large compared with ip . In this case the 
CVC of the film is given by (26). 

An interesting situation arises when ip exceeds the val- 
ue io(0) (the parameter a is negative). In this case the flow of 
the liquid of the vortices can no longer start at arbitrary 
small supercritically. The integrand in (3 1) has at small val- 
ues of i,(x') a pole and the equation has no solutions. The 
condition io + i, > ip is violated and the motion of the entire 
vortex structure becomes impossible. 

With increasing current in the film, the pole of the inte- 
grand in (3 1) vanishes. This takes place at i,(O) - ip - io(0). 
The quantity 

gives the pinning-caused change AI, of the critical current (it 
assumed that la1 (1). At the critical current the film voltage 
appears jumpwise, and its value AE, can be obtained from 
(32): 

At A12 AI, the CVC of the film takes the form (35), and 
at I>I, it is determined by (26). Equations (37) and (38) re- 
main qualitatively valid also at la 1 - 1. 

Thus, when the pinning is strong enough and ip exceeds 
the current density io(0) midway in the film, the critical cur- 
rent of the film increases and a jump appears on the CVC of 
the film. We note that in this case a static vortical structure 
can appear in the film even at currents lower than critical 
(the instability at the edges of the film sets in at the old value 
of the critical current I,). A decrease of the current leads to 
rearrangement of this structure, accompanied by voltage 
pulses. The steady-state motion of the vortex structure be- 
comes possible, however, only at currents higher than I, 
+ dl,. 

5. DISCUSSION OF RESULTS 

The transition of a wide superconducting film into the 
resistive state is thus the result of loss of stability of a vortex- 
free superconducting state, a loss that occurs at the critical 
current value determined by Eq. (16). The order parameter 
at the edges of the film is suppressed at the edges of the film 
under the influence of the magnetic self-field to such an ex- 
tent that a critical perturbation is generated there. It is found 
to be oscillating along the film with a period -A,,/k,, 
where kc is defined by Eq. (15). The instability develops 
within a time T [Eq. (17)] and leads to formation of a chain of 
vortices at the edge of the film. The critical value of the vec- 
tor potential is determined by Eq. (14), and the correspond- 
ing density of the current at the edges of the film, however, 
two, three, and more vortex chains can move in the film. It 
turns out to be close to the density of the pair-breaking cur- 
rent. 

The density of the vortices in the film depends on the 
supercriticality A1 = I - i,. After the generation of the vor- 

tex chain, the order parameter at the edge of the film in- 
creases. At very low supercriticality the next chain of vorti- 
ces can be generated at the edge of the film only when the 
preceding reaches the middle of the film, where it is annihi- 
lated by a chain of oppositely directed vortices generated on 
the other edge of the film. With increasing current in the 
film. It turns out that even at a low degree of supercritically 

A I / Z ~ ~ X : ~  (keff /b)J12 (39) 

the average distance between the vortices becomes small 
compared with the film width b. The time of vortex creation 
then also becomes small compared with the time it takes to 
negotiate the distance between the vortices. 

In this case viscous motion of a vortex fluid, which leads 
to the appearance of a voltage on the film, can be treated in 
the hydrodynamic approximation. The vortex density n de- 
termines the average magnetic field connected with the aver- 
age current density i by the London equation. At the same 
time, the current density determines the vortex velocity v, 
and the continuity equation sets the vortex flux nu. By solv- 
ing these equations we obtained the distributions of the cur- 
rent, of the density, and of the velocity of the vortices in the 
film and calculated the film CVC. 

The electric field intensity in the film is determined by 
the number of vortices passing through a unit length of the 
film per unit time: E-(?rfi)/e)nv. At a low supercriticality, 
AZ(Ic, the vortex density n, as follows from (1 8), is propor- 
tional to the supercriticality: n -p ; 'AZ/bc (c is the speed 
of light, which we set equal to unity). The vortex velocity is 
proportional to the current density: v-+ii/ve, where i is of 
the order of Ic/b in almost the entire film (except the edges). 
As a result, the electric field intensity in the film is found to 
proportional to the supercriticality: E-EJI/I,, where the 
coefficient Eo- W f / c2e~b  [which is proportional to 
(1 - T/Tc)] gives the order of magnitude of the intensity at 
currents 1-1, [Eq. (25)l. At large supercriticality I)Ic the 
vortex density n, as well as their velocity v, is proportional to 
the current density i-I/b. Therefore E-Eo(I/Zc)2 [Eq. 
(2611. 

The current distribution in the film also depends on the 
supercriticality. At the critical current I, its density reaches 
the critical value i, only at the edges of the film, and else- 
where it is smaller than ic by a factor b /Ae,. The appearance 
of a vortex structure at I > I c  leads to the onset of a local 
maximum of the current density midway in the film (the 
current density produced by each vortex decreases relatively 
slowly with increasing distance from the vortex). With in- 
creasing current, its density midway in the film increases, 
while at the edges it remains equal to the critical value. At 
the current value I, defined in (28) the current density mid- 
way in the film also reaches the critical value I,. In this case 
the current is almost uniformly distributed over the film (in 
the remaining region of the film its density is less than criti- 
cal only by a factor lnIt2 (b /Aeff ). 

The stationary motion of the vortex structure at I >  I, 
becomes unstable. Although the cores of the vortices still do 
not overlap in this case, the entire film goes over into the 
normal state. The film resistance (and hence the voltage 
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FIG. 1. Current-voltage characteristic of film, drawn in enlarged 
scale ( p  = (b/1,,)"2 (b /AeR); Em =pZEo).  

across it) increases jumpwise at the current value I,,, deter- 
mined by Eq. (29); the corresponding CVC of the film is 
shown in Fig. 1. 

The inhomogeneities randomly distributed in the film 
hinder the vortex motion and decrease the film resistance. 
Qualitative changes occur in the CVC also in the case of 
weak pinning, when the pinning forces are capable of stop- 
ping the vortex chain at the middle of the film, where the 
initial current density is small compared with the critical. As 
a result, the initial section of the film becomes nonlinear [Eq. 
(35)l. The critical current of the film can increase, and a jump 
of the film voltage takes place [Eqs. (37) and (38)l. The corre- 
sponding CVC of the film is shown in Fig. 2. We note that if 
the average pinning forces on different sections of the film 
differ from one another, several voltage jumps can appear on 
the CVC. 

FIG. 2. Current voltage characteristic of film at currents of the 
order of critical: 1-without pinning, 2-with allowance for pin- 
ning. 

The performed theoretical investigation of the resistive 
state of a broad superconducting film agrees with the experi- 
mental results of Ref. 13. The transition of the film into the 
normal state takes place jumpwise at a large (compared with 
the critical) current. Also observed are a much weaker in- 
homogeneity of the current distribution at the instant of the 
transition, and a relatively small voltage on the film prior to 
the jump. In a number of studies,14 however, the nature of 
the voltage jumps on the CVC is apparently different and is 
possibly connected with nonlinear effects connected with 
the vortex motion. 

The authors are deeply grateful to A. A. Abrikosov and 
A. I. Larkin for valuable discussions of the results. 
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