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Coulomb interaction in a metal with impurities is considered. An effective Lagrangian that de- 
scribes the interaction of the diffusing electrons is obtained. It is shown that the Lagrangian can be 
renormalized, and the renormalization-group equations are obtained in the two-dimensional 
case. Expressions that take the Coulomb interaction into account are obtained. The behavior of 
the state density, for which the doubly logarithmic corrections are significant, is clarified. It is 
shown that the electronic correlations that determine the conductivity and the state density are 
quite different in structure. The case is considered when the state density on the Fermi level tends 
to zero with decreasing temperature and at the same time the conductivity increases without 
limit. 
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81. INTRODUCTION 

In dirty metals, electron-electron repulsion accompa- 
nied by scattering by impurites leads to an increase of the 
resistance with decreasing temperature.' In the two-dimen- 
sional case (d = 2) the resistance increases l~garithmically,~ 
and the corrections to the state density on the Fermi level 
increase even more strongly, a - lnZT. Logarithmic correc- 
tions arise also in a large number of other q~anti t ies .~ In the 
metallic state, the perturbation-theory parameter that deter- 
mines the scale of these corrections, is1 

where rk is the resistance of a square film at T-T- I ,  p is the 
Fermi energy, T is the free-path time, and e is the electron 
charge. Ifthe impurity density is not too high, we haveg,<l. 
Despite the smallness ofg,, at sufficiently low temperatures, 
T<T-', the corrections become large and the question arises 
of the behavior of disordered systems in this region. 

In the present paper we sum the logarithmic (and dou- 
bly logarithmic) corrections of the type (go InTr)", which re- 
sult from Coulomb interaction of the diffuse electrons. In 
addition, expressions are obtained that take full account of 
the interaction between the electrons-up to now the 
screened Coulomb interaction was taken into account only 
to first order. The corrections discussed are the results of 
"turning on" of the interaction of singular two-particle 
propagators having diffusion poles by the Coulomb interac- 
tion: 1/(Dq2 - iw) (D is the electron diffusion coefficient). 
Singularities of this type appear either in the particle-hole 
channel (small momentum and frequency transfers), or in 
the Cooper channel (small total momentum and small fre- 
quency difference). The Cooper propagator alone (without 
participation of the Coulomb interaction) also makes a loga- 
rithmic contribution (d = 2) to the c o n d ~ c t i v i t y . ~ ~ ~  This 
quantum correction, due to interference produced when the 
electron is rescattered by impurities, is responsible for the 
localization of the e l e~ t ron .~  The physics of disordered Fer- 
mi systems includes both localization effects and multiparti- 

cle effects connected with the Coulomb interaction. To a 
certain degree, they can be separated from one another. The 
point is that the Cooper propagator is quite sensitive to inter- 
actions that violate the symmetry with respect to time rever- 
sal. Introduction of magnetic impurities7 or application of a 
magnetic field3 suffices to cut off the pole in the Cooper 
channel. In the present paper the Cooper channel will be 
purposefully ignored. We shall assume that its contribution 
is suppressed by the relatively weak magnetic field 

The standard crossover technique is not convenient for 
the questions considered. The point is that the same difficul- 
ties arise as when an attempt is made to sum the logarithmic 
term in the localization p r ~ b l e m . ~  An approach is needed in 
which the integration over the fast momenta of the electron 
lines is carried out from the very beginning. We are then left 
with the problem of interaction of diffusion modes, in an 
important role is played only by large distances exceeding 
the mean free path. It is thus necessary to construct an effec- 
tive Lagrangian of diffusion modes. In the localization prob- 
lem such a Lagrangian was originally obtained with the aid 
of a functional integral over Bose In Ref. 10 the 
Lagrangian of the diffusion modes was constructed by inte- 
gration over Fermi fields. In the absence of interaction 
between electrons, the energy of the diffusing electron is 
fixed and both methods are on a par. 

Since the Coulomb interaction intermixes the electron 
energies, to obtain correct statistics it is necessary to inte- 
grate over the Fermi fields, as in Ref. 10. When describing 
the interacting diffusing electrons, the Lagrangian of Ref. 10 
must be somewhat modified for our purposes. In 8 2.1 we 
derive such a modified Lagrangian. It has the meaning of a 
functional of the free energy and describes an aggregate of 
free electrons with energies E < T-'. In $ 2.2 we obtain a 
functional that allows for the Coulomb interaction of elec- 
trons in a disordered system, and the Fermi-liquid correc- 
tions are taken into account. 

