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We solve the problem of interaction of an electromagnetic field with a semi-infinite system of 
equidistant electron planes immersed in a dielectric medium (multilayer superlattice). The calcu- 
lation is carried out for the same experimental setup which is used for the observation of two- 
dimensional plasmons in a single plasma layer. The shape of the absorption band is found. At 
relatively weak electron scattering, the latter influences the absorption substantially only at fre- 
quencies close to the edges of the plasma bond, whereas in the inner part of the band the absorp- 
tion is due mainly to excitation of plasma waves. We calculate the amplitude of the electric field 
and the evolution of the time-limited electromagnetic pulse that is transformed into plasma 
waves. 

PACS numbers: 71.45.Gm 

1. INTRODUCTION 

Artificial periodic structures-superlattices-in which 
a two-dimensional electron gas is realized are recently at- 
tracting much attention. The number of layers in the experi- 
mentally obtained superlattices reaches lo2 = lo3 (Ref. 1) at 
insulating-gap thicknesses -200-300 A. The thicknesses of 
the regions occupied by electrons are of the same order or 
lower. The particle surface density is - 10"-10'~ cmV2. Un- 
der these conditions, the electrons can populate only the first 
transverse-quantization level, and the tunneling between the 
layers is negligibly small (the Visscher-Falicov model2). 

Plasma waves in multilayer superlattices have been in- 
vestigated theoretically in sufficient detail,'-' but to our 
knowledge there are no reports of their experimental obser- 
vation. We discuss in this paper, by way of one of the possibi- 
lities of observing plasma oscillations in multilayer sublat- 
tices, their interaction with infrared electromagnetic 
radiation. We obtain the shape of the absorption band, the 
frequency dependence of the amplitude of the electric field in 
a plasma wave passing through a superlattice, and the broad- 
ening of a time-limited electromagnetic pulse of given shape, 
which is transformed into plasma waves. 

If any of the semiconductors making up the superlattice 
is piezoelectric, coupled plasma-acoustic waves are excited 
in the system. In this case, as we shall show, the initial elec- 
tromagnetic pulse splits into two, three, or four pulses, one 
of which propagates with a velocity typical of plasma waves, 
and the remainder at sound-wave velocities. 

2. RESONANT EXCITATION OF PLASMA WAVES 

In the case of a single-layer system with a two-dimen- 
sional electron gas, resonant excitation of plasmons is effect- 
ed by a diffraction grating produced on the sample ~u r f ace .~  
The period of this grating sets the two-dimensional plasmon 
momentum k, and the absorption resonance takes place at 

w = op(k  ), where w is the frequency of the incident electro- 
magnetic wave and wp is the two-dimensional plasma fre- 
quency. 

We consider now a semi-infinite multilayer superlattice 
occupying the region z > 0, on the surface of which is pro- 
duced an analogous periodic structure. The electric field of 
the wave passing through the diffraction grating is repre- 
sented by a Fourier series in cos k,x, where k, = 2 ~ s / L ,  L is 
the period of the diffraction grating, and s = 0, 1, 2, ... The 
zeroth harmonic does not excite plasma oscillations and pro- 
duces in the absorption the usual Drude background (see the 
experiments, Ref. 8). The remaining harmonics are not 
waves that propagate (along the z axis), and the electric field 
in them attenuates exponentially with increasing distance 
from the diffraction-grating plane. Indeed, under typical ex- 
perimental conditions the wavelength of the infrared radi- 
ation is much larger than the wavelength of a plasmon hav- 
ing the same frequency (a- 1012-1013 Hz), i.e., a quasistatic 
limit is realized. Therefore the sth harmonic of the electro- 
magnetic wave passing through the diffraction grating 
should be proportional to exp(ik,x - k,z). Thus, for the con- 
sidered excitation method, the model of a semi-infinite su- 
perlattice is fully justified if the structure thickness is much 
larger than 1/k. 

Resonantly interacting with the superlattice plasma, 
the harmonics with s > 0 are transformed into plasma oscil- 
lations. The latter are already traveling waves and can carry 
energy into the interior of the superlattice at a group velocity 
determined by the dispersion law of the plasmons in the mul- 
tilayer structure. We note that the intensity of the first har- 
monic can reach approximately 10% of the intensity of the 
incident radiation (see, e.g., Ref. 8). 

