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We consider one-dimensional problems in which a plane wave is incident on a layer of a periodi- 
cally inhomogeneous medium and in which there is emission from a source within the medium. 
Different boundary conditions are imposed at the boundaries of the layer. Results of an approxi- 
mate analysis (averaging with respect to fast oscillations, perturbation theory) are compared with 
exact results obtained by numerical integration of equations of the imbedding method. 

PACS numbers: 03.40.Kf 

1. Problems of waves in periodic media have tradition- determined by solving the boundary-value problem (1) and 

ally drawn the attention of physicists in view of their impor- (2) using the equalities. 

tance in virtually every field of physics. A survey of the con- RL=U(L)-1, TL=U (0). 
temporary status of the theory can be found in Refs. 1 and 2. 

(4) 
If there is no extinction (i.e., if y = 0), conservation of the 

Researchers have usually limited themselves to analyzing energy flux density occurs, and consequently, 
the dispersion relations (existence of transparency and opa- 
city zones), i.e., relationships between the frequency of the 
monochromatic wave and its wave number that allow for the 
possibility of wave propagation. In a numer of problems in 
physics, however, it is of interest to study the propagation of 
a particular wave (with designated frequency and wave num- 
ber) in a periodically inhomogeneous medium. An example 
of such a problem is the propagation of radio waves in the 
ionosphere, the inhomogeneities in which are created by a 
powerful pumping A variety of approximation 
methods are utilized in analyzing such problems, chief 
among which are peturbation theory and the averaging 
method (passing to truncated equations). The method of 
truncated equations is not an asymptotic method here, and 
its principal advantages lies in its simplicity and the physical 
lucidity of the results. It would be of definite interest to com- 
pare the results of approximation methods and the exact so- 
lutions. This is done in the present article using as an exam- 
ple the simplest one-dimensional problem of waves in a 
periodically inhomogeneous medium. 

2. Statement of problem. Suppose that a layer of an in- 
homogeneous medium occupies part of the space O,<x<L 
and that a plane wave of unit amplitude exp ( - ik (x - L ) j 
is incident from the right on the layer. Then the wave field 
within the layer is described by the Helmholtz equation5 

d2U (x)/dx2SkZ[ I+& (x) ] U(x) =0. (1) 

with boundary conditions 

where the function E(X) describes the deviation of the permit- 
tivity from unity. It is supposed that E = 0 outside the layer. 
We assume that 

Substituting (3) in (1) and passing to dimensionless distances 
(i.e., setting k = I), we can rewrite (1) and (2) in the form 

d2U(x) K-k 
dx2 +[I-41 .~  cos 2(1+A)x+2iy]U(x) =0, A= - 

k ' 

Equation (6) is a Mathieu equation and has been exten- 
sively ~ t u d i e d . ~  If y = 0, there exist regions (in thep,A plane) 
that correspond to parametric instability (parametric reso- 
nance), six of which are depicted in Fig. 1 (shaded area). In 
our boundary-value problem, these regions correspond to 
increased reflectivity of the layer. Outside these regions, the 
wave should pass through the layer of the medium relatively 
freely. 

The solution of the boundary value problem (6) can be 
written in a form that contains Mathieu functions and their 
derivatives. However, even though these functions have 
been extensively studied and tabulated in detail, because of 
the wave's high degree of variability it is far from a simple 
matter to describe the behavior of the wave field (and, conse- 
quently, the wave reflection and transmission coefficients) 
within the layer of the medium. It is simpler to solve the 
boundary-value problem (6) directly by numerical methods. 
It is then convenient to use the imbedding method.' 

Let us consider the wave field U ( x )  as a function of the 
parameter L, the position of the boundary on which the wave 
falls, i.e., U(x)=U(x;L). We can then rewrite the boundary- 
value problem (6) as an initial-value problem 

E ( 2 )  =-4p  cos 2Kx+2iy, (3) ~ U L  i 
-=2i(UL-I)+-e(L)UL" U0=l, 

dL 2 
where 2y is the extinction coefficient. 

