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Comparative estimates of the characteristic superradiance times and of the reciprocal atom-atom 
Coulomb interaction strength show that the interaction should have a significant effect on the 
superradiance of a system with a small Fresnel number. The effect of the Coulomb interaction on 
the superradiance of a linear chain of two-level atoms, which is the limiting case of a system with a 
small Fresnel number, is investigated on the basis of the semiclassical approach. The Coulomb 
interaction causes coheredt transfer of excitation between the atoms, which leads to approximate 
spatial homogeneity of the inversion along the chain. This justifies the use of a spatially homogen- 
eous model for systems with a small Fresnel number. 

PACS numbers: 42.50. + q, 32.50. + d 

1. INTRODUCTION 

As a rule, in describing superradiance we consider the 
interaction of the atoms only via the transverse electromag- 
netic field, since it is precisely this field that phases the atom- 
ic radiators during the fluorescence, a phasing which leads to 
the well-known proportionality of the superradiance intensi- 
ty to the square of the inversion density.'-" At the same 
time, for sufficiently dense systems (with atomic spacing 
smaller than the wavelength of the radiation), the Coulomb 
interaction can compete with the radiative interaction. It 
manifests itself, in particular, in the coherent transfer of ex- 
citation energy from one atom to another and, consequently, 
in the spatial variation of the population. The need for the 
consideration of the Coulomb part of the interaction can be 
judged by comparing the characteristic times TR and T, of 
the processes of collective spontaneous decay and excitation 
exchange between a pair of neighboring atoms. In the case of 
dipole emitters the time T, is of the order of the reciprocal 
dipole-dipole interaction strength, i.e., T, -fia3/,u2, where a 
is the mean distance between the atoms and p is the dipole 
moment of the transition. The superradiant-decay time TR 

depends on the relation between the wavelength A of the 
radiation and the linear dimensions L of the active medium, 
as well as on the sample geometry. 

The problem of collective spontaneous emission (with- 
out allowance for the Coulomb interaction) was formulated 
and solved' for a system of two-level atoms in a volume with 
linear dimensions L<X, wherex = A /277 (we shall call such a 
system the Dicke system). For it TR = rO/N, where N is the 
number of atoms in the system, T, = 3tin3/4p2 being the ra- 
diative lifetime of one atom. For the ratio of T, to r R ,  we 
have rC/rR -Na3/k3-(L /X)3( 1. Thus, for the Dicke sys- 
tem the superradiant decay lags the variation of the popula- 
tion, and, consequently, the Coulomb interaction should be 
taken into account. 

If the system extends greatly in one direction (i.e., if 
L>R ) and at the same time DUt; where D is the transverse 
dimension, so that it is characterized by a Fresnel number 
F = D '/itL< 1 (a "pencil"), then TR - r,,a/k (Refs. 1 1 and 
13). In this situation rC/rR -(a/%)'( 1, and, thus, the Cou- 

lomb interaction is, as in the case of the Dicke system, stron- 
ger than the radiative interaction. 

Another limiting case of an extended system is the 
"disk" (i.e., the case in which D '/XL> 1). For the "disk"''~13 
TR -ro/kJ, where k, = n d 2  is the resonance absorption 
coefficient. Here rC/rR -na3L /k. But ng3 = 1, and we 
obtain rC/rR -L /X> 1. This inequality shows that, in a sys- 
stem with a large Fresnel number, the fluorescence can 
develop faster than the excitation transfer, so that the latter 
process can be neglected. 