The problem consists of solving the equations for the 
electrostatic potential g, and of the nonequilibrium incre- 
ments to the surface density R,, of the charge, where n is the 
number of the superlattice layer: 
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Here E is the dielectric constant, A is the superlattice period, 
and e is the electron charge. 

The quantities 2,, can be obtained from the kinetic 
equation (see, e.g., Ref. 9). At a given extraneous field 
Ee, = Eo exp( - kz + ikx) in the approximation w ~ k v ,  
where v is the characteristic electron velocity, we obtain 

eN.k 
N, = [ krp ( z=nA)  +iEeXt ( z=nA)  1. 

o ( o - k i v )  m 
(2) 

N, in (2) denotes the equilibrium surface density of the elec- 
trons in the layers; m and v are respectively the effective 
mass and the carrier collision frequency. 

We seak the solution in the form 

Substituting (2) and (3) in ( I ) ,  we obtain a system of equations 
for the coefficients A, : 

The system (4) is a discrete analog of the inhomogeneous 
Wiener-Hopf integral equation. Its solution is based on 
methods expounded, e.g., in Refs. 10 and 11, and is given in 
the Appendix. The results take the form 

The plasmon quasimomentum q at given o and k is deter- 
mined from the dispersion equation 

up2 
cos ~ A = c I I  I i l  - S ~ L  kl. 

o (o )+ iv )  (6) 

For the x-component of the total electric field E,,, (n), 
which acts on the particles in the nth layer, we obtain the 
expression 

EIol ( n )  =Eoe-kAn-ikrp (z=iaA) = 2Eo sh k A  e - ? y A a + t k x  
e l ~ A - e - k A  (7) 

In the collisionless approximation (v = 0), E,,, (n) attenuates 
exponentially with increasing n if the frequency lies outside 
the plasma-oscillation band defined by the dispersion rela- 
tion (6). In the experimentally most realistic limiting case 
kA (1 the limits of the band are defined by 

O ) , , Z . X = O ~  ( 2 l k A )  I", o,,,,,, =up ( k A / 2 )  "~. 
Near the upper threshold o 2 w,,, the spatial damping of 
the wave (7) equals 

q " = - k [ 2 ( ~ - o m a x )  I ~ ~ m a x ] " ' ,  (84  

and at w 5 w,, 

Inside the band, neglecting the collisions, the damping q" is 
of course zero. In this sense one can speak of resonant excita- 
tion of plasma waves in superlattices; in the frequency band 
w,,, < w <om,, the total electric field in the nth layer does 
not vanish as n--+m, although the exciting field attenuates 
like exp( - kdn). The frequency dependence of the transmit- 
ted wave is given by 

I Etor I '=2E02 ~h kAekA ( 0 2 / o p 2 ) ,  o m i n < o C o m a x .  (9) 

Allowance for the electron scattering gives rise to colli- 
sion damping. Its spatial decrement, say for w = w,,,/2 (in 
which case q'A 4 1) is equal to q" = - k ~ / 2 ~ ' ~ o , ~ ,  . We shall 
estimate this quantity for the GaAs-GaAlAs structure at 
the following values of the characteristic parameters: 
A = 2 x cm, v = 3 x 10" sec-I, N, = 10" ~ m - ~ ,  
m = 6 x g, E = 12.5. If the period of the diffraction 
grating is 3pm, then kA = 4X low2, omax = 4 X  1013 sec-', 
so that Jq"I = 0.5X 10-2k. Thus, when thenumberoflayers 
exceeds 60 the external field decreases by more than an order 
of magnitude, i.e., the passage of the "diffracted" field 
through the system is due mainly to its transformatian into 
plasma waves. 

3. SHAPE OF THE ABSORPTION BAND 

The total (i.e., summed over all layers) work performed 
by the external field on the system per unit time is given by 
the formulas 

1 Q = - R e E E  oe -'An' In; 

2 

Using (7) and summing, we get 

eq"A[e f 'A  sin q'A ( l -e-2k")  + ( v / o ) s h  k A  (1-e-2u+2q"A 
X -  11 ( 1 - 2  cos q ' ~ e - h ~ + ~ " A + e - 2 k A + 2 q " A  2 ) 

cos q'A 
X- 

A '  

where q'=Re q > 0, q" =Im q < 0. The frequency depen- 
dence of Q (o) is contained also in q' and q", which are defined 
by Eq. (6): 