The complex coefficient of reflection of the wave from r(L) =-4p cos 2(l+ A)L+2iy, 
the layer and the complex wave transmission coefficient are where 
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FIG. 1. Zones of parametric instability in thepA = plane for y = 0. 

and UL = U(L;L ) is the field at the boundary of the layer. 
Equation (7) can then be integrated and consequently 

u ( X ;  L) =uXerp{ i ( ~ - x )  + d a ~ ( ~ )  u ~ } .  (9) 
x 

Thus, the boundary-value problem (6) can be solved by 
solving the Riccati equation (8) and computing the quadra- 
ture (9). The intensity of the wave field within the medium 
I (x;L ) = I U (x;L ) 1 is given by the expression 

where (... 1 denotes terms containing the oscillating func- 
tions 

exp{=t2i(l+A) L), exp{i4i( l+A)L).  
Assuming thatp, changes little during the oscillation period 
we can average (14) over these "fast" oscillations. As a result 
we obtain the approximate equation 

dpL/dL=-2(y+iA) pL+k(I-pL2), (14') 
whose solution (for the initial conditionp, = 0) has the form 

P sh aL d g ~  ( 5 )  (RE-RE') PL= - a2=b2+ (y+iA)'. 
a ch aL+ (yf iA)a-' sh aL ' 

a 

which, in view of (8), can be rewritten in the form (15) 
Let us consider in more detail the case where there is no 

l-IRLI" I1+REIZ 
I (x;  L)=I i + ~ . l ~ - ~ e r ~ { - 2 ~  Ida--_}.  extinction (y = 0). Then the square of the modulus of the 

I-IR,I I-IRcl reflection coefficient IRL I 2  = Ip, 1' and, consequently, - 
(10') 

s h k L  
IRLI '= a2=p2- -~2 .  

ch2 aL- A2CC-" (16) 
Setting x = 0 in (lo'), we obtain a relation between the wave 
reflection and transmission coefficients in the form From (12) we have in this case an expression for the field 

strength inside the medium: 
Il+RcIZ 

~ T L I ~ = ( ~ - I R ~ I ~ ) ~ X ~ { - ~ ~ ~ ~ ~ ~ } .  (11) I ( x ;  L )  = [ch (2ax) -A2p-'1 I[ch2(aL) -A2p-2]. (17) 

At y = 0, (1 1) turns into (5), in which caseS 

Note that if we know how the square of the modulus of 
the reflection coefficient depends on the thickness of the lay- 
er and how the intensity is distributed within the layer of the 
medium at a fixed position of the boundary (for example, L ,), 
then, by (12), the distribution of the intensity within the layer 
for any other position of the boundary is described by the 
formula 

Z(x; L)=Z(x; L,) (~-IRLI"/(~-IRL,IY.  (12') 

Thus, to find the distribution of the field strength within the 
layer of the medium for an arbitrary position of the bound- 
ary it is necessary to know how IR, 1' depends on L and 
I (x;L ,) for some one value L ,. 

3. Let us now discuss approximation methods for solv- 

Formulas (16) and (17) are well known (they were ob- 
tained by a different method directly from (I), e.g., in Ref. 7). 
At p2>A ', as a consequence of (16) and (17), IRL 12-1 and 
the field strength attenuates exponentially with depth. But if 
p2 <A ', a11 the functions are periodic in the layer thickness. 
It is clear from our derivation of (16) and (17) that this con- 
clusion will not hold as A+ - 1. In addition, we can expect 
that in the region p - ] A  I, where one type of solution is re- 
placed by another, (16) and (17) also do not hold, since they 
were obtained not by an asymptotic analysis, but in fact from 
physical considerations. The region p>, / A  1 ,  where our the- 
ory yields higher reflectivity for the layer of the medium, is 
hatched in Fig. 1. 

There is another approximation method based on per- 
turbation theory and valid for sufficiently small values ofp.  
Setting U, - 1, i.e., making R, small enough, we obtain 
from (8) in first-order approximation with respect t o p  the 
equation (y = 0) 

ing Eq. (8). We first consider averaging over the fast oscilla- dRL/dL=2iRL-2ip cos 2 ( I f A )  L, Ro=O, (18) 
tions. We represent the reflection coefficient R, in the form hence it follows that 

RL=-ipL exp{2i(l+A)L). (13) ]RL12=~ZA-2(2+A) -'{[cos 2(l+A)L-cos 2LI2 
+ [ (l+A)sin 2 ( l+A) L-sin 2LI2). (19) 

Then for the function p, we have from (8) the equation Expression (19) is applicable under the condition 
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The parameters of the problem were chosen on the basis of 
Fig. 1. 

0.8 The numerical analysis showed, first, that the solution 
, of the problem is in fact periodic within the trarisparency 

06 zone if there is no absorption, and that within the opacity 
zones the reflectivity is increased but is highly variable. In 

04 
3 the transparency zones (far from the boundary), the solution 

is well described by the approximate method of averaging. 
Within the first opacity zone far from the boundaries, the 

D solution is equally well described by this method. Near the 
60 80 100 boundaries of the zones, however, the situation becomes 

complicated. Thus, for the parameters corresponding to 
FIG. 2. jR, 1' expressed as a function of the thickness of the layer. ( 1 )  
corresponds to equation (16), (2) to the computed curve, (3) to the distribu- point in Fig. '3 the behavior the cOefficent as a 
tion of I (x)/40 in the case L = 100 ( p = 0.25, A = 0.24, and y = 0). function of the thickness of the layer and of the distribution 

which is obtained by comparing (19) with unity. Comparing 
the solution of (1 9) with the succeeding terms of perturbation 
theory yields the additional constraint 

4. Let us now pass to a numerical analysis of our prob- 
lem. Equation (8) for the reflection coefficient R ,  was solved 
by the Runge-Kutta method accurate to sixth order.' By 
means of this method it is possible to solve Eq. (8) with suffi- 
cient accuracy for L - 100; at the same time, no excessive 
computer time is required. The integration step is chosen 
constant: h = 0.1-0.01. The computations demonstrated 
that results obtained with steps h = 0.1 and 0.05 differ for 
L - 100 by a fraction of a percent. The wave field inside the 
layer of the medium was computed by means of (9). Because 
of the oscillatory integrand, the integral on the right side of 
(9) was computed by Philo's method.' Equation (5), which is 
valid for y = 0, and Eq. (1 I), which is valid y#O, provide an 
additional test of the precision of the results. For the selected 
integration step, the law of conservation of the energy flux 
holds when y = 0 (Eq. (5)) to within a single percent or bet- 
ter. The above equations were integrated up to a layer thick- 
ness of about 100 under the assumption that for this value of 
L the periodic behavior of L has been reliably determined in 
the transparency zones and that in the case of opacity zones 
it can be assumed that a transition to a half-space occurs. 

""F 

of the field strength in a layer are presented for L = 100 in 
Fig. 2. A sufficiently thin layer (up to L- 10) behaves as a 
reflecting layer and is well described by the formula (16) of 
the averaging method, but with further increase of its thick- 
enss the reflectivity of the layer falls. When Lz53,  the layer 
becomes absolutely transparent. The picture then repeats 
itself periodically as long as point 2 in Fig. 1 lies in the trans- 
parency zone. Analogous computations are presented in Fig. 
3 (point 5 in Fig. 1 will also fall in the opacity zone). 

The above computations correspond to the case in 
which there is no extinction. If extinction does occur, the 
behavior of the reflection coefficient will be qualitatively the 
same, whether inside or outside the transparency zones. In 
the case of a sufficiently thick layer, the modulus of the re- 
flection coefficient becomes a periodic function even in the 
opacity zone. Figure 3 (curve 3) depicts the behavior of the 
reflection coefficient corresponding to point 5 in Fi.g 1 at 
y = 0.1. 

Note that for small values of p the behavior of the re- 
flection coefficient is well described by (19) for a thin layer. 
As the thickness of the layer increases, cumulative effects 
become significant and the curve begins to differ markedly 
from (19). Thus, condition (20) is not a sufficient test for the 
validity of the perturbation theory. The more rigid condition 
(20') must be satisfied. 

5. We considered above the incidence of a wave on a 
layer of a periodically inhomogeneous medium. If there is a 
source within the layer, the problem is described by the 

FIG. 3. lR, 1' expressed as a function of the thickness of the layer for 
p = 0.25, A = - 0.89. ( I )  corresponds to y = 0; (3) y = 0.1; (2) distribu- 
tion of I (x)/20 for L = I00 and y = 0. 
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FIG. 4. Distribution of I ( x )  within the layer as a function of the source 
withx,, = 31.4) (L = 6 2 . 8 , ~  = 0.1, A = - 0.5, and y = 0.05) for different 
conditions on the boundary x = L (R, = 0): (a) free transmission; (b) 
dG/dxl,=. =O;(c)GI,=. = O .  

equation 

dZG (x, xo)/dx2+k2[l+e (x) ]G (x, x,) =2ik6(x-xo) (21) 

with corresponding boundary conditions on the boundaries 
of the layer. If the solution of the boundary-value problem 
(21) depends on the parameter L, the problem may be restat- 
ed, using the imbedding method, as the initial-value prob- 
lem9 (k = 1) 

G(x, x,; L)=G,(x, XO; L)+G2(x, XO; L), (22) 
where the function G, is described by the system of imbed- 
ding equations 

and the quantity R, describes the boundary condition at the 
layer boundary x = 0. Thus, if the boundary allows the wave 
to pass freely through it (i.e., ~ ( x )  = 0 at x <O), we have 
R, = 0. A value R, = - 1 corresponds to a reflecting 
boundary U (0) = 0, and R, = 1 corresponds to the condition 
dU(O)/dx = 0. The function G,(x,x,;L ) is described by the 
expression 

G,(x, x,; L) = (9-UL) -'U(xo; L) U(x; 4 ,  (24) 

where U(x;L ) is a solution of the system (23), and the con- 

stant g describes the boundary of the layer x = L. Thus , if 
E(X) = 0 when x > L, i.e., if the boundary allows the wave to 
pass through, g = oo . The values g = 0 and g = 2 corre- 
spond to reflecting boundaries with conditions G 1, = , = 0 
anddG/dxl,=, =O. 

Equations (23) and (24) were integrated numerically for 
a function E(L ) of the same form as before, for different val- 
ues ofthe parametersp andA and different boundary condi- 
tions at the boundaries of the layer. The resulting curves 
attest to significant irregularity in the distribution of the in- 
tensity within the layer. An example of the behavior of the 
filed intensity I (x )  = IG (x,xo)12 within the layer (the field is 
produced by a source located in the middle of the layer) is 
presented in the set of Fig. 4 for different boundary condi- 
tions on the boundary x = L. 

Note that, as follows from (22)-(24), the intensity distri- 
bution I (x) in the region x < x, is independent of the bound- 
ary condition for x = L in our one-dimensional problem, 
and only the range of variation of I (x) varies. Therefore only 
the regions x,<x<L are depicted in Figs. 4b and 4c. 

In conclusion, note that our use of the imbedding equa- 
tions for the numerical analysis of the structure of a field in a 
periodically inhomogeneous medium made it possible for us 
not only to assess the applicability or nonappiicability of the 
approximate analysis methods but also to readily derive this 
structure for arbitrary parameters of the problem. This is a 
particularly important advantage in problems in which the 
E(X) is arbitrary, and for which no approximate analysis 
method exists. 
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