It is shown in $ 3 that in first order in the small param- 
eter g the obtained functional can be renormalized. The re- 
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normalization-group equations for the two-dimensional 
case are obtained in the lowest order in g, and these equa- 
tions take full account of the Coulomb interaction. Besidesg 
and the Coulomb amplitudes, the renormalization-group 
equations contain also one charge connected with the renor- 
malization of the coefficient of the frequency in the diffusion 
propagator. As a result, the renormalization-group equation 
are reconciled with the particle-number conservation condi- 
tion. The solution of the equations shows that if there is no 
Zeeman splitting the initial growth of the resistance gives 
way to a decrease when the temperature is lowered. There- 
fore the use of the renormalization-group equations in the 
lowest order in g is valid in this case. 

In 4 we discuss the Einstein relation a /e2  = (an/ 
a,u)oe, which connects the conductivity a with the diffusion 
coefficient of the interacting electrons. It is shown that the 
quantity an/ap does not contain diffusion corrections. In 
contrast to an/a,u, the state density2' on the Fermi level 
v E F ( T ) 4  as T 4 .  It should be noted that the state density 
does not enter in the charges of the renormalization group 
and exerts no influence on the renormalized resistances. In 
the calculation of vE (T)  it was necessary to sum doubly loga- 
rithmic corrections, which are absent from the conductivity. 
Thus, the electronic correlations that determine vE (T)  and 
4 T )  have entirely different forms. As a result, in the case 
considered in this paper it was possible to have v E , ( T ) 4  
and simultaneously dT)-+co as T-0. 

52. DERIVATION OF THE FREE-ENERGY FUNCTIONAL 
1. Free electrons in a disordered system 

Our task is to study Coulomb interaction of electrons. 
To obtain the correct statistics we therefore obtain the La- 
grangian of the diffusion model, following Ref. 10, by inte- 
grating over the classical Fermi fields (Grassman anticom- 
muting variables1'). To average over the randomly 
distributed impurities we use the replica method. l2  We cal- 
culate the partition function ZN of N replicas of the system 
and average ZN over the impurities. Then 

where the double angle brackets denote averaging over the 
impurities and F  is the free energy of the system. Equation 
(2.1) enables us to find ( ( F ) )  by using standard statistical- 
physics methods. We express Z ,  in terms of a functional 
integral with respect to the anticommuting variables $ and 

-- - - 
where i is the replica index and S is a functional that has the 
meaning of action. In the temperature technique 

1 
F= dr ( ie,, + - A+p+V ( r )  )$is' ] +s:-.. 

2m 

Here E,  = (2n + 1)aT are the Fermi frequency, a is the spin 
index, S 6- takes into account the electron-electron interac- 
tion, and V(r)  is the potential of the impurities. When averag- 
ing over the impurity locations the potential will be regarded 

as a random quantity with a Gaussian 8-correlated distribu- 
tion 

where Y is the state density at T-7-l. Such a distribution 
describes small-radius impurities with a weak potential. In 
the general case all the results remain valid when the con- 
stants are redefined. 

Averaging ZN over the distribution (2.4), we obtain 

((z,>=J e s n  dip. d*', 

where 

In this section we derive the effective functional for 
noninteracting electrons in the impurity field. The contribu- 
tion Se -. will be taken into account in the next section. 

We separate in the impurity term the regions of interest 
to us, with small momentum transfer k < (uFr)- '  = kg. Since 
we are investigating the magnetic case, when the Cooper 
correlations are suppressed, the corresponding momentum- 
transfer region is not considered: 

and Vis the volume. To reveal the slow variables we express 
the exponential of (2.7) with the aid of Gaussian integrals. 
The first term is separated by integrating with respect to the 
slow variable ~ ( r ) :  

It follows from (2.8) that the fieldp(r) leads only to small and 
smooth changes of the chemical potential p ;  we shall there- 
fore not consider hereafter the first term of (2.7). To split the 
second member of the impurity term (2.7) it is necessary to 
integrate over the matrix variables3' Q :, (r): 
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where 

( Q )  = niQ"mi'mi, Sp Q2 =z Qnmi' Qmn" 

The matrix Q is chosen to be Hermitian: 
Qnm = (Qmnji)'. We integrate ((2,)) with allowance for 
(2.9) over the Fermi fields $and IC, and we use the fact that the 
matrix Q varies slowly in space. As a result we obtain 
((2,)) in the form of a functional integral over Q: 

where 2. is a matrix made up of the Fermi frequencies: 

