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We consider induced emission of ultrarelativistic emissions in strong electric (magnetic) fields 
that are uniform along the direction of the electron motion and are not uniform in the transverse 
direction. It is shown that in such a system the gain is increased compared with that of a magnetic 
undulator by a value of the order of y( y = &/m,c2 is the relativistic factor). Numerical estimates 
are presented that determine the possibility af amplification of a test wave in the optical and near- 
infrared bands. 

PACS numbers: 41.70. + t, 42.50. + q 

1. INTRODUCTION 2. BASIC EQUATIONS 

The motion and radiation of relativistic electrons in sta- 
tionary spatially periodic magnetic fields (undulators) has 
been investigated in detail recently in connection with the 
problem of free-electron lasers (FEL). An expression was 
obtained for the amplification coefficient of an electromag- 
netic wave propagates along5-' and at an angle8 to the direc- 
tion of motion of the electron beam. It turns out here that in 
all realistic cases the gain for electrons of energy E >  100 
MeV is so small in the optical band, that the probability of 
generating the corresponding coherent radiation in undula- 
tors becomes quite problematic. It seems vital therefore to 
seek for other ways of generating coherent radiation in the 
soft ultraviolet in the FEL regime, without the use of undula- 
tors. One such method may be the use of ultrarelativistic 
electrons that are uniform along the direction of motion but 
are not uniform in a direction transverse to the stationary 
electric and magnetic fields. If the field potential in such 
fields increases in a direction perpendicular to the beam 
from the center ot the periphery, the electrons can execute 
harmonic oscillations. 

We consider in this paper stimulated emission of rela- 
tivistic electrons in strong electric and magnetic fields that 
are uniform along the electron-motion direction and are not 
uniform in the transverse direction. It is assumed that the 
potential energy of the interaction of the electrons with the 
field depends quadratically on the transverse coordinates. 
We shall assume that a one-dimensional case is realized, 
when the field varies only along one of the axes in the trans- 
verse direction. A generalization of the solution to the two- 
dimensional case does not lead to results that are fundamen- 
tally new. 

We calculate in the ultrarelativistic limit the gain for a 
test wave propagating both along the electron beam and at 
an angle to it. An expression is obtained for the gain as a 
function of the length of the interaction region, of the angle 
of entry of the particles into the field, of the field intensity, of 
the polarization of the test wave, and others. We note that 
fields having a configuration close to those considered in the 
present paper are produced in electric and magnetic quadru- 
pole lenses. 

The static field in which the relativistic electron move 
will be specified via the 4-potential A, = (@,,A,), whose val- 
ue is assumed to vary along the Z axis in accord with the 
quadratic law A,(z) = A,, (z2/d 2), whered,, is the maximum 
amplitude of the Cpotential and - d /2(z<d /2. We assume 
the field to be uniform in the direction of motion of the elec- 
tron beam (the Xaxis) and in the perpendicular direction (the 
Y axis). 

Letpli sp,,  wherepll andp, are respectively the longitu- 
dinal and transverse components of the initial momentum of 
the electron. In accordance with the considered character of 
the particle motion, we represent the total initial energy E by 
the sum E-- ,E ,~  + E ~ ,  where E,, = (pic' + m:c4)'I2 and 

=p:/2yme( y = &/m,c2 is the relativistic factor and me 
is the electron mass) are the energies corresponding to mo- 
tion longitudinal and transverse relative to the Z axis. We 
assume satisfaction of the strong inequality E E , ,  ) E ~ .  

The field of a traveling electromagnetic field is defined 
by the Cpotetial (fi = c = 1) 

Az ( x )  =1/2A02 [ere-"+ C.C. I , (1) 

where e, = (O,e,) is a unit vector of the wave-field polariza- 
tion; A,, is the amplitude of the field; k = (o,k) is the 4- 
momentum of the field quantum. We have used in (1) the 
usual notation for the scalar product of 4-vectors: 
kx = (kx) = w t  - k-r. 