Attempts to take the effect of the Coulomb interaction 
on collective spontaneous emission into account have been 
made in a relatively small number of papers for the Dicke 
system (L& )'"I9 and for a small number of  atom^.'^-^' In 
Ref. 16, using the semiclassical theory, Stroud et al. investi- 
gate the superradiance of the Dicke system with allowance 
for the Coulomb interaction under the assumption of spatial 
homogeneity of all the atomic characteristics over the sam- 
ple volume. They show that in this approximation the elec- 
trostatic interaction has no effect on the superradiance dy- 
namics, but leads to phase modulation. The effect of the 
Coulomb interaction on the superradiance of a short system 
is also discussed in Ref. 17, where it is concluded that the 
dephasing of the dipole moments of the atoms is a result of 
the inhomogeneity of the effective field over a period of time 
much shorter than the characteristic superradiance time. 
But the conclusion that the behavior of the atoms depends on 
their position is not quite consistent, since it is based on the 
assumption of spatial homogeneity of the polarization. In 
Ref. 20 the effect of the electrostatic interaction on the coop- 
erative emission of two and three atoms is investigated on the 
basis of the quantum-mechanical equations for the reduced 
density matrix. It is noted that the Coulomb interaction has 
a dephasing effect if the surroundings of the various atoms 
are not equivalent. In Ref. 22 the Coulomb interaction is 
taken into consideration in a quantum-mechanical descrip- 
tion of the initial stage of superradiant emission by a system 
consisting of a few atoms. 

In the present paper we investigate the effect of the Cou- 
lomb interaction on the superradiant decay of a linear chain 
of equidistant equivalent two-level atoms that were in the 
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excited state at the initial moment of time. The linear chain is 
the limiting case of a multiatomic system with a Fresnel 
number Fg1. It contains the Dicke model as a particular 
case. 

2. THE SEMICLASSICAL APPROXIMATION 

To solve the formulated problem, we use the semiclassi- 
cal approach in which the two-level atoms are described 
quantum-mechanically with the aid of the single-particle 
density matrix pbk,' (the indices a and b number the ground 
and excited states of the atom and k numbers the sites along 
the chain) and the electromagnetic field is described classi- 
cally. For the density matrixpbk,' we have the system of equa- 
tions 

wherep, is the transition dipole moment of the k-th atom, 
o, is the resonance frequency of the atom, and Ek is the 
electric field acting on the atom at the site k. This field is 
represented in the form of a superposition of the fields E, 
produced at the site k by all the remaining atoms I, plus the 
self-action field Ekk : 

The electromagnetic field emitted by an atom is treated 
as the radiation emitted by a classical dipole with electric 
moment d equal to the mean quantum-mechanical dipole- 
moment operator. The intensity of the electric field pro- 
duced by the atoms I at the site k #I is equal to 

where 

The allowance for the self-action field Ekk in (2) guarantees 
the preservation of the energy balance": 

Here U, is the energy stored in the atomic subsystem, l i s  the 
total radiation intensity, and S is the Poynting vector aver- 
aged over the period of the atomic vibrations. The integra- 
tion in (4) is performed over a sphere of radius r,>L,X. 

3. THE SLOWLY-VARYING-AMPLITUDE APPROXIMATION 

Let us assume that the characteristic time of the vari- 
ation of the amplitudes R ,,$ (t ) is significantly longer than 
w; ', and let us separate the fast dependences in the atomic 
and field characteristics: 

Substituting (5) into (2) and (3), we obtain for Elk and Ek 
expressions similar to (5): 

where the amplitudes E z  and E: are given by the formulas 

As follows from (7), the retardation of the interaction 
manifests itself in the form of an oscillating exponential fac- 
tor and in the argument of the amplitude of the off-diagonal 
element of the density matrix. We shall neglect the retarda- 
tion in the amplitudes, assuming that the time L /c of propa- 
gation of light through the system is shorter than the charac- 
teristic superradiance time 7,. Notice that this condition 
imposes a limitation on the number of particles in the linear 
chain: N c oOrO. 

Substituting the relation (6) into the system (1) and neg- 
lecting the rapidly oscillating terms we arrive at the follow- 
ing system of equations for the slow amplitudes: 

It is not difficult to verify that the square Z :  + R ,+ R p of 
the length of the Bloch vector for each atom is conserved in 
the course of the evolution described by Eqs. (9). Thus, the 
system (9) has N integrals of motion. 