Near the end points of the band, the behavior of Q (w) is char- 
acterized by the following expressions (kA ( 1, Iq" I (k ): in the 
vicinity of the upper threshold 
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v 
Q=Qo , ~ > ~ r n a x ,  ~ - ~ r n a x ~ v ;  which is optimal for obtaining small group velocities. Near 

[ 2  ( W - C ~ ~ ~ I  winaXlSG the upper edge of the band it is necessary to take into account 
(12a) the electron scattering; in the region wmax - o.<v we obtain 

Q=Qo (v/2ama;' %, I 0)-0max1 KY; (12b) v,, = (2w,,v)"'/k=:2.5 x 10' cm/sec at the same om, , v, 
and k as above. The lower edge of the band is hardly of inter- 

Q=Qo[2(~m~x-~) /~maxI '~ ,  ~(ornax, amax-aB~ (12') est, since wmin /v- 1 for the presently available superlattices. 

(here Q, = E iNse2kA /2momax); in the vicinity of the lower 
threshold the Q (o) frequency dependence is described by the 
same formulas, with amax replaced by a,, , wmax - w by 
o - omin,  and Q, by E:N,e2(kA )2/momin. 

Inside the band, at a frequency distance larger than v 
from the edges, the electron scattering becomes insignifi- 
cant. The work performed by the external field goes into 
plasma-wave excitation. The absorption is described in this 
case by the formula 

(1 3) 
A plot of Q(o )  [see Eq. (lo)] for the characteristic system 
parameters kA = 4X 10-',v/o, = 0.05 is shown in the fig- 
ure. 

To conclude this section, we estimate the parameters of 
a multilayer superlattice as a decelerating system. Let the 
amplitude of the exciting field have a slow Gaussian vari- 
ation 

Eo(t) =Eo exp (-tZIT2), aTB1. 

It is known that the transmitted pulse at z = nA will also 
have a Gaussian shape of width 

We consider the frequency region in which qA,kAg 1, 
but q#k. From (6) we obtain then the approximate relation 
o z w m x  k/q. At the numerical values of the parameters 
used in Sec. 2 and at k /q-0.1 we obtain w =:4x 1012 sec-' 
and o/v=: 12; the group velocity is v,, = 2 X 10' cm/sec. 
The relative broadening of the pulse for n = lo3 layers is 
(10- " / t  )4, where T is in seconds. 

The foregoing estimate pertains to the frequency inter- 
val in which o-(omaxomin).'12 It  is precisely this interval 

FIG. 1. 

4. PIEZOELECTRIC COUPLING OF PLASMONS WITH 
ELASTIC WAVES 

Gallium arsenide is known to be piezoelectric, and this 
should lead to interaction of plasma waves with acoustic 
ones in multilayers GaAs-GaAlAs superlattices. This prob- 
lem does not differ in principle from the one considered 
above, although it does entail rather cumbersome calcula- 
tions. We do not present here a complete solution, and con- 
fine ourselves to a qualitative discussion of the results. In the 
general case, at arbitrary orientation of the superlattice lay- 
ers relative to the crystallographic axes, the electric-wave 
potential has four components: Given o and k, the disper- 
sion equation has four roots q,(k,w), j = 1,2,3,4. One of them 
corresponds to a group velocity of the order of the plasmon 
velocity, and the three others to velocities of the order of 
acoustic. The function G (w) introduced in the Appendix has 
respectively four pairs of complex-conjugate zeros 
w, = exp( + q,A ). The electric field in thenth layer will thus 
consist of four waves traveling with different velocities. 
Since the electromechanical-coupling coefficient y is usually 
small compared with unity (y- for GaAs), the main 
fraction of the energy is contained in the plasma-type wave. 

In the absence of electron scattering, the broad plasmon 
band breaks up into a set of plasma-acoustic bands of width 
-2rc/A, where c is the speed of sound (see Ref. 7). The 
width of the forbidden band is less than 2rc/A in terms of the 
parameter y. A similar structure should manifest itself in the 
shape of the absorption band of an electromagnetic wave. 
However, the electron collision frequencies actually attaina- 
ble at the present time do not permit resolution of this struc- 
ture. Therefore the shape of the absorption band remains 
practically the same as obtained in Sec. 3, but an interesting 
experimental manifestation of the many-part character of 
the plasma acoustic waves is the splitting of a time-limited 
pulse in accordance with the different values of the group 
velocities. 

By way of illustration we present the results for the sim- 
plest model: the electron planes are imbedded in a piezocrys- 
tal of symmetry c,, , with the C, axis parallel to the layers of 
the structure (in this case we have a two-part potential wave). 
The electric field in the nth layer is 

where X' = 02/c2 - k ',ql,* are the roots of the dispersion 
equation,' and 

sh kA yk s i n x b  
02="p2 

( o h  kA--cos * A  x cos xA-cos yd 
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Equation (14) was obtained under the assumption y( 1 
and w ~ c k .  The latter means that the plasma and acoustic 
waves are weakly coupled; therefore ql can be regarded as 
determined from the dispersion equation (6), and q, differs 
from x by a small amount of the order of yck /a. 

Let us discuss in conclusion the question of the local 
modes. Although the plasma layers occupy in the considered 
problem a half-space, we do not obtain a solution of the sur- 
face-plasmon type (o = w,/fi). The point is that motion 
normal to the layers is completely excluded for two-dimen- 
sional electrons, whereas in a surface plasmon the particle 
displacement must contain two components, parallel and 
perpendicular to the surface. When account is taken of the 
acoustic degrees of freedom, a local mode of the type of a 
Rayleigh or a Bluestine-Gulyaev wave appears. At the k val- 
ues of interest to us the frequency of these waves is smaller by 
two or three orders than a,,, , so that the local modes do not 
play an important role in the phenomena considered. 

The functions A * (w) can be constructed in the region of the 
ring r < I wl < R by first solving the an auxiliary boundary- 
value problem. We choose a contour L ( I  w 1 = p)  such that it 
contains no zeros of G (w). We arrive at the Hilbert boundary- 
value problem1': find A +(w) which is regular at Iwl <p, 
A -(w) that is regular at ( w J  >p, which are connected on the 
contour L by relation (AS). Since the function G (w) is the 
ratio the polynomials (Al),  the factorization is elementary: 

(w-e'gA) (u)-e-'qA) 1 
G f  (w) = - , G - ( w ) = - 9  

W - e - k A  w-ekA 

where G +(w) and G -(w) are regular inside and outside the 
contour L, respectively. The solution of the boundary value 
problem is then": 

Pm(w) + S  W - e - k A  

A f ( u ) ) = - - - - -  
G+ ( w )  G+ ( w )  (w-ekA) 

, I w l q ;  (A64 

APPENDIX 

We solve the system (4) in full accord with Refs. 10 and 
11. Such a system can be reduced to the Hilberg boundary- 
value problem. We redefine the coefficients A, to include 
n<O 

We introduce a function of the complex variable w, de- 
fined by the series 

0 ,' 
G ( w ) =  

o ( o f  iv) 

Here P,,,(w) is a polynomial of degree m. The condition 
A -(oo ) = 0 yields P, = C, where Cis an arbitrary constant. 

Obviously, (A5) realizes an analytic continuation of 
A +(w) defined in (A6a) into the region Iw 1 >p, and it is im- 
portant to note that A +(w) can have poles where G (w) = 0. 

The coefficients A, are obtained from (A2): 

Deforming the integration contour in (A7) in the region 
I w 1 >p  we obtain the solution of the system (4): 

2i 
f q ~ ( n + I ,  [ , ( e i q a - e k A )  +S  ( e ' ~ A - e 4 A )  ] 

= {e-  
s in  q l  

+ e * q ~ ( n + ~ :  [ c ( e - I @ - e k A )  +S (e-'"-e-") ]I). (A81 
00 

~ + ( u . ) = ~ ~ l , > c u ~ ;  Since it follows from (A.4) that at ql=Re q>O we have 

n=o 

(A2) q"-Im q < 0, the coefficient of exp(iqAn) in (A8) must be set 

-ca 
equal to zero. We thus determine the constant C: 

A-(ru) = x n n w n ,  A - ( O ~ ) = O .  (A31 e t q ~ - e - k ~  

C=-S  
n=-1 e - t s ~ - e k ~  ; 

We have introduced here the notation exp( + iqA ), whereq is the solution of the system (4) takes then the form (5). 
determined from the relation 

cos qA=ch I;A - o PZ sh k A .  
o ( o f i v )  

(A41 

It is obvious from (Al)  that the function G (w) is regular 
in the ring e - kA < I w I < ehA. Assume that there exist r and R 
such that A +(w) is regular at / w I < R and A -(w) is regular at 
lwl> r. We multiply (4) by w" and sum over n from - oo to 
+ cc . By varying the order of summation we obtain a func- 

tional equation that relates A +(w) with A -(w): 
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