As the basic equation, neglecting small spin correction, 
we use the Klein-Gordon equation in the fields A ,., ( x). The 
dimensionless parameter K = eA,,/m, , which characterizes 
the intensity of the interaction of the electron with the elec- 
tric (magnetic) field can be 2 1, and accordingly we take the 
field A,( x)  into account in all orders of perturbation theory. 
The wave field A,( x)  is assumed weak enough and we consid- 
er it in first-order perturbation theory. The Klein-Gordon 
equation takes in a field with potential A, the form 
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We seek the solution of (2) in the form9 

Y (r, t )  = ( ~ E V )  -'"e-'pXF ( z ,  t )  , (3) 

wherep = ( ~ , p )  is the4-momentum of the free electron (when 
the field is turned off). In (3) we use the usual normalization 
to a single particle in the volume V. 

The form of the subsequent formulas depends on the 
type of the field. Thus, in the case of an electrostatic field 
(A, = 0) Eq. (2) takes the form 

a 2  a I-, + *-2ie@, - + e2@,'-mez] Y = O  
a t  

(@, is the scalar potential of the field); in the case of a mag- 
netic field (@, = 0) Eq. (2) is written in the form 

a: [ - ,+ ~ - 2 i e ( ~ , ~ ) - e ' . 4 , ' - m ~ ]  Y=O (5) 
(Al is the vector potential of the field). Since the general 
method of solving Eqs. (4) and (5), as well as the approxima- 
tions used; are analogous in this approximation, we confine 
ourselves hereafter to the electrostatic field and will present 
without derivation the results for a stationary magnetic 
field. 

Substitution of (3) in (4) leads to an equation of the 
Schrodinger type for the transverse motion of the particle: 

The wave function of the particle (3)  breaks up into fac- 
tors that correspond to its longitudinal and transvere motion 

Y ( r ,  t )  = ( 2 ~ s )  esp [-i ( ~ , , t - p l , p )  1 F ( z ,  t )  (7)  
(in accord with the representation of the function (7),  it is 
convenient to express the volume V in the form V = SL, 
where S is the normalization area in the XY plane, L is the 
normalization length in the direction of the Z axis, andp is 
the radius vector of the particle in the XY plane) 

In the derivation of ( 6 )  we left out the small terms d2F/  
dt ', and e2@ :F, this is valid if the inequalities E ) E ~  and 
E) Yo, are satisfied ( VoE = e@,,, is the depth of the potential 
well in which the transverse motion of the electrons takes 
place. The inequality V,,,/E(~ can be formulated in the 
form of the condition on the field intensity and the particle 
energy, namely K /y(l(K = e@,,,/m,.). 

The eigensolutions of the stationary Schrijdinger equa- 
tion 

form an orthnormalized basis of oscillator functions with 
energy eigenvalues E, = (n + 1/2)RE, where 

To solve the nonstationary equation (6 )  we assume that 
the interaction of the electron with the field is turned on 
instantaneously at the instant of time t = 0 (the correspond- 
ing condition for the entry of the particle into the field will be 
formulated below). The basic function that describes the 
state of the particle at instants t > 0 is then 

where the expansion coefficients are given by 

a,.= J P ( z .  O) s. ( z ) d z  (10) 
and can be interpreted as the probability amplitudes of the 
transition of the particle from free-motion states p ( z , t < ~ )  
into definte oscillator states p, (z) when the field is suddenly 
turned on. 

We formulate now the condition for the suddenness of 
turning on the interaction. This approximation takes place 
in the case when the characteristic time of entry of the parti- 
cle in the field r -d  / v z d  (v is the electron velocity) is much 
shorter than the period T-(E, + , - & , ) - I  of the natural os- 
cillations of the system, i.e., when the inequality d(?r/R, is 
satisfied. It is easily seen that this criterion can be formulated 
in the form of a condition on the value of the parameter K 
and on the particle energy (K /y)'I2( 1. 

We make now a few remarks concerning the form of the 
function (9) and of the coefficients (10). Since the potential 
well for the transverse motion has a finite depth, the com- 
plete basis of the eigenfunctions contains, strictly speaking 
not only the oscillator functions p, (z) but also continuous- 
spectrum functions. It is therefore legitimate to retain the 
discrete states in the expansion (9) only when the energy of 
the transverse motion of the particle on entering the field 
does not exceed the height of the potential barrier: E, 5; VoE. 
When this condition is satisfied the well is filled with states 
that are not too close in energy to the height of the barrier, 
the summation in (9) extends to the value n = n,, correspond- 
ing to the upper level (n,, = Vo,/RE). The restriction on the 
value of E ,  can be formulated in the form of a condition on 
the angle O,, = p ,  /E of entry of the particle into the field: 

@,< ( ~ V O E / E ) ' " .  (I1)  
We turn now to the coefficients a,, which give the pop- 

ulations of the levels in the well. In accord with the meaning 
of the expansion (9), these coefficient should satisfy the nor- 
malization condition2, la, I *  = 1. To satisfy this condition 
we use for the function F (z,t 5; 0) normalization in a volume 
with side L> l/p, , so that in accordance with the definition 
(10) the coefficients are given by the formula 

LIZ 

o,,=L-" J cxp (ip,z) p. ( z )  dz. 
-L /2  

(12) 

The wave funtion of the final state of the particle is ob- 
tained from (9) and (10) by formal replacement of all the 
initial parameters by the final ones: 

q r .  ( r ,  t )  = (2efS)-I"  cxp{ - i (a I l ' t -p~ ' ! ) )  } n.,,Jcpm(z) 
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In the case of a magnetostatic field the Schrodinger 
equation that describes the transverse motion of the particle 
is obtained from (6) by making the obvious replacement of 
the potential energy e@,(z) by - eA ,(z)(pe,)/ymc, where e ,  is 
a unit vector of the magnetic-field polarization and is per- 
pendicular to thezaxis. The natural frequency of the system 
is then equal to 

and depends parametrically not only on the magentic-field 
amplitude but also on the energy and direction of motion of 
the particle. Owing to this dependence it is necessary to for- 
mulate an additional criterion, upon satisfaction ofwhich we 
obtain for the magnetic field a Schrodinger equation of the 
type (6):lp*e, lNeA,,,. Obviously, this condition restricts the 
possible directions of the longitudinal component p,, of the 
particle momentum relative to the vector A,,,. 

As noted above, the field A,( x )  of a traveling electro- 
magnetic wave field is taken into account in first-order per- 
turbation theory. The perturbation operator linear in the 
wave field takes for the case of an electrostatic field the form 

and for a magnetostatic field 

Again, as above, we confine ourselves to the electrostatic 
field. The results for the magnetic field will be given in final 
form without proof. 

The processes considered in this paper are character- 
ized by an S-matrix element the expression for which in first. 
order perturbation theory in terms of the field A, is of the 
form 

cesses with emission (S;,) and absorption (S;,) of a wave 
quantum with energy w: 

I,,,- cp,,'(z) exp (~ ik ,z )  cpn (z) (iz, "'- 5 
I:: = 5 y:(z) exp(~ik,z) dyn(z) dz. 

dz (1 8) 
From the conservation laws contained in the S func- 

tions of (1 8) follows a relation for the frequency w of the wave 
for which amplification is possible 

sQ - 2y2sQ 
0' = -- 

I- (p I I /~ I I )  cos 0 l+y2O2 ' (19) 
where s = In - m I;$ is a small angle between the vectors k 

and P,, . 
When transforming to probabilities of the processes, 

the singularity that remains after integration with respect to 
dp' in (1 8), as is customary in problems of induced emission 
in a given field, is eliminated by subsequent integration that 
takes into account, for example, the ti nite character of the 
interaction region, the anharmonicity of the field, etc. in our 
formulation, the total probabilities of the processes should 
be averaged over the initial energy distribution of the elec- 
trons in the beam, given by the distribution function f (E ) .  We 
assume that this function is normalized to unity by the con- 
dition Sf {&)& = 1 and that the width of the function SE<E. 