The initial conditions for the system of equations in 
question are prescribed in the standard-for the semiclassi- 
cal approach-form: all the atoms are excited at the initial 
moment of time, and a small initial polarization simulating 
the spontaneous decay is prescribed: 

Zk(0) =i/2, Rk* (0) =Ro*. (10) 

We did not, in deriving the truncated system, separate 
out the spatial factor exp(~lc,,-r), as is often done in the semi- 
classical a p p r o x i m a t i ~ n . ~ . ~ . ' ~ ~  Th erefore, the truncated 
system of equations (9) allows us to follow the changes that 
occur in the character of the superradiance as we go from the 
Dicke model (LVZ ) to the extended system (L>X). 

The system (9) can be rewritten in the form 
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where the matrices 0, and y, are given by the formulas 

2 Xn X l r  Xlr 
PI ,  = T [ ( r,. - k?-) cos kOrlA+ko --;sin korlk , (12) 

rlh ~ I L  I 
2 Xlr 

ym = [ ( ko2*- %) sin korlh+ko Tcos korlk 
rlk rlk rl h 

The matrix y, coincides with the relaxation matrix comput- 
ed in the quantum theory using the Hamiltonian for the in- 
teraction of the atoms with only the transverse field, and 
describes the decrease, due to the emission, of the energy 
stored in the atomic subsystem. This can easily be verified by 
summing the second equation in (1 1) over the atoms: 

The matrix R,, describes the frequency shifts caused by both 
the static dipole-dipole and the radiative interactions. It also 
determines the redistribution of the excitations among the 
atoms of the chain. 

The matrices yIk and 0, have their simplest forms in 
the case of the Dicke system. For k,y, < 1, it follows from 
(12) and (13) that 

The dominant contribution to the frequency-shift matrix 
0 ,  is made by the static dipoldipole interaction, and the 
matrix element y ,  coincides with the radiative constant of 
the atom. 

We shall determine the intensity of the radiation in a 
given direction as the Poynting vector in the wave zone 
r,>L$ averaged over the period of the atomic vibrations: 

where E and H are the electric and magnetic fields produced 
by the system at the point r, (the middle of the chain is taken 
as the origin). When r,>L&, the vectors E and H are equal in 
magnitude, and for E we have from (7) and (8) the expression 

Here r, is the distance, which can be assumed to be approxi- 
mately equal to r,, of the I-th dipole to the point of observa- 
tion, n, = r, /r, , t ' = t - r, /c, and p, is the phase of the am- 
plitude R ,*. The time scale of the variation of the p,, like 
that of the IR ,* I ,  is significantly greater than w; '; there- 
fore, we shall consider them to be constants in the averaging 
over the period of the atomic vibrations in (18). Thus, 

X Rl+ (t') R, ,-( t ')  exp{ikorl,- cos 00), (20) 

where n, is the unit vector along r, and 8, is the angle 
between the axis of the system and the direction no of obser- 
vation. The expression for the Poynting vector assumes an 
especially simple form when all the transition dipole mo- 
ments are equal in magnitude and oriented perpendicularly 
to the axis of the chain. In this case 

3 
~ = ( t )  = yo x RI+ ( t l ) R l . - ( t f )  erp(ikorIII cos Q ) .  (22) 

1.1' 

The factor in the square brackets in (21) is the directivity 
pattern of a single dipole andS, (t ) is a collective factor due to 
the interference of the fields of the atomic radiators. Below 
we shall assume that the transition dipole moments of all the 
atoms are oriented identically in a direction perpendicular to 
the axis of the chain. 

4. THE SPATIALLY HOMOGENEOUS APPROXIMATION 

The simplest model that allows us to solve analytically 
the problem of the effect of the Coulomb interaction on su- 
perradiance is the model in which the density matrices of all 
the atoms are assumed to be identical. Strictly speaking, 
such an approximation is justified only for an infinite chain 
in the case of homogeneous initial conditions. The merit in 
considering this approximation in the general case will be 
seen below. So, let R ,f = R * and Z, = Z. Then the system 
of equations (1 1) becomes significantly simpler. 

1 1 
R*=F~QR*Z - -R*z, 2 = - -R+R-. 