~=~,6 , ,6~~Zi~~,  en= (2n+l) nT, (2.12) 

and is a unit matrix 

ZnmB=6,mPa~Sij. (2.13) 

In the integral (2.11) an important role is played by the mini- 
ma of F { Q ] .  The position of a minimum is determined from 
the equation 

The solution of (2.14) is the matrix Q = 2, where 

An,"=sign ~ ~ 6 ~ ~ 6 a ~ 6 i ~ .  (2.16) 

Substituting Q = 2 in (2.15), we obtain for G (p) the standard 
expression 

We note that if the &-dependence in (2.11) is disregard- 
ed, hompgeneous unitary transformations (rotations) of the 
matrix A 

Q=O-'hO, Q2=f, Sp Q=O (2.17) 

(h i s  a unitary matrix) do not change at all the free energy 9. 
Expanding F{ Q 1 in terms of 2 and in terms of small devia- 
tions of Q from the solution (2.16), we obtain 

It is necessary to separate the longitudinal changes of Q, in 

which the conditions (2.17) are violated, from the transverse 
ones, when these conditions are satisfiec! and 

QSQ+SQQ=O. (2.19) 

The longitudinal variations make a large contribution to the 
free energy, so that these fluctuations can be neglected. As a 
result, it follows from (2.17)-(2.19) that the problem of elec- 
tron diffusion in the impurity field reduces to a matrix non- 
linear model 

nv 
s D = T T J  [ D  Sp(VQ)'--4 Sp(e,Q) ldr, (2.20) 

where 

Q ( r ) = ~ - ' ( r ) i ~ ( r ) .  (2.21) 

The last term in (2.20) violates the symmetry of the func- 
tional .FD with respect to the rotations Q . ~  If an analogy is 
made with a Heisenberg magnet, the matrix 2 is the anflog 9f 
the magnetic field: 2 fixes the equilibrium position Q = A .  
But at low frequencies the matrix Q is not strictly fixed, and 
transverse deviations of Q from the equilibrium positions are 
substantial. We shall show that these fluctuations are diffu- 
sion modes. To this end we write the unitary matrix U in 
(2.21) in the form" 

0 
Q = A  exp w (2.22) 

Expanding 7, in power of B and retaining only the qua- 
dratic terms, we obtain 

Consequently, the correlator (BB +), is the propagator of 
the diffusion mode: 

since we are using the temperature technique, there is no 
factor ( - i )  in front of the frequency in the diffusion propa- 
gator. 

In the derivation of the free-energy functional (2.20) of 
the diffuse electrons we followed mainly Ref. 10. In that 
paper (just as in Refs. 8 and 9) was considered an interaction 
via the impurity field between only two levels with energies 
E = + w/2. This was technically carried out by introducing 
a doubled set of replica indices. In contrast to Refs. 8-10, 
account if taken in the functional 7, of the aggregate of all 
the levels with energies I E I  < 7- I, and only one set of replicas 
was used. 

2. Allowance for Coulomb interaction 

We return to Eq. (2.6) and take into account the Cou- 
lomb interaction. We separate in S p e  the regions of small 
momentum and frequency transfers, just as in the considera- 
tion of the impurity term (2.7), the magnetic field [see (1.12)] 
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allows us to ignore the small-transfer region corresponding Here y, and y2 are fourth-rank tensors that differ in their 
to the Cooper channel. Then spin structure: 

+ I',$:? (p i )  $ja.(pz) g::P+m ( ~ i + k )  9 L i r m  (pz-k) 1. 
(2.25) 

H e r e r  and r2 are the static amplitudes of the electron-elec- 
tron interaction; their connection with the Fermi-liquid con- 
stants is discussed below. 

We introduce the matrix fields k and ?: 
Xm,ij=Xae (m-n)  Pij, Ymnii=Y (m-n)  GrjSag 

and write the exponential of S : -. in the form of a Gaussian 
integral over these fields: 

[exp  (Si-. { g ,  8, P) -S,' { A )  -S,' { P )  ) I1 dX dY 

The symbol Si indicates that all the replica indices of the 
matrices Q coincide, and S(n,m) = S,, . The functional 9 
describes the interacting electrons with energies E < T- '. 

So far we have completely ignored the energy region 
T- ' < E 5p. Allowance for this part of the spectrum leads to 
Fermi-liquid renormalizations in (2.31). Let the Green's 
function of the electron have near the Fermi level the form 

exp s:, ($1 = 
* 

, ien-vFp +-sign i e, 
J exp (-S; { d )  -S2' {P) ) n dX dY 22 

(2.26) Then, in the case d = 2 and 3 

where vF22 D = -  
s:-. {$, 2, P )  =T J dr[  i s h  ($P$) +I‘," ($x$) I ,  (2.27) d '  

where, as usual, v, = k,/m*, m*/m = 1 + F,/3 (F, are the 
s,' ( 2 )  = J X ~ I .  ( m )  x a '  ( -m)  standard coefficients of the Landau theory). We separate 

m.a from the amplitude r the statically screened Coulomb inter- 
(2.28) action r, 

s . ' { P ) = + J ~  Y' (m)Y' ( -m)dr .  1 vc ( k )  (2.34) 
rn = + ,  r, ( k )  = (I+F,)' l+v ,  ( k )  n (9=0) ' 

We integrate ( ( Z , ) )  over the Fermi fields with allowance 
for the fact that the matrices Q, k ,  and ? vary slowly in 
space. We obtain the free-energy functional 

=T J { - sp  ln [ii + ( & A + ~  Q+iTI'r1*P+TI'ih2 I 

We expand Sp In [...I in powers ofkand ?. The small param- 
ete! TT(! allows us to restrict the expansion to terms linear 
in Xand Y. In analogy with t+e procedure used in the deriva- 
tion of the functional 9, ( Q j, We integrate over the fields 
Q by the saddle-point method. As a result we obtain 

S { Q ,  d ,  P ) = S D { Q ) - ~ ~ T  J [TI'" Sp(PQ) 
(2.30) 

-iTI'ih S p ( X Q )  l d r + T Z  (S: { X )  +S2' { P ) )  , 
i 

where*the qatrices Q satisfy (2.21). Integrating over the 
fields X and Y we arrive at the final expression 

Here v,(k ) is the Coulomb potential, a (0 = 0) is the static 
part of the polarization operator, and the factor 1/(1 + F,)l 
is due to allowance for the vertices (Fig. 1). By virtue of the 
known Ward identity we have a (O = 0) = dn/dp. The value 
of an/+ is determined by the joint contribution of all the 
electrons and is equal to 

n (Q=0) =anldp=2v/ ( l + F o ) .  (2.35) 

Figure 2a shows one of the diagrams that contributes to r , .  
These diagrams cannot be separated by cutting only one 
Coulomb line. The amplitude T2 (Fig. 2b) describes scatter- 
ing through a large angle. We show now how TI and T, are 
connected with the quasiparticle scattering amplitude T 
(Ref. 13) 

r,6aT666-rz6a66BT=a21'orke; Try 

x j  [D Sp(VQ)'-4 s p ( i $ ) - v r ( Q ~ ~ b )  + V I ' ~ ( Q Y ~ Q )  Idr. FIG. 1. 

and note that the following relation holds: 

1 - 2 ~ ~ , + ~ ~ , = l /  ( l + F o ) .  (2.36) 

Thus the effective functional 9 of the free energy of the 
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FIG. 2. 

interacting diffuse electrons is completely determined. 
Using F, we obtain the polarization operator ~(k,.f2 ) in 

the Fermi-liquid approximation. To this end it is necessary 
to expand F up to second order in B [see (2.23)-(2.24)] and 
calculate the ladder diagrams shown in Fig. 3b: 

where (BB + ) ,  is given by (2.24). The coefficient 2 in front of 
r, is of spin origin. Summing over the frequencies we obtain, 
taking (2.36) into account, 

We note that a(f2; k = 0) = 0, which is a mathematical for- 
mulation of the particle-number conservation condition. 
Summation of the ladder diagrams leads to the factor 
(1 - 2vr ,  + v r Z )  in front of 10 1 in the denominator of 
(2.37). As a result, the diffusion coefficient in a Fermi liquid 
is 

The continuity equation connects the conductivity a 
with n-(k,R ): 

This leads to the Einstein relation 

a dn -- -- Dm. 
eZ d p  

Equations (2.38) and (2.40) duplicate well the known results 
of the Landau theory in the presence of impurities. In con- 
clusion we rewrite, with allowance for (2.35) and (2.40), the 
parameter go [see (1. I)] that determines the scale of the cor- 
rections in a metal with impurities: 

go=e2/o.2n2=1/ ( 2 n )  2vD. (2.41) 

FIG. 3. Diagrams for polarization operator: a-static, b-dynamic part. 

$3. RENORMALIZATION GROUP 
1. Separation of the "fast" diffusion modes 

To study the logarithmic corrections that arise when 
account is taken of the Coulomb interaction in a two-dimen- 
sional metal with impurities, we use the renormalization- 
group method. In contrast to the case of free electrons, the 
functional that takes into account the Coulomb interaction 
contains a large number of renormalizable quantities 
(charges): 

nv 
S = - -1 [ D  Sp (VQ)'-v (I'.+I',) 

4 
(3.1) 

Compared with (2.3 I), we have introduced in S the factor z. 
The point is that in contrast to the case of free electrons, the 
coefficient of the last term in the integral (3.1) is altered by 
the renormalization. Besides z, the charges in (3.1) are the 
dimensionless quantities g, vT,, v r , ,  and v r ,  (we shall find 
it convenient to retain the division o f r  into To and r,). The 
small parameter in the theory is only the quantity g: 

g = I /  (2n) ' v D e 1 .  (3.2) 

It will be shown below that in first order ing the theory 
considered is renormalizable, and exact equations of the re- 
normalization gr9up are contained in this order. 

The matrix Q W in (3.1) satisfies the conditions 

Q2=P, SpQ=O, Q=Q+. (3.3) 

These matrices can be written in the form 

Q=U-lAU, (3.4) 

where U is a unitary matrix. It is assumed in Eq. (3.1) for S 
that I E I ,  Dk < T- '. Following the renormalization-group 
method, 14 we integrate eS with respect to the variables Q in 
the layer 

AT-'< 1 E 1 <T-', AT-'<D~'<T-', (3.5) 
where 0 <A < 1. To this end we express the matrix U as a 
product of a fast and slow 

u=uoo, (3.6) 
where Uo and u are unitary matrices, Uo fast and u slow. 
Substituting (3.6) in (3.1) we reduce the functional S to the 
form 

S =  -45 {D(SP(VQo)2+2Sp([VQo,Qo1A)+S~[QrA12) 

-42 Sp (gof Q,o)) dr, (3.7) 

If we now integrate over the fast variables Qo, we obtain S, 
which describes the slow fluctuations: 

a {p) = I. Iesn d ~ . .  (3.9) 

where Q = u + A  is a slow variable. 
Before we proceed to calculate the integral with respect 

to Q,, we note that Q is a nonlocal variable 
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Qnm+Q(n-m), (3.10) 

where n and m are indices corresponding to Matsubara fre- 
quencies. What is essential is the dependence on each of the 
energy indices separately, and not on the difference E, - E, . 
In particular, if at least one of the indices of the matrix fin, is 
in the integration band, then f i  must be set equal to the unit 
matrix: 

Unm7'=Inm'~, if AT-'< I E,, ( <T-' 01 h ~ - ' <  ( ern I <T-'. (3.1 1) 

The physical meaning of this condition is the following. AS 
already noted, E in (3.1) is the analog of the magnetic field in a 
magnet. At large E, the slow matrix Q , , ~  must be "aligned 
with the field": Q,, =Anm and consequently, Eq. (3.1 1) 
holds. 

When integrating with respect to Q, it is convenient to 
use the parametrization1° (2.22) for the matrix U,: 

Uo=exp(W/2), W=-W+, AW=-WA. (3.12) 

It is assumed that if all the arguments of Ware outside the 
integration region, then W = 0: 

Wn,(k) =0, if {Dk2, E,, E,) (h7-I. (3.13) 

To find the renormalization-group equations in first order in 
g and S it suffices to retain the terms quadratic in W. We 
write down the last term of the functional (3.7) 

Proceeding similarly with the remaining terms of the func- 
tional (3.7), we obtain 

S{Q)=S{Q)+So{W)+S,{W, U)+S2{W, 8)  (3.16) 

+Sint { W ,  U )  +Se {W, 0 )  

where 

S.{W}=?J [ D S P ( V W ) ~ + P Z  s ~ ( ; A w )  ]dry (3.17) 

nv 
z S p  (^eB+AWZU) dr. (3.18d) 

The determination of the renormalized functional 
3 { Q ) reduces thus to averaging of several expressions con- 
taining W, with a weight exp (S { W )). We shall designate 
such an averaging by (...),. A convenient form of writing 
down the correlator (WW), is [cf. (2.24)]: 

(w:: ( k )  W f ;  ( -k )  >, (3.19) 

The expression in the parentheses in the right-hand side of 
(3.19) is a projection operator-for the existence of a diffu- 
sion propagator it is necessary that one of the electron lines 
have a positive frequency and the other a negative one. 

2. Renormalization of the charge g 

The renormalization of the charge g is determined by 
those terms of the functional integral (3.9) which contain the 
gradients of the matrices 0. If the Coulomb interaction is not 
turned on the chargeg is not renormalized in the considered 
magnetic c a ~ e , ~ ~ ' ~  since 

i/2(S,2>o+(S2>o+0 as N+O. 

With account taken of the Coulomb interaction, we confine 
ourselves initially to the first order in the amplitudes r and 
r,. The renormalization is then determined by the following 
terms of the integral (3.9): 

8Sc=(SiSint)o+'12(S,2Sint)o+(S2Sint>o+(Si~*>o. (3.20) 
Let us explain the presence of the last term, since it does not 
contain explicitly the gradients of ~. When calculating 
(Sin, ), the second term of (3.18~) will not be considered, for 
in final analysis its contribution is -Sp Q = 0.  Separating 
the region of the fast frequencies and taking (3.11) into ac- 
count, we obtain after simple transformations 

v r  (m-r; q) - 2vr2 (m-r; q )  
X (3.2 1) 

D (q+k) ' fzl &,-&,I 

(the factor 2 in front of the amplitude T2 is the result of 
summation over the spin projections). If we neglect the de- 
pendence on the slow variables in the Coulomb amplitudes 
and in the diffusion propagator against the background of 
the fast ones, the unitary matrices u and b + can be multi- 
plied. Then the functional dependence on the matrices 0 in 
(3.21) vanishes, and the reveal this dependence it is necessary 
to expand in terms of the slow variable. Expanding the diffu- 
sion propagator in terms of the momentum k and recogniz- 
ing that 

we obtain 
1 

ts,..). 3 const + -(I,-lZ) J S p  (AA) dr, 
4n 

where J ,  and J2 are logarithmic integrals: 

Calculating the remaining terms in (4.20) we obtain 
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where account is taken of the fact that 

Sp (AhAA-A2)  ='/2Sp ( V Q )  ' .  (3.25) 

Equation (3.24) corresponds to 

We note that only the sum (3.20), rather than each individual 
term, reduces to the combination (3.25) and duplicates 
(VQ )2. 

In the calculation of 6Sg we have neglected the contri- 
bution of several diagrams. Figure 4 shows the diagrams cor- 
responding to different methods of pairing the matrices Win 
the second term of (3.20). In diagram 4a the integration is 
carried out both over the momentum and over the frequen- 
cy, while the contribution of the second diagram was already 
taken into account in the derivation of (3.24). On the con- 
trary, in diagram 4b all the frequencies are fixed by the argu- 
ments of the matrices A and only the momentum is integrat- 
ed. The result is a power-law divergence at small momenta. 
Besides 4b there exist also several terms with divergences of 
this type. We shall not stop to consider them for the follow- 
ing reason. In contrast to diagrams ot type 4a, which renor- 
malize (VQ)2, the contribution of the diagram 4b has the 
same structure as those terms of S which describe the elec- 
tron interaction: 

1 1  
6S(4b)- -- 

4n AT-' 
2 n ~ z  vI',A.,., (k) b m 4 ( - k )  

(3.27) 
X 6 (n,+ n,, n2+n4).  

Comparing (3.27) with the Coulomb terms we can verify that 
the contribution of the discussed diagram 4b contains the 
small parameter 

The diagrams of type 4b can therefore be disregarded. 
Confining ourselves to first order in g, we now take full 

account of the coulomb interaction. In the renormalization 

FIG. 5 

process, each integration with respect to the fast momenta 
d 'q corresponds to the appearance of a charge g. On the 
contrary, integration over the frequencies is by itself not con- 
nected with the appearance of the small parameterg, so that 
the order of the normalization-group equations is deter- 
mined simply by the number of integrations over the mo- 
menta. It is clear from the foregoing that all the diagrams in 
the functional integral (3.9) take in the lowest order in g the 
form of a ring in which a fast pulse passes. 

Figure 5 shows possible elaborations of the diