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In theories with gauge "horizontal" symmetry with respect to generations of fermions, the possi- 
bility is discussed of existence of a Goldstone boson whose interactions with the fermions are off- 
diagonal with respect to the flavors. The probabilities of K + + ~ + a  and p+ea decays (a is a 
Goldstone boson) are found within the framework of the SU(5) X SU(3) theory recently proposed 
by Z. Berezhiani and Dzh. Chkarueli [JETP Lett. 35,612 (1982); Sov. J. Nucl. Phys 37, 618 
(1983)l. The experimental limit on the width of the K ++r+a decay imposes in this case a 
restriction on the vacuum mean value responsible for the horizontal-symmetry breaking, 
(7) 2 10" GeV. The possible nature of the coupling between a Goldstone boson and fermions is 
also discussed. It is shown that only pseudoscalar coupling is possible for interactions that are 
diagonal in flavor, whereas off-diagonal interactions can be both scalar and pseudoscalar. 

PACS numbers: 14.80.Er, 1 1.30.Ly 

1. INTRODUCTION 

Various types of Goldstone and pseudo-Goldstone bo- 
sons, connected with global-symmetry breaking, are consid- 
ered at present in the literature: the axion,' majoron,' a r i ~ n , ~  
and pseudo-Goldstsone technicolor b o ~ o n s . ~  The main pur- 
pose here is to study the possible existence of a Goldstsone 
boson (or a ultralight pseudo-Goldstone boson of the axion 
type) having an interaction that is nondiagonal in flavor with 
quarks and leptons. We shall see that such Goldstone bosons 
fit quite naturally in schemes in which the existence of gen- 
erations of quarks and leptons is connected with a "horizon- 
tal" gauge symmetry group. In Sec. 3 of this paper we illus- 
trate this with a very simple but nonrealistic model, while in 
Sec. 4 we consider the possible appearance of a Goldstone 
boson with an interaction that changes the flavors, within 
the framework of the SU(5) x SU(3), model,5 in which the 
existence of three generations of fermions is connected with 
the SU(3), horizontal-symmetry group. It must be noted 
that this model describes well the well known phenomeno- 
logy of quarks and leptons, including the masses of the fer- 
mions and their mixings.' 

Nonconservation of the flavors upon emission of the 
Goldstone boson a can lead to decays K-T + a and 
p-+e + a. Within the framework of the model of Ref. 5, we 
shall show that the existing experimental limit for the ab- 
sence of the decay K ++T+ + a imposes a limitation on the 
vacuum mean value (7) with which the breaking of the hori- 
zontal symmetry is connected, (77) > 10'' GeV. This restric- 
tion is much more stringent than the standard restriction on 
neutral currents that change the flavors, where the charac- 
teristic scale turns out to be 2 lo4-lo5 GeV (Ref. 6); if the 
flavor-changing Goldstone bosons were really to exist, the 
decays K+T + a (and p-w + a) would be incomparably 
easier to observe than other effects due to flavor-changing 
neutral currents ( p+3e, p-ey, K -e *p r,  
K ++r+e+p-,p-N-w - N etc., Ref. 6). 

Besides the principal problem formulated above (the 
possible existence of a Goldstone with interaction that is 

nondiagonal in the flavors), we discuss in Sec. 2 the possible 
character of couplings that are diagonal in flavor. We shall 
verify that in contrast to the nondiagonal interaction, a 
Goldstone boson interaction diagonal in the flavors cannot 
be scalar, but only pseudoscalar. More accurately speaking, 
exchange of a Goldstone boson can never lead to a long- 
range action a l /r  between fermions. 

Yet, if a nonzero 6 term exists in the theory, we trans- 
form in explicit fashion, by eliminating this term with the aid 
of chiral rotation of the quarks, the pseudoscalar couplings 
ofthe quarks with arbitrary massless bosons into scalar ones. 
Therefore, if a Goldstone massless boson having a pseudos- 
calar coupling with quarks existed initially in the theory (and 
such a boson indeed can exist3), a scalar coupling arises after 
eliminating the 6 term. We shall verify, however, that the 
resultant scalar coupling of the quarks has a somewhat arbi- 
trary character. Obviously, at any rate for quarks, owing to 
the confinement, the premise of long-range action cc l /r  is 
meaningless. For physical nucleons, however, (as well as 
other colorless physical particles), the scalar coupling and 
long-range action a: l / r  do not exist. 

In this sense, the situation with exact Goldstone bosons 
differs in principle from the case of pseudo-Goldstone bo- 
sons of the axion type, whose mass is due to anomaly. In the 
latter case, a scalar interaction is possible in principle, lead- 
ing to a potential e - mmr/r (m, is the axion mass), albeit only 
when CP symmetry is broken. 

2. INTERACTIONS DIAGONAL IN THE FLAVORS 

In this section we explain why exchange of Goldstone 
bosons cannot lead to a long-range action a l /r  between 
nucleons (or any other physical particles), although scalar 
coupling can exist in a certain arbitrary sense in the interac- 
tion of Goldstone bosons with quarks. We consdier first the 
perfectly trivial case, when there are no strong fermion inter- 
actions. Let, e.g., there exist a fermion field $ interacting 
with a complex scalar field p: 
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where the coupling constant h is regarded as complex and its 
phase is purposefully not included in the redefinition of the 
phase q, of the field. 

If the self-action of the field q, has symmetry p-+e - je p, 
the theory is invariant to the chiral group 

q-+eLov, $ + e x p ( - i 0 y 5 / 2 )  $, (2) 

which can be spontaneously broken only if the scalar field 
develops vacuum mean values which we shall assume for the 
sake of argument to be real. Let 

cp= ( I I + i X ) / 1 ' 2 .  (H)=v; (3)  

then x is a Goldstone boson with the following interaction 
with a fermion: 

lhlv m= - 
12 ' 

As seen from (4), formally x interacts both with a pseudosca- 
lar $iy5$ ( a cos Y), and with a scalar ( cc sin Y). If, however, a 
chiral transformation $-+exp[ - (1/2) ivy5]$ of the fermion 
field is carried out, which reduces the mass term of the field $ 
to standard form, then only the pseudo-scalar interaction 
(m/~)~($iy,$) remains. This trivial example shows that the 
statement that the interaction is pseudoscalar is somewhat 
arbitrary and has an objective meaning only if it is stipulated 
that the mass terms have been reduced to a standard form 
free of y,. More general is the statement that there exists a 
phase shift lr/2 in the mass terms and in the interaction: 
m($eiei"~$) and rn/vX($ exp(i(v + ?r/2)y5)$). Physically the 
absence of scalar coupling at the standard form of the mass 
term manifests itself in the absence of long-range action a 1/ 
r between the fermions (the pseudoscalar exchange yields a 
spin-independent potential of the form 

It is easily seen that the phase shift ?r/2 between the 
mass term and the interaction has a rather general cause. 
When the field x interacts with the pseudoscalar $y5$ and 
the mass term is of standard form the transformation 
X-+X + E,  where^ is a small constant increment, the fermion 
mass does not change in first-order approximation in E: 

This property is a consequence of the initial global symmetry 
of the theory: observable quantities should be invariant to 
the shift of the Goldstone field. (The seeming absence of in- 
variance in higher orders in E is due to the fact that actually 
the Goldstone field is the phase of the field q, and coincides 
with Imq, only in first-order in x/v) The scalar coupling of 
the field x (again for the standard form of the mass term) is 
impossible, for in this case the shiftx--fx + E is accompanied 
by m-+m(l + E/u). We see that the "mutual orthogonality" 
of the two terms in (4), which ensures absence of long-range 
action cc l / r  between the fermions, is a necessary conse- 
quence of the symmetry inherent in the theory. 

We consider now the case of several fermions (several 
flavors). If the mass matrix is reduced to a form diagonal in 

the flavors and free of y,, the arguments presented above 
show that an interaction with the Goldstone bosons without 
change of flavor can have only a pseudoscalar character, 
whereas when the flavors change there can exist, generally 
speaking, both scalar and pseduoscalar coupling. Indeed, in 
the case of the shiftx+x + E, when calculating the eigenval- 
ues of the mass matrix (the physical masses of the fermions) 
we can neglect in first order in E the appearance of off-diag- 
onal terms a E in the mass matrix. In the models considered 
below we shall verify in fact that scalar flavor-changing cou- 
plings are possible, as well as that the scalar couplings that 
are diagonal in the flavors vanish once the mass matrix is 
reduced to a form diagonal in the flavors and free of y5, i.e., 
precisely on the physical states. 

The foregoing statements can be explained differently 
in the following manner. The interaction with the pseudos- 
calar density ($iy5$lX can be written as an interaction with 
the divergence of the axial current: (2m)-'a, ($y, y5$)eX. It 
can be seen that after the transformation of the derivative the 
interaction contains not the fieldx itself, but a , ~ ,  as should 
be the case for a Goldstone particle. Similarly, a scalar cou- 
pling of the type is rewritten in the form 

which also contains only the derivative a,x. In the case of a 
scalar coupling that is diagonal in the flavors, it cannot be 
rewritten in terms of a , ~ ,  since a, ($y, $) = 0. It is interest- 
ing that for a nondiagonal coupling this can likewise not be 
done at m, = m,. As will be seen from the example presented 
below, in accordance with this remark the coupling constant 
h of the interaction h ($,$,)x vanishes at m, = m,. 

In the arguments presented above we have ignored 
strong gauge interactions of the fermions. Allowance for 
them calls for caution, since the chiral invariance used above 
to reduce the mass matrix to standard form usually1 does not 
take place either as a consequence of the anomaly or simply 
because of dynamic spontaneous violation, formation of a 
quark condensate ((iiu) # 0, (ad ) #O). In chiral transforma- 
tion of quarks, on the one hand, the "chiral phases" of the 
condensates change, i.e., 

<iiu)+ (Z  e x p  ( i 0 , y 5 )  u), 

<dd)-.(d e x p  ( i 0 , y S )  d) ,  
and on the other hand, as result of the anomaly, a change 
takes place in the value of the 8 term: 8-43 - 8, - 8,. 

To understand the resultant situation, we consider by 
way of example the Goldstone particle - arion - intro- 
duced in Refs. 3 and verify the following. 

1) In the absence of anomaly the spontaneous symmetry 
breaking itself, i.e., the formation of (iiu) #O and (Jd  ) #O, 
takes place in such a way that the mass matrix of the quarks 
turns out to be automatically y,-free, and the interaction 
with the arion is purely pseudoscalar. 

2) In the presence of anomaly, the quark mass matrix 
can be reduced to a y,-free form by redefining the 8 term; 
conversely, the 8 term can be eliminated by introducing 
complex components in the mass matrix of the quarks. In 
this case, at a,, = 0, the interaction of the quarks with the 
arion can indeed have a scalar character. However, the inter- 
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action of any physical (colorless) states with an arion, such as 
nucleons, does not contain a scalar coupling, and there is 
consequently no long-range action a l/r. 

In the simplest variant, the arion can be described in the 
following manner (see the second reference 3). Let a field p, 
that is a doublet in the SU(2), group give mass to all the 
fermions (quarks and lepton), and let a doublet field p, not 
interact with either the quarks or the leptons. Let also the 
interaction of the fields p, and p, with each other be such 
that independent phase rotations of the fiels p, and p, are 
possible [there are no terms (p,+p2)2 + h.c.) in the interac- 
tion]. The Lagrangian of the interaction of p, with the 
quarks u and d (for simplicity, we leave out the other fer- 
mions) is of the form 

where the Yukawa constants 

are assumed, as in (I), to be complex. 
The model considered has two U(l) symmetries: 
1) p,-+eie8p,, d-+exp(i0,y5/2)d, u-texp( - i0,y5/2)u; 
2) p2#ie2p2, the fermions are not transformed. 
We note that the two symmetries are not spoiled by the 

anomaly, since the first of them constitutes chiral isotopic 
transformation: q-texp( - i0,y5?,/2)q. 

Breaking of the symmetries described, i.e., the precipi- 
tation into the condensate (p:) #0, (p:) #O, leads to the 
appearnce of two Goldstone particles, of which the combina- 
tion 

g= (vlHi+uZHz)lu, 

Hi=2'" Im 'cp:, v i=2 '"<q~) ,  uZ=viZ+v,2 (6) 

is absorbed by the Z boson. (Fpr simplicity we assume ui to 
be real and positive.) The orthogonal state 

a= (v ,Hz-sH,) lv  (7) 

is a massless Goldstone particle (arion). 
it is easy to find the interaction of the arion with quarks 

by starting from the interaction (5) of the field q, (Ref. 3): 

-m,, (Siy:, exp (ivuy5) u) I, 
md= I hd ( ~ ~ / 2 ' ~ ,  mu= (ha (v,/2"'. (8) 

If the theory were to contain exact symmetry with re- 
spect to the independent chiral rotations u and d, we could 
reduce the mass terms to standard form with the aid of the 
transformations 

In this case the interaction of the arion with the fer- 
mions would be purely pseudoscalar. As mentioned above, 
the chiral symmetry is broken, however, for two reasons. 

1) Strong interaction of the quarks leads to dynamic 

breaking of the chiral symmetry because of formatin of con- 
densates: (uI )  # 0, (da ) #O. 

2) The theory contains an anomaly, as a result of which 
only chiral rotations of quarks with opposite phases, i.e., 
exp(iO?y,) transformatins, are possible. 

Let us first forget the anomaly, but let [ Iu)  # O  and 
(ad ) #O. Dynamic breaking of the chiral symmetries 

leads to the appearance of the Goldstone particles n and 7, 
which in the absence of anomaly and at mu = m, = 0 are 
strictly massless. The zero mass of T nd 7 manifests itself in 
the fact that the energy of ther vacuum in the limit 
mu = m, = 0 does not depend on the chiral phases of the 
condensates (iiu) and (ad ), i.e., on the quantities a, and a, 
defined by the equalities 

<Su)=p, COS a,, <dd)=pd COS ad, 

(9) 
(iiiysu>=p, sin a,,  (diysd)=pd sin ad. 

Chiral rotations of the quarks: 

u - e s p  (i.0,y5/2) u, d-texp ( iody,/2) d 

leads to the transformations a,-+a, - O,, ad-+ad - 8,. 
The usual choice of the phases of the condensate is the fol- 
lowing: a, =a, = 0. In this case, as is well known, 
(iiu) =: (ad ) z - (250 MeV)3. 

Independence of the vacuum energy of the phases a, 
and a, means that the ground state energy is independent of 
the constant shift of the Goldstone fields T and 7. Obviously, 
accurate to a factor, a, and a, simply coincide with the 
mean values of the fields T and 7: 

where f, =:90 MeV is the axial constant. The proportional- 
ity coefficient in Eqs. (10) can be established by using the 
method of current algeba (see also Ref. 7). To this end it is 
possible, e.g., to use the PCAC relation 8, J: (x )  
= 2"2f,mt~(x) and the standard formula for the n-meson 
mass. Then 

Since in fact mu #O and m, #O, the vacuum energy 
depends actually on a, and a,, in other words, at mu #O 
and m, $0 the particles P and 7 have a nonzero mass. The 
dependence of the vacuum energy on a, and a, can be easily 
found from (5). Averaging (5) over the vacuum and using (9), 
we obtain in the tree approximation. 

Since a, and a, are mean values of the dynamic variables 
(lo), they are determined from the minimum of the energy 
(1 1) which yields 
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We change now to new fields 

In terms of these variables the Lagrangian (8) takes the stan- 
dard form, i.e., the y5 dependence in the mass terms vanishes 
and the coupling of the arion with the fermions remains 
purely pseudoscalar. The vacuum means (9) in terms of u' 
and d ' also become purely scalar: 

We see that despite the spontaneous violation of the 
chiral invariance, the phases of the vacuum mean values are 
ordered in such a way (Eq. 12) that it is possible by using one 
and the same chiral transformation to reduce the mass terms 
to standard form and simultaneously ensure the usual choice 
of chiral phases of the quzrk vacuum mean values [formual 
(971. The scalar coupling of the arion with the fermion van- 
ishes in this case. 

It is obvious from the example presented that the situa- 
tion in which the anomaly is taken into account takes an 
entirely different form. In this cas even at mu = m, = 0 the 
existence of an anomaly leads to a dependence of the vacuum 
energy on the phases of the condensate a, and a,, defined 
by Eqs. (9), and the minimum of the energy of the vacuum 
does not correspond to the condition (12), which ensures the 
absence of a scalar coupling between the arion and the 
quarks. We obtain below this minimum and verify that the 
scalar coupling of the arion with the quarks does indeed take 
place if the chiral phases of the quark fields are chosen such 
that the condenstate takes the form, i.e., (ijq)#O and 
(ijiy,q) = 0, and there is no B term. We shall verify, how- 
ever, that no scalar coupling of the arion with the nucleon 
exists also in this case. We present first the proof, and then 
track the manner in which the scalar coupling of the arion 
with the nucleon is cancelled, starting with the quark level. 

The simplest proof of the absence of scalar coupling 
between the arion and nucleons has in fact already been pre- 
sented: it consists in the remark that the nucleon mass, just 
as any other physical quantity, cannot change following a 
constant shift of the Goldstone field a. If we include in the 
effective Lagrangian of the interaction of the arion with the 
nucleon the scalar coupling 

then the shift a+ + E brings about mN-+mN + h ; there- 
fore the interaciton $,$,-a is forbidden. 

That there is no scalar coupling between an arion and a 
nucleon can be formally verified in the following manner. 
We consider the Lagrangian (8) of the interaction of quarks 
with an arion. From the equations of motion that follow for 
this Lagrangian we can see that 

i.e., the arion a(x) interacts with the divergence of the isovec- 
tor axial current. (This, of course, is obvious also without 

calculations, since a Goldstone boson must interact with the 
divergence of a conserved current.) 

The matrix element over the nucleon states, which de- 
termines the interaction of the arion with the nucleon, is 
equal according to (8) and (13) 

where q, is the momentum transfer. The scalar coupling of 
the nucleon ($,$,.a) with the arion would be obtained from 
the y5-free terms in this matrix element. Such terms, general- 
ly speaking, could be present, since parity is not conserved. 
The Lorentz structure of the matrix element (14) contains six 
terms, of which three violate parity: y, , o,,,q,, and q,, . The 
first two vanish when multiplied by q,, , and the last makes a 
contribution cc q2, which vanishes as q Z 4  and consequent- 
ly does not lead to long-range action. Thus, the use of the 
observtion law (13) turns out to be sufficient for a formal 
proof of the absence of long-range action between the nu- 
cleons. 

We now track, in explicit fashion, how the scalar cou- 
pling is producued between the quarks and the arion (choos- 
ing the chiral phases of the quarks to correspond to e,, = 0) 
and how the scalar coupling of the nucleon with the arion 
vanishes notwithstanding. 

In the presence of anomaly, the energy of the vacuum 
depends on the combination a, + a, - 6, inasmuch as un- 
der the transformation 

the phases of the condenstate and the 0 term vary in the 
following manner: 

U , - W , - ~ ~ ,  ad+%-8dt 8 4 - 8 u - e d .  (I5) 

The expression for the energy of the vacuum (8) must there- 
fore be supplemented by the "anomalous terms" 

At small m, and mu the last term, which reflects the 
presence of the anomaly, is larger than the first two, and it is 
therfore necessary in fact to minimize expression (16) subject 
to the additional condition that Ma,,, be a minimum, i.e., at 

au+ad-8=O. (17) 

This leads to the following values of a, and a, : 

m, sinvu-md sin(vd-0) 
t g  a,,= m, cos v.+md cos (vd-0) ' 

(18) 
m4 sin vd-m, sin(v,-0) 

t,g ad = m, cos ~ , ~ + m , ,  cos (v ,-0)  ' 

The standard choice of the chiral phases corresponds to 
the usual form of the condensate, i.e., to the conditions 

(iizi>f 0 ,  (dd)#O, (iiiy,u>=(diy,d>=O. 

For a transition to such phases from the initial phases (9), it is 
necessary to carry out the rotation 

d-exp ( iady5/2)  d, u-texp ( ia,y , /2)  u. 
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Of course, the mass terms of the quarks remain complex in 
this case, but since they are small this choice of the chiral 
phases is still the most reasonable. We note that in this case, 
according to (1 5) and (17), the 8 term also vanishes, and since 
the condensate has the normal form, direct application of the 
formulas of the chiral perturbation theory, which uses the 
smallness of mu and md , becomes possible. We shall use this 
circumstance below. 

In the new "phase gauge" the Lagrangian (8) takes the 
form 

-8=mdd(cos pdf iy, sin pd)d+m,,ii (cos pu+iy, sin 9.) u 

(19) 
mdvz + - ad(iy ,  cos p d -  sin p d )  d- 
V V ,  

muvz - a.E (iy, cos p,- sin p,) u, 
uu1 

where Pd = vd - a d ,  P, = Y, - a u ,  SO that according to 

(18) 
m, sin (v-0) md sin (v-0) 

tg pd= COS (Y-8) ' tg pu= m.+md cos (v-8) 

Y=Y,+V~. (20) 

The Lagrangian (19) contains both scalar and pseudoscalar 
couplings of the arion with the quarks. At first glance it may 
seem that the scalar coupling of the arion with the physical 
states, e.g., with a nucleon, is also inevitable here. Actually, 
when calculating the matrix element of the scalar density 
over the nuclear states 

( N  1 m,, sin p,iiu-md sin pddd N )  (21) 

it is natural to expect (21) to be proportional to the $,$,- 
scalar nucleon density, resulting in a scalar interaction 
between the arion and the nucleon. We shall verify that actu- 
ally the matrix element (21) is cancelled out by the matrix 
element over the nucleon states of the pseudoscalar part of 
the interaction (19). The point is that the matrix element of 
the pseudoscalar density has an enhancement - l/m, 
(q = u,d)  compared with the matrix element of the scalar 
density. Therefore the pseudoscalar matrix element must be 
calculated in the next order in m, , taking into account also 
the parity nonconserving mass terms of the quarks. The nu- 
cleon matrix element of the pseudoscalar density can then 
contain the scalar $,$, and cancel out (21). The matrix 
element of the pseudoscalar density, in which account is tak- 
en of the parity violation on account of the quark mass terms 
proportional to y,, is of the form 

-m,, cos P u  ((C ( 2 )  iy,u(z))  I 

Nrn, sin pd(d(0) iy,d(O) ) +mu sin B. (E  (0 )  iysu(0) 1)  I N ) .  
(22) 

The first factor in the T product can be replaced in ac- 
cordance with the equations of motion by the divergence of 
the axial current. Transferring the derivatives, we obtain in 
the limit q = 0, as usual, standard equal-time commutators. 
Their calculation gives an expression that differs from (2 1) in 

sign. Thus, the scalar interaction (qN$,.a) is indeed can- 
celled out when account is taken of both the scalar and the 
pseudoscalar density in the interaction of the arion with the 
quarks. We note that although we did not need, to prove this 
cancellation, the explicit form of the angles of the chiral ro- 
tation a, and a, (18), this rotation was necessary to prove 
the absence of long-range nucleon action, since it is precisely 
our choice of the chiral phases which ensured the vanishing 
of the 8 term and the definite parity of the vacuum corre- 
sponding to the standard choice of the condensate 
(?jiy,q) = 0. This concludes the discussion of the question of 
how the scalar coupling of the arion with the nucleon vanish- 
es notwithstanding the presence of scalar coupling of the 
arion and the quarks. 

So far we have considered strictly massless Goldstone 
particles. Yet, in the theory one frequency encounters light 
scalar particles corresponding to spontaneous breaking of a 
certain approximate symmetry. A classical example of such 
a pseudo-Goldstone particle, which acquires mass as a result 
of an anomaly in the axial quark field, is the axion.' Whereas 
the mass of the standard axion has a natural order of magni- 
tude of hundreds of keV, the widely discussed at present 
"ghost" axion8 can have a mass up to lo-' eV, correspond- 
ing to a Compton wavelength -20 m. Although exchange of 
such particles does not lead to a true (decreasing in power- 
law fashion) long-range action, interest attaches to the ques- 
tion whether an axion (or a ghost axion) can have a scalar 
interaction with nucleons and induce in them a "pseudo- 
long-range action" u e - "'.'/r. 

The foregoing proof of the absence of scalar couplings 
of Goldstone particles is obviously not valid in the present 
case. Nonetheless it is easy to see that in the case of exact CP 
invariance of the theory the axion also has a pure pseudosca- 
lar coupling: the axion is a particle with negative CP parity, 
therefore its scalar interaction with the nucleons would be 
evidence of CP violation. On the other hand if explicit CP 
violation is present in theory with the axion (as, e.g., in the 
model of Kobayashi aned Maskawa), no reason can be seen, 
generally speaking, for a scalar axion coupling not to occur. 

Thus, Goldstone particles do not lead to a long-range 
action a l/r, What will happen if we simply introduce into 
the theory a non-Goldstone spinless particle having a scalar 
coupling with fermions, and artificially set its mass equal to 
zero? Obviously, it will acquire a mass in the higher orders in 
particular, even when the simplest fermion loop is taken into 
acocunt. The only possibility under which the particle re- 
mains without mass is a successive cancellation, in all orders, 
of the contribution of the bosons and fermions. This possibil- 
ity is naturally realized only in supersymmetry, where the 
masslessness of some supersymmetric partner of the consid- 
ered particle can be ensured in the usual fashion--e.g., by 
chiral symmetry for the fermion or by "Goldstone charac- 
ter" for the pseudoscalar partner. Inasmuch as in a real 
world symmetry should, at any rate, be broken, the mass of 
the scalar particle will differ from zero. For the lower limit of 
the mass of such a scalar particle it is natural to expect, in 
order of magnitude, 
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where A is the scale at which the supersymmetry is broken 
and h is the Yukawa coupling constant. Let 
h-m,/m,,,- 10-16, just as in the theory of the ghost ax- 
ion. If A - 1 TeV, then m - lop4  eV, which corresponds to 
the long-range action radius m- ' -0.2 cm. Up to these dis- 
tances, the considered long-range action exceeds by six or- 
ders of magnitude the gravitational one. 

3. SIMPLEST MODEL OF AN INTERACTION NOT DIAGONAL 
IN THE FLAVORS 

We consider first the simplest albeit unrealistic model 
in which Goldstone boson has an interaction which is non- 
diagonal in the flavors, and discuss certain characteristic 
properties of this interaction. 

In our model there exists a gauge "horizontal" group 
(group of "generations") SU(3),, but there are no usual 
gauge interactions connected with the group SU(3),. 
x SU(2), x U(1). Three left-helical fermions I = (e,p,r), 

are transformed in accordance with the triplet representa- 
tive SU(3), , just as the charge-conjugate left-helical states 
(I '); = (ec, pC,7'), , Obviously, the mass terms are trans- 
formed in this case like 3 X 3 = 5 + 6 and can arise only as a 
result of spontaneous symmetry breaking. The permissible 
Yukawa couplings take the form 

-8=h ( ( I " )  La~lL")T~apT+f ( (I") L a ~ I ~ B )  oaa+ H.c., (24) 

where the Higgs scalar fields are transformed in accordance 
with the triplet and antisextet representations - 3 and 

-6. It is easily seen that the theory can have (subject to 
additional conditions on the sector of the interaction of the 
Higgs bosons) a global U(1)-symmetry of phase transforma- 
tions exp(iY6 ), if we put 

Y (I,") =Y (LC") = I ,  Y (fa) =Y ( a d  =-2. (25) 

The Y-symmetry forbids, in the interaction Lagrangian of 
the Higgs bosons, terms of the form 

Oag)atb, Det a='/, [ (Sp 2 Sp a3-3 SP a SP a21 - 
We propose next that the Higgs potential is constructed 

in such a way that the following components of the scalar 
fields differ from zero: 

This rather arbitrary assumption brings us closer to the real- 
istic model considered in the next section. The coupling con- 
stants h and fin (24) will be assumed to be complex, and the 
vacuum mean values (26) real. A Goldstone boson corre- 
spond to the symmetry realized with the aid of the generator 
F can be constructed in the following manner (we leave out 
the normalization): 

where the sum is taken over all the scalar fields. If (p) is real 
and the operator F = Y is a diagonal operator, then (27) re- 
duces to 

G= C Y (p) (rp)1m rp. (28) 
C 

For our case, obviously, 

where 

)=Im L3, aa=Im Oaa. 

Formula (29) would be perfectly correct if there were in 
the theory no other Goldstone bosons that can be mixed in 
with G. In our case such bosons are Goldstone particles con- 
nected with the spontaneous breaking of the symmetry with 
respect to the transformationsil, andil, of the SU(3), group. 
(These bosons, owing to the Higgs mechanism, are absorbed 
by the corresponding gauge bosons.) We write down explicit- 
ly these two Goldstone bosons, the first corresponding to the 
genreator A, = [I, - 1,0],,,, and the second to the U-spin, 
i.e., to the generator 

(1:/2) k8-'/~h3== [o, 1, -11 drag: 

~ = 2 ( r ~ o , - r ~ o ~ ) ,  U=2(-rzoz+r3a3) -vt.  (30) 

It is necessary now to add to expression (29) for G a 
linear combination of Tand Ubosons such that the obtained 
state be orthogonal to T and U. We have utlimately for the 
sought Goldstone boson a 

or, substituting (30) for T and U: 

where N is a normalization factor. 
We write down now the mass matrix MRL, which con- 

nects the left and right fermions 

-LZ'*=F(M~~) aplLB+H.~. . (33) 

As can be seen from (24), MRL is given by 

Thus, only the first two states, e and p, require in fact dia- 
gonalization. 

Although we are dealing only with a 2 X 2 matrix, we 
are faced with a rather cumbersome algebraic problem, since 
the diagonalization is carried out with the aid of independent 
rotations of left-hand and right-hand fermions 

L+VLzL, L+VnlR, 

f ~ r  which 
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It is simplest to diagonalize the two Hermitian matrices 

and 

mz=MRLMRL+ (m3-+VRf m?VR) 

and obtain thus their eigenvalues and matrices VL and VR , 
but the latter only accurate to multiplication of one column 
by a phase factor. The uncertainty in the multiplication of 
one and the same column V, and VR by an identical phase 
factor is of no significance, since it corresponds to redefini- 
tion of the phases of the physical fields e and p .  However, 
the relative phases VL and VR are substantial for a correct 
construction of physical states. It is possible therefore to pro- 
ceed in the following manner; after determining arbitrary 
VL and VR with the aid of diagonalization of m, and m,, we 
calculate next the matrix V, f  MRL VL and, stipulating that 
its eigenvalues (fermion masses) be real and positive, obtain 
the necessary phase factors that must be introduced into the 
columns of any of the matrices V,  or VL . After completing 
this rather cumbersome program, we arrive at the following 
answer 

where 

r:-rlZ ' I J  
p= cos 0,= Y I ( 1  +---- ) 7 

1' 2 A 'V!  

1 
q= s i n e . = ,  ( I  - - 

1'2 

X= arg(r,e'e-rle-'e),  cp= arg f ,  q+0= arg h,  
(36) 

" [ l -  
2(r12+ r,2-2rlrz cos 20) 

ctg 6,=ctg 20- 7 
r, sin 20 ~ ~ ~ - r , 2 + A ' '  1 1 

The foregoing unattractive expressions can be used in the 
following manner. Separating in the Lagrangian of the inter- 
action of the Higgs fields with the fermions the interaction 
with f, w , ,  ..., we can easily find the interaction of the fer- 
mions P with the Goldstone field a (to this end it is neces- 
sary to recognize that according to (32) the field f contains a 
with weight 2vr3(< + s ) / N ,  etc.). It is then necessary to 
change over to physical fermions I,,,, = V,  1, + V,  1, , us- 
ing the expressions (36) for VL and VR . Having done this, we 
can verify explicitly that the scalar diagonal couplings (Ze)a 
and ( Pp)a (e andp are physical states) vanish. This confirms 
the general theorem proved in Sec. 2. 

To prove the vanishing of the constant of the scalar 

interaction that is diagonal in the flavors it is natural to use 
the total expression (36) for VL and VR , for if the constants h 
and fa re  real, i.e., the initial Lagrangian is CP-invariant, 
this property follows in trivial fashion from the fact that the 
interction is Hermitian. The expression for the interaction 
that is not diagonal in the flavors, which is of interest to us, 
will be presented only for the case of a CP-invariant Lagran- 
gian, i.e., for real constants h and f (6 = q, = 0). In this case 
expressions (35) and (36) become much simpler 
(X = 8 ,  = 6, = O), and for the constant of the sought interac- 
tion we can obtain the following formula: 

It can be seen that the constant g vanishes at m, = m,, as 
stated in Sec. 2. At cos26, - 1 we have g - (m, - but 
at COS,~, - (m, - m, ), the linear smallness g- (m, - m,) is 
also possible. 

To help a reader who would like to verify the calcula- 
tions we present the following useful relations: 

sin 20,=2hv [ ( r l+rz )  2 f+4h2vZ]  -'". (38) 

4. THE SU(5) x SU(3), MODEL 

In this section we consider the model proposed in Ref. 
5, in which the standard SU(5) symmetry is supplemented by 
a horizontal gauge SU(3),, symmetry. In the model of Ref. 5 
is assumed a rather rich content of the Higgs sector, which 
makes it possible to describe quite successfully the mass ma- 
trix (the masses and the mixing angles) of the fermions. Re- 
ferring to the reader for details to the original a r t i ~ l e , ~  we 
recall only one achievement of the model, which is of rather 
general character: it becomes possible in this model to recon- 
cile in natural fashion the necessarily small values ( -  hun- 
dreds of GeV) of the vacuum mean values of the Higgs bo- 
sons, which give the masses of fermions of different 
populations, to the very large mass of these bosons. The lat- 
ter is needed to surpess the neutral currents with the flavor 
violation that occur in the model on account of exchange of 
the corresponding Higgs bosons. This is accomplished by 
introducing "projective couplings"-Higgs-Lagrangian 
terms in which the bosons mentioned above enter in linear 
fashion together with the other Higgs fields, including a pen- 
taplet that develops a small vacuum mean value. (The small 
vacuum mean value of the pentaplet is obtained, of course, at 
the expense of (one!) unnatural hierarchy condition that 
must be artificially imposed, just as in other versions of the 
SU(5) model.) The projective couplings lead to the appear- 
ance of an effective linear term in the Higgs field, which gives 
mass to the fermions when all other fields are replaced by 
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their mean vacuum values. As a result, even at a mass, say, of 
the order of loL5 GeV the mean value of the discussed Higgs 
field connected with the fermions may turn out to be shifted 
from zero only by an amount of the order of a hundred GeV. 

Specifically, the SU(5) X SU(3), model contains the fol- 
lowing Higgs multiplets5: 

The first figure in the parentheses denotes the dimensiona- 
lity of the SU(5) multiplet, and the second the dimensionality 
of the SU(3), group. Small vacuum mean values are pos- 
sessed by the fields@ ((H 5 ,  #0) and by all the fields listed in 
the last two lines which give mass to fermions on account of 
the Yukawa couplings: 

[''I O,rnca.~) [ikl  {a.P! h , ( l L ) a [ i '  ~ ( 1 1 ~ ) ~  &uklm+hp ($L) IGC ( $ L )  P P k  

[ r k l  [ l k l  * 
+h; (11'~) ,EC (h) P ~ ~ T E ~ ~ ' ~ ~ C T ( $ L )  ,,c ($L) p o [ ~ ~ ~ T ~ ~ ~ ~ + H . c .  ' 

(40) 
where the left-hand fermions are 

- - 
($L)cr['il - ( 1 0 . 3 ,  ($L),a- (5.3). 

Without dwelling in detail on the description of the 
Higgs co~p l ing ,~  we formulate a fact that is fundamental in 
what follows. The model can include the global U (1) symme- 
try, i.e., the phase transformations exp(iY8), if the fields are 
assigned the following values of the hypercharge Y [the val- 
ues of Y are given below for the components of the same 
covariance as those written out in (39)] 

It is easily seen that U(1) invariance holds for the Yukawa 
couplings presented above, as well as by the Higgs cou- 
plings5 that are significant for the model: 

(and also the couplings that include only the fileds @ and H ). 
At the same time, the postulated symmetry forbids a 

number of Higgs couplings, e.g., 

(and the same couplings with {--tv). None of these interac- 
tions are needed in the model of Ref. 5 to obtain for the 
fermions a mass matrix that agrees with experiment, and 

some of the forbidden couplings would actually destroy the 
constructed mass matrix. Such, e.g., are the couplings 

which would lead to inadmissably large values 

(0511,11) ( {'*il ). 
7 P 5  

Thus, assuming the presnece of U(1) symmetry ex- 
p(iYB), we construct a Goldstone boson G in accordance 
with the prescription (28) explained in the preceding section. 
For the non-normalized state of G we have 

where 

1 1 (anal  (a+)* pa = 7 (p, -p5 ) , g = 1-=- (c .53-f  es*) 9 

iV2 21'2 

and the real vacuum mean values p, q, ... are5 

The quantities p, q, and r, characterize the spontaneous 
breaking of the horizontal symmetry and are therefore large. 
The rather neutral possibility here is that r, - 1015 GeV, i.e., 
of the same order as the scale of the breaking of the SU(5) 
symmetry, whereas q, r,, and r, are subject to the conditions5 

The remaining vacuum mean values Ar, , pr, ,vq,xp are only 
of the order of hundreds of GeV, i.e., A, p,v,x(l [we empha- 
size that ( in (45) means smallness of the order of the ratio of 
the masses of the fermions of the different generations, say 
p/r3 - m, /m, -+, and does not mean in any way small- 
ness of A, p,v,x - 10-',]. 

Just as in the case of the simplified model considered in 
the preceding section, account must be taken of the mixing of 
G with Goldstone bosos corresponding to destroyed genera- 
tors of the SU(5) X SU(3), group. Two such Goldstone states 
correspond to the generators A, and A, (or, more convenient- 
ly, (v'3/2)i18 - 4 A,) ofthe group SU(3), , just as in the preced- 
ing section. The third state is the result of disturbance of the 
generator T, - sin20,Q of the group SU(2), xU(1) [of the 
subgroup SU(5)], with which the Z boson interacts. All three 
states can be easily expressed: 
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The sought Goldstone boson is 

a=N-'(G-A. T-B. U-Cz), (47) 

where the coefficients A, B, and C are determined from the 
condition that a be orthogonal to T, U, and Z. The states G, 
T, and Ucontain both large ( - g,r],x )and small terms, while 
z contains only small ones. An expression for a can be writ- 
ten, accurate to the ratio of the small vacuum mean values to 
the large ones, in the form 

a=N-' (G-AOT-BoU-CZ) , (48) 

where A, and B, are calculated without allowance for the 
fields that have small vacuum mean values, i.e., 

Since the terms AAeT,, AB.U, (A=A,+AA, 
T = To + AT, ...) make a small contribution to the normali- 
zation, while To and U, do not interact with fermions. 

The coeffiient C is determined from the condition 
(aaz) = 0, which yields 

We use now the hierarchy of the parameters (45). The cum- 
bersome expressions for the scalar products become then 
much simpler, and direct calculation yields the values 

A B O l 2  C-0, (51) 

the expression for a becoming extremely simple: 

a=N-'[G-T-'/,U] 

Separating in (40) the interaction of the fermions with 
c5,, we easily obtain the interaction of a with fermions. We 
neglect here the insignficant d-s mixing: 

L?=i.lT(hgv) a [ ( s d )  - ( d s )  + (pe) - ( W )  I .  (53) 

As shown in Ref. 5, the quantity hcvq (q = (7) )  is con- 
nected with the masses of the fermions of the first two gen- 
erations: 

Accordingly, we rewrite the expressions for 2 in the follow- 
ing form (redefining s+is and p+ip): 

This notation reflects the effects of the renormalization 
of the Yukawa constants on going from the grand-unifica- 
tion mass to contemporary energies (i.e., according to Ref. 5, 
that the equality m,m, = m,m, takes place at energies - 10'' GeV). Equation (55) is our final result. It is interesting 
that the nondiagonal 2s and Zp interaction of the Goldstone 
a (55) is the principal interaction of a with fermions. Diag- 
onal intera~t~ons, just as an interaction with a T lepton (b 
quark) turn out to be small by virtue of the conditions (45). 

Equation (55) enables us to calculate the probabilities of 
the decays p-+e + a and K +-n-+ + a ;  to calculate the am- 
plitudes of the second process we can use the relations 

where p and p' are the momenta of the K  and a mesons, and 
( p - p')' = 0. We have 

This is the cause of the restriction on the vacuum mean 
value (7).  A more stringent limitation is imposed by the 
absence of experimental decay K +-n-+a [r (K +-n-+a)/ 
r ( K  ++l l )  < 3.7.1018 (Ref. 9)], from which we can obtain 
the limit 

< q ) > l . l .  loi0 GeV . 
We note that in attempts to observe the p-+e + y decay 

an electron with momentum m, /2 is always sought in corre- 
lation with they quantum; to observe the decay p+ = a it 
is necessary simply to seek an electron with p, = m,/2. 

It is difficult to state definitely which value of (7)  = q is 
typical of the considered model. If we assume that r,- 1015 
GeV, it is possible that5 q=(~)-[(m,m,)" ' /  
m, ] r3- 10" - 1013 GeV. To observe the K +-rr+a decay 
it is then necessary to improve the experimental accuracy by 
several orders of magnitude. It is possible, however, that the 
characteristic scale of the vacuum mean value responsible 
for the breaking of the horizontal symmetry is still less than 
the grand-unification scale (strictly speaking, this would be 
desirable in the model of Ref. 5 from purely empirical con- 
siderations, to obtain the correct form of the mass matrix of 
the fermions). It is not excluded then that to observe 
K ++n-+a it is necessary only to improve somewhat the ex- 
isting experimental accuracy. At any rate, as already men- 
tioned in the introduction, the K-trra and p-ea decays can 
be observed at incomparably larger values of ( v )  than other 
effects connected with the existence of flavor-changing neu- 
tral currents. 
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In conclusion we note the following. Another type of a 
Goldstone boson with interactions nondiagonal in flavor 
could be m a j ~ r o n . ~  Although the parameters that character- 
ize the majoron are highly indeterminate, it can be assumed 
that the width of p-+e + ,y (the ,y majoron) is smaller by 
many orders of magnitude than (56) even, e.g., at (7) - 1013 
GeV. (If the constant of such a nondiagonal interaction is 
estimated in analogy with the constant of the diagonal inter- 
action as being - (Ref. 2, the width of p-e + a is less 
than the width of p-+e + a at (7) - 1013 GeV by ten orders 
of magnitude.) We note that in models with the majoron the 
non-diagonal transitions take place only in the lepton spec- 
trum. 
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