TR TR 
(23) 

The quantities R and T, are given by the expressions 

which follow from ( 12), (1 3), and (1 7) with allowance for the 
fact that for the conditions stipulated at the beginning of the 
section x,, = x,  = p 2  and, furthermore, for the fact that 
r, = all - k I for an equidistant set of points. Summing the 
series in (24) and (25) in the limit k#( 1 of interest to us, we 
obtain 

where ( ( x) is the Riemann zeta function. As can be seen 
from (28), for an extended system (L>X) the superradiant 
constant TF is determined not by the total number of atoms 
in the system, but by the number of atoms located over a 
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distance equal to the wavelength. Notice that OrR ) 1 irre- 
spective of the relation between the length L of the system 
and the wavelength k of the radiation, i.e., the fluorescence 
process significantly lags behind the population movement, 
a fact pointed out in the Introduction. 

1. Fluorescence dynamics. 

Using the constancy of the square of the length of the 
Bloch vector, i.e., the fact that Z2  + IR * l 2  = 1/ 
4 + JR $ 12=:  1/4, we integrate the equation (23) for the in- 
version: 

Here tD is the superradiance delay time, which is given by 

tD=-2%R ln I Ro* 1 .  (30) 
The integration of the equation for R * with allowance for 
(29) yields 

Ro* 
R* ( t )  = - sech 21Ro*I 

(31) 
The radiation intensity is equal to: 

. Nhoo t-t8 ~ ( t )  . = . - ~ f i ~ ~ Z  = -sech2-. 
4 2 ~  2% 

Notice that the parameter R, which has the meaning of the 
inversion oscillation frequency for neighboring atoms, does 
not enter into the expressions for Z and I. Thus, in the case of 
a spatially homogeneous system the Coulomb interaction 
has no effect on the superradiance dynamics. The expression 
(3 1) for R * differs from the corresponding expression in the 
case when there is no Coulomb interaction (i.e., when R = 0) 
by the rapidly oscillating factor, the oscillation frequency 
being determined, according to (24), by the strength of the 
interaction between two neighboring dipoles. 

At the beginning of the process, when t < t,, 

Rd ' - t ~  erirrr R* ( t )  = - sech - 
21Rdl 2 ZR 

This behavior of R * is valid up to a time t- tD . At t > tD (at 
the end of the fluorescence process) 

Ro* t-to R* ( t )  = . .sech- exp {f ia ( t - 2 t ~ ) ) .  (34) 
21RofI ~ T R  

A comparison of (34) with (33) shows that, in the course of 
the fluorescence process, the phase of the amplitude of the 
off-diagonal density-matrix element R * changes sign, a 
fact reflected in the increase in time of the superradiance 
frequency from the value a, - R /2 too, + R /2. The super- 
radiance spectrum becomes broadened by an amount 0 .  
Since R ) r i  I, it is this broadening that will determine the 
width of the superradiance spectrum. 

2. The directivity pattern. 

The spatially homogeneous approximation allows us to 
compute exactly not only the dynamics, but also the directiv- 
ity pattern of the superradiance of a finite chain. We can sum 
the series in (22) in this approximation, obtaining for the 

collective part S, of the Poynting vector the expression 

3 t- t ,  isinZ(koaN cos 00/2)  
S. ( t )  = - 70 sech2 - 

2 sin2 (koa eos 0 , / 2 )  . (35) 

If the system is short (i.e., if kgN)  I), the collective factor S, 
does not depend on the angle 8,: 

and the directivity pattern of the superradiance coincides, 
according to (2 I), with the directivity pattern of the radiation 
emitted by a single dipole. In the case of an extended system 
(i.e., for k,,aN) I )  the collective factor has a principal maxi- 
mum, (36), of width of the order of (k,,aN)-' at 8, = ~ / 2  and 
subordinate maxima when 

cos go= (n+'/ , )  hlL, n=O, 1, 2 , .  . . . (37) 

From this it follows that the number of subordinate maxima 
is determined by the number of wavelengths that fit into the 
length of the system. The physical meaning of the condition 
(37) is fairly simple: the quantity L cos 8, is the difference 
between the paths of the two waves emitted by the extreme 
dipoles of the chain in the direction 8,. According to (37), 
this path difference is a half-integer multiple of the wave- 
length. Consequently, on the average, the waves from all the 
dipoles arrive at the observation point in phase, and give 
energy-flux maxima in the direction in question. The height 
of the n-th subordinate maximum is equal to 

3 N Z  
8,'"' ( t )  = - yo sechz - - 

2nZ ( n+'lz 1 
and decreases rapidly with increasing number n. 

Thus, in the spatially homogeneous approximation the 
directivity pattern of the superradiance of a linear bounded 
extended chain of atoms is characterized by a sharp directiv- 
ity "to the side" in the direction perpendicular to the axis of 
the chain and to the direction of the dipole moments (simi- 
larly to the directivity pattern of a linear chain of classical 
dipole radiators oscillating in phase. 

5. SUPERRADIANCE OF A DICKE SYSTEM (L&) WITH 
ALLOWANCE FOR THE COULOMB INTERACTION 

The neglect of the Coulomb interaction (i.e., the setting 
ofR,, = 0) in the descriptionof ashort system ( L d )  togeth- 
er with the imposition of homogeneous initial conditions au- 
tomatically leads to the spatially homogeneous model con- 
sidered in the preceding section. Indeed, according to (26), in 
the limit L d  the relaxation matrix y,, is equal to yo and 
does not depend on the position of the atom in the chain. 
Consequently there are no inhomogeneity sources of any 
kind and we have a superradiant pulse in the shape of the 
square of the hyperbolic secant (32). 

The Coulomb interaction destroys the spatial homo- 
geneity even in the case of a short system (L& ). This is a 
consequence of the fact that the square of the total Bloch 
vector ceases to be a conserved quantity (in the quantum- 
mechanical description the Coulomb-interaction operator 
does not commute with the operator for the square of the 
total energy spin of the system). 
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FIG. 1. Inversion profile for the Dicke system at the moment of time t,, 
computed with allowance for the Coulomb interaction (N = 10). 

To estimate the effect of the Coulomb interaction on the 
spatial inversion distribution, the polarizations, and the su- 
perradiance dynamics of the Dicke system, we solved the 
system (1 1). Figure 1 shows the distribution of the inversion 
along the chain ( L 4  ) at the moment when the superra- 
diance intensity is maximal. The initial value of the polariza- 
ton was chosen to be equal to R z ( 0 )  = 0.01. A significant 
change in the inversion occurs only for the boundary atoms. 
For the inner atoms Z ,  depends weakly on the site number. 
In consequence, the superradiant pulse with allowance made 
for the Coulomb interaction (the curve 1 in Fig. 2) differs 
from the pulse obtained in the spatially homogeneous model 
or in the absence of the Coulomb interaction (the curve 2 in 
Fig. 2) only by an increase in the time lag. The shapes and the 
amplitudes of the pulses differ only slightly. The increase in 
the time lag when allowance is made for the Coulomb inter- 
action is due, in our opinion, to the fact that the Coulomb 
interaction gives rise to a spatially inhomogeneous phase 
modulation of the polarization at the initial stage of the su- 
perradiant emission. This leads to the slowing down of the 
growth of the polarization, i.e., to the increase of the time 
lag. The super-radiance of a system with dimensions L 5 il is 
similar to the superradiance described in the present section. 

system does not lead to a spatially homogeneous model, as 
was the case for the Dicke system. The collective relaxation 
constant 

for L R Xis a function of the site number, and, consequently, 
all the atomic characteristics will also depend on the position 
of the atom in the chain. 

The fluorescence-dynamics calculations without allow- 
ance for the Coulomb interaction revealed the existence of 
two emission regimes-single- and two-pulse (Fig. 3)- 
which alternate with each other as the length of the chain is 
increased. We can see the reason for this behavior by study- 
ing the spatial dependence of the field acting at the initial 
moment of time, and determined by the collective constant 
7,. In the continuum limit, which can be used on account of 
the condition k,,a( 1, 

3 C O X  .$X) 
y ( z ) = p ,  (++--- xZ . (40) 

The plots of the functions y( x) and i( x) are shown in Figs. 4 
and 5. For N =  100 we have the single-pulse fluorescence 
regime (curve 2 in Fig. 3); for N = 120, the two-pulse regime 
(curve 5 in Fig. 3). 

Figure 5 demonstrates the existence in the sample of 
regions differing from each other in the de-excitation rates 
3 x). The centers of these regions can be found from the 
condition d?/dx = 0 for extrema, which yields an equation 
for the determination of the extremum points: 

The region with a higher de-excitation rate y ( x )  begins to 
develop faster than the region with a lower de-excitation 
rate. The subsequent evolution significantly depends on the 

6. SUPERRADIANCE OF AN EXTENDED SYSTEM (L,lf) 
WITHOUT ALLOWANCE FOR THE COULOMB INTERACTlON 

The neglect of the Coulomb interaction in the descrip- 
tion of the dynamics of the superradiance of an extended 

FIG. 3. Superradiance dynamics for the linear chain for the cases: a) 
FIG. 2. Superradiant pulse emitted by the Dicke system (nr, = 360), as N = 100, a/$ = 0.1; b ) N = 120, a /Z=  0.1; 1 )  and 4) the spatially homo- 
computed: 1)  with allowance for the Coulomb interaction; 2) in the spa- geneous model; 2) and 5) without allowance for the Coulomb interaction; 
tially homogeneous model. 3) and 6 )  with allowance for the Coulomb interaction. 
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FIG. 4. Dependence of the off-diagonal element of the relaxation matrix y b 
on the atomic spacing. 

character of the coupling existing between these regions, i.e., 
on whether this coupling is positive or negative. The cou- 
pling will be positive (negative) if y(Ax) > 0( < 0), where Ax is 
the distance between the centers of the neighboring regions. 
In systems with positive coupling the regions with a lower 
de-excitation rate y( x) follow in their development the re- 
gions with a higher rate (some of them lagging behind (Fig. 6, 
curves 1-4)). This is ensured by the fact that, because y(Ax) is 
positive, the electric fields of the indicated regions are in 
phase. As a result, there is formed a superradiant pulse that 
is close in shape to the pulse obtained in the spatially homo- 
geneous model (Fig. 3, curve 2). 

In systems with negative coupling the electric field of a 
rapidly developing region cancels out the field of a region 
that develops more slowly, thereby virtually completely 
blocking its evolution until the inversion of the first region is 
completely depleted (Fig. 6, curves 5-8). After the first re- 
gion has completely disposed of its inversion and has formed 
one peak in the superradiant pulse, the second region begins 
to develop which development eventually yields a second 
peak (Fig. 3, curve 5). 

7. SUPERRADIANCE OF AN EXTENDED SYSTEM (L>a WITH 
ALLOWANCE FOR THE COULOMB INTERACTION 

The distinctive features of the dynamics of collective 
spontaneous emission by a linear extended system without 
allowance for the Coulomb interaction of the atoms is close- 
ly tied with the possibility of the appearance and existence 

FIG. 6. Invesion profile in a linear chain at different moments of time, as 
computed without allowance for the Coulomb interaction for the cases: a) 
N =  100,a/k=0.1: 1 ) t=7 .1  rR,2)8.5,3) 10.6,4) 12.7;b)N= 120,a/X 
0 . l : 5 ) t = 5 . 7 r R , 6 ) 8 . 5 , 7 ) 1 1 . 3 , 8 ) 1 2 . 7 .  

during the fluorescence of large-scale-in comparison with 
it-inversion gradients (see Fig. 6). As has already been not- 
ed, the Coulomb interaction between the atoms leads to the 
transfer of excitation from one atom to another, i.e., to inver- 
sion equalization, this process occurring in the system under 
consideration significantly faster than the fluorescence pro- 
cess. It is therefore natural to expect that allowance for the 
Coulomb interaction can have a strong effect on the superra- 
diance dynamics of an extended system. Figure 3 (curves 3 
and 6) shows superradiant pulses obtained by numerical in- 

FIG. 5. Dependence of the collective relaxation constant j of an atom on 
the position of the atom: 1) N  = 100,2)N = 120. 

FIG. 7. Inversion profile in a linear chain at different moments of time, as 
computed with allowance for the Coulomb interaction for N = 120, a /  
X=0.1: 1)t=5.7rR,2)8.5,3)11.3.  
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tegration of the system (1 1) with allowance for the Coulomb 
interaction. The occurrence of a structure in the pulse and 
the proximity "on the average" of this pulse to the pulse 
obtained in the spatially homogeneous model are note- 
worthy. The later circumstance is explained by the mixing 
effect of the Coulomb interaction, an effect which inhibits 
the appearance of large-scale inversion gradients during the 
fluorescence. The inversion profiles at different moments of 
time show (Fig. 7) that there is indeed spatial homogeneity 
"on the average." 

The cause of the structure in the supqradiant pulse is, 
apparently, the exchange of excitation between macroscopic 
regions with different de-excitation rates ;( x )  (see the pre- 
ceding section). The modulation of the de-excitation rate 
with frequency equal to the rate of redistribution of the in- 
version among these regions is the cause of the structure in 
the fluorescence pulse. The time scale of the structure is thus 
determined by the transfer of energy from one region into 
another. We can estimate the characteristic time TR of this 
process by recognizing that the velocity of the coherent mo- 
tion of excitation along a linear chain is of the order of f2a 
(Ref. 23). The distance between the indicated regions is 
Ax -A  (see Fig. 5). Therefore, T,, -Ax/L?a - k # ~ ~  . This 
value of T,, corresponds in order of magnitude to the struc- 
tural scale of the superradiant pulse (see Fig. 3, curves 3 and 
6). Corroborating the proposed explanation of the structure 
in the superradiant pulse is the fact that this structure disap- 
pears as the length of the system is decreased. This is due to 
the equalization of the de-excitation rates for the various 
regions as L is decreased. Let us recall that, for L 4 ,  the rate 
2 4 = NYO. 

8. CONCLUSION 

The atoms acquire nonzero mean dipole moments dur- 
ing the superradiant emission. This suggests that it is neces- 
sary to take the dipoledipole interaction into account. It 
follows from comparative estimates of the characteristics su- 
perradiance times and the reciprocal Coulomb-interaction 
strength that the Coulomb interaction should have a signifi- 
cant effect on the superradiance of a system with a small 
Fresnel number (i.e., a system for which D '/kL(l) and the 
Dicke system. 

For the Dicke system (LOT) the Coulomb interaction 
modifies the superradiance dynamics only slightly, but has a 
strong effect on the shape and width of the spectrum. If with- 
out allowance for the Coulomb interaction the width of the 
spectrum is determined by the reciprocal time 7; ' = N/rO, 
with allowance for the interaction the spectrum has a width 
pZ/fia3>r; I .  The manifestation of the Coulomb interaction 
in the fluorescence dynamics amounts, as calculations show, 
to an increase in the delay time of the superradiant pulse as 
compared to the case in which the interaction is neglected. 

In the case of an extended linear chain of atoms (L>A ), 
treated as the limiting case of a system with a small Fresnel 
number, allowance for the Coulomb interaction has the 
same effect on the spectrum as in the case of the Dicke sys- 

tem. There is in this case a radical change in the superra- 
diance dynamics. The Coulomb interaction causes coherent 
excitation transfer, which leads to approximate spatial ho- 
mogeneity of the inversion along the length of the system. 
Therefore, the superradiant pulse turns out to be close to the 
pulse found in the spatially homogeneous model. This justi- 
fies to some extent the spatially homogeneous model as ap- 
plied to a system with a small Fresnel number, and possibly 
explains the qualitative agreement of the theory7.'0 based on 
this model with experimentz4 for the case F z  1. But the di- 
pole-dipole interaction induced excitation exchange 
between regions with different de-excitation rates leads to 
the appearance of structure in the superradiant pulse. The 
scale of this structure is determined by the time characteriz- 
ing the transfer of excitation from one region to another, and 
is of the order of - (k,+z)'~,. 

The authors express their gratitude to V. I. Perel' for a 
discussion of the paper. 

"For systems containing a large number of particles, the effect of the self- 
action field on the development of superradiance turns out to be unim- 
portant, and we shall neglect it in what follows. 
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