Taking all the foregoing into account, the probabilities 
per unit time of the processes with emission (dw,) and ab- 
sorption (dw, ) of a quantum w are given by the expressions 

x c ~ ~ { - i ( p , , ~ + k ~ ~ - p ~ ~ ) p ) d p  ~ { ~ ( A ~ P H )  Jqmw(z) 
n , ~ [ E ~ ~ ' + c I ) - F ~ ~ -  (n-m)Q] 

X cxp(rik,z) cp, (z) dz ~lu~. , , ,  = -x I a,, I - 
2 m,n EE: ,, 

(in this and following formulas we leave out the subscript E, Equation (20) was obtained as a result of integration over the 
which is of no in the derivation; the upper and phase space of the scattered particle, using the sum rule for 
lower signs correspond respectively to emission and absorp- 

the coefficients a, and the condition that the functions q, (z) 
tion). are orthonormalized. Using the known expressions for the 

We assume an infinite region of interaction between the integrals I t ! ,  and I:!, in terms of Laguerre polynomials"' 
electrons in the field (more accurately, we assume satisfac- 

we obtain from (20) 
tion of the condition SE/E > 2?~/10, where ~ E / E  is the relative 
energy scatter in the initial electron beam and I is the linear 
dimension of the interaction region. The parameter 1 0  / 2 ~  n 6 (ell.'+m,-e,,-sQ) dw:" = - 
determines the effective number of the electron oscillations 2 EE.' 

in the transverse direction over a length I. In this case the 
integrations in (17) are between infinite limits, and as a result (n-s) ! x lan12- 

IZ! 
ca { e (Aor~ l I )  aa12Lna (a) 

we obtain a product of three 6-functions connected with the 
r L = T  

system energy and momentum conservation laws for longi- 
tudinal motion. In the upshot we obtain from (17) the follow- + I- I ~ ~ ( . - I ~ ~ L * - ~  n-t (a) + a ~ + i ) / z L ' i l  .+* (a) I);(E)~&; 
ing expression for the S-matrix elements that describe pro- 1 2  zo 
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In the case of arbitrary polarization of the wave, the first 
term in the expressions in curly brackets in (23) is small com- 
pared with the second to the extent that 

e (Aoz&) a8"L:+. ( a )  ((na)'12s)(~/~,)112B- y% 24 1. Thus (we confine ourselves 
n=O hereafter to the case of the lowest values = 1). 

eAor ~ ( E ~ ~ , ' - W ~ - - E ~ ~ + ! ~ )  
(the superscript s of the probabilities indicates that the pro- d ~ ; ' = ~ )  = -- ( - zo ) 1e2e2l2 

EE.' cesses considered are accompanied by transitions through 
s = In - ml levels in the oscillator potential for the trans- 
verse motion of the particle motion; a=(k,~,)~/2,  where x la.12(n+l) f (e )de .  
(na)'I2 - (E, / E ) ' / ~ s ~ %  < 1 is the characteristic oscillator ,,-0 

length). The averaging over E in Eqs. (23) and (24) is easily carried out 
In the case of large quantum n9 we use the using the conditions D < ~ < E ~ ,  =a = 1 pl. In this approxima- 

of Laguerre P ~ ~ Y ~ ~ ~ ~ -  tion the 6 functions can be represented in the form 
als": 

where E, ,  = E,, + AE are the energies of the electrons that 
where J, ( 2 G )  is a Bessel function. emit or absorb a quantum of energy w, at a given oscillation 

We shall distinguish hereafter between two limiting 
frequency a; 

cases, when (na)'I2 < 1 and (na)'I2$ 1. The inequality 
(na)'I2 - ( E ~  / E ) ' I ~ S ~ %  < 1 corresponds to the dipole approxi- ~ , = m ,  (oS/2s5;!)":, AE =o,/2. (26) . . 

mation and is realized in a coliinear geometry, when thr The rate of amplification of the wave is by 
traveling wave propagates in the direction of the longitudi the difference between the induced-emission and absorption 
nal of the particle. In the dipole the probabilities. Using expressions (24) and integrating with re- 
asymptotic behavior of the function (22) is given by" s ~ e c t  with the aid of (25) we obtain for the difference between . . 

the total probabilities of emitting and absorbing per unit 
time a quantum of frequency w, 

with the aid of which we obtain from (21) 
n eAoz ' 

Aw(-l)= -(x) 4 leZezl2 J L [ - ~ ( & ~ )  eo ,  + m , ~ ~ n l o n l z ]  ok . 
(nu )  '-' x 6 (eV1+o.-~ll-sQ) n 

&:,!*I = -(eAo2)? 
2 E E ~ '  [ ( s - I ) ! ] ?  (27) 

Ia.12n 
n-d 

where e, = pll /pi ,  ;eZ is the unit vector of the Cartesian axis 
2. From (23) it follows, particular, that for a wave with vec- 
tor &, perpendicular to the Z axis the probabilities of emis- 
sion and absorption of a quantum vanish in the limit as a 4 .  

In the derivation of (27) for the difference between the values 
of the function f (E) at the points E, and E, we have used the 
approximate equation 

df 0. 
f (e.) -f (8.) -2Ae - - 6&Bo, ,  de ( 6 ~ ) ~ '  
in which the derivative is calculated at the point E = E,. 

In accord with the definition (12), the level populations 
at n> 1 are 

sin (p+ (2n)  '") 110 

$=plzo-* (2e,/B)'2, qJ=L/2zo. 

It suffices to retain in this equation one of the terms (its 
choice is determined by the sign of the transverse momen- 
tum of the particle on entering the field). Let, for the sake of 
argument, p, > 0 and 
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An analysis of (29) shows that the level populations have an 
extremely strongly pronounced maximum near the value 
n ~ f l  ,/2 z E~ /.f2, with a width 6n - ( T / ~ , ) ( E ~  /a )'I2. Using 
for la, I *  a representation with the aid of a S-function 

and changing from summation over n to integration, we find 
that the expression in the square brackets of (27) is equal to 

df EL 
[ I=-f(eo)+ol--. d& Q (30) 
The ratio of the absolute value of the first term to the second 
in (30) is defined by the parameter 

At l> 1, in accordance with the sign of the first term, 
the particles are accelerated on account of a predominant 
absorption of the wave quanta. On the contrary, at 6 < 1 the 
wave is amplified and the gain is determined in this case, as 
in the case of a magnetic undulator, by the sign and magni- 
tude of the derivative df / d ~  (the recoil effect). The amplifica- 
tion condition imposes a lower limit on the transverse energy 
of the particles: 

868 m, 6e - - -- 
mi y e . '  

Assuming that the condition (3 1) is satisfied, we obtain from 
(27) 

n eAOz y2eL df 
AW(*-~)=- ( ) ~e2ezlzzd-, , ("./el "y%<I. (32) 

4 2, 
We turn now to the limiting case " 

(nu)'/* - ( E ~  /E) ' /~-s~%) 1, when the dipole approximation 
cannot be used. Bearing in mind the known asymptotic re- 
presentation of the Bessel function,'' we find that the num- 
ber s should satisfy the condition 12(na)1'2 -sl 5s1l2, and 
Eq. (22) takes then the form 

again, assuming the amplification condition (3 1) to be satis- 
fied (the parameter is in the general case independent of s), 
we obtain from (2 1) the following expression for the differ- 
ence between the total emission and absorption probabilities 
per unit time: 

n 
Aw(')= -(eAO2)' 

2 
y2(df/de) la,, 12(0.53)'. 
e (s/2) " 

For a wave with arbitrary polarization, as in the dipole-ap- 
proximation case, the first term of the expression in the curly 
brackets of (33) is small if the condition 0 < (E,/E)'/~ 6: 0, is 
satisfied. Omitting this term, we obtain from (33) 

The differences A w  of the total probabilities of emitting 
and absorbing per unit time a quantum of frequency o deter- 
mine the gain Gat  this frequency: 

where N, is the electron density in the beam and E, is the 
amplitude of the electric-field intensity in the amplified 
wave. 

3. THE GAINS 

Substituting Eqs. (32) and (34) in the definition (35) of G, 
and using the approximate equality (28), we obtain for the 
corresponding gains per pass the following expressions: 

(the numbers in (37) is determined by the value of the fre- 
quency o, of the amplified wave). We emphasize once more 
that Eqs. (36) and (37) are valid under the assumption that 
the transverse energy of the particle as it enters the field does 
not exceed the height of the potential barrier: E, 6: V,, . We 
note that the presented expressions (36) and (37) are univer- 
sal and are equally applicable to an electrostatic and to a 
magnetostatic field (the contribution of the term -(A,-A,) 
which enters in the expression for the operator of the pertur- 
bation for the constant magnetic field is small in the ratio 

The expressions (36) and (37) for the gains are valid in 
the limit SE/E > 27~/.f2. A more realistic situation is one in 
which the inverse condition holds: SE/E < 27~/0. In this case 
the spontaneous-emission line width is determined not by 
the energy scatter of the particles, but by the diffraction 
width connected with the fact that the region of interaction 
of the electrons with the field is finite. From the formal point 
of view the derivative df / d ~  - 1 / ( 6 ~ ) ~  in (36) and (37) should 
be by 

where u = 10 (E - E,)/E,; the maxima of the gains corre- 
spond to u =: - 1.5. The gains should be calculated from the 
formulas 

We note that formula (38) coincides with the expression 
obtained in Ref. 3 for the electrostatic field by another meth- 
od. 
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4. DISCUSSION OF RESULTS 

We turn to an analysis of basic expressions obtained in 
the paper. As follows from (19), amplification of the wave at 
the frequency w, = 2y2R is possible in the collinear scheme. 
When a wave is launched at an angle 8 to the direction p i , ,  if 
(&,/~)"~f8>, 1, amplification is possible at the frequency 
w, = 29sR ( y28 '< 1). Amplification at higher frequencies 
(on account of the increase of s) is accompanied, however, 
other conditions being equal, by a decrease of the gain: 
G ("I - G ''= ' I / S ( S / ~ ) ~ / ~ ( S  > so). 

From the point of view of the effectiveness of the 
scheme considered in the paper, it is of interest to compare 
the gains obtained [Eqs. (38) and (39)] with the gains in a 
magnetic undulator. In this case, of course the gains must be 
compared at the same frequency. From the condition that 
the frequencies be equal we obtain the following relation 
between the parameters of the fields in the considered 
scheme and of the undulator (at equal electron energies): 

where K, = eA, /me  is a parameter that characterizes the 
intensity of the electron interaction with the undulator field 
(A, is the amplitude of the vector potential of this field); A, is 
the undulator period. 

We use an equation given in Ref. 14 for the gain in a 
magnetic undulator in the collinear scheme: 

4n3eZNel~K,.? d sin2u 
Go = -- 

ym.o(l+K,Z)h,f du uZ ' (41) 

for convenience in the comparison we rewrite the expression 
for G I T =  11 [Eq. (38)] in comparable terms: 

N, = 2 x  10" ~ m - ~ ;  d = 0.2 cm; I = 1 m (typical length of 
the linear section in a storage ring); Vo, = 1 X 10" eV; Vo,/ 
d z 60 kG/cm; E, = Vo, /2. At the parameters chosen by us 
the inequality SE/E < 212/1R is satisfied, therefore the gain is 
calculated using Eq. (38). The value of the amplified frequen- 
cy for these parameters is w, =. 1.8 eV, and the gain at this 
frequency is GIs' ' ' ~ 0 . 7 .  

The indicated field characteristics can be realized by a 
set of quadrupole (multipole) magnetic lenses made, e.g., of 
magnets based on a samarium-cobalt alloy. In the case of an 
electrostatic field the field configuration considered in the 
paper can be obtained between a system of parallel plates 
that carry in vacuum charges of like sign (negative for elec- 
trons). The use of magnetic lenses, however, is preferable 
since the electrostatic field intensities are limited by the 
autoionization effect. 

Stimulated emission of ultrarelativistic electrons in 
electric (magnetic) fields with large transverse field gradients 
makes it thus possible, under certain conditions, to obtain 
noticeably larger gains than in ordinary magnetic undula- 
tors. In this case we are dealing with optical and near-ultra- 
violet frequencies. The possibility of generating harder co- 
herent radiation calls for a separate analysis. 

The calculation in the present paper was performed for 
a harmonic dependence of the potential on the transverse 
coordinate of the particle. A separate analysis is necessary to 
cast light on the role of anharmonicity. 

In the derivation of the equations we used a quantum 
treatment of the electron motion in the field. However, the 
gains (38) and (39) do not depend on the Planck constant f i  
and can therefore be obtained within the framework of a 
classical description. 

In conclusion, the authors are deeply grateful to M. V. 
Fedorov and A. A. Rukhadze for a discussion of the results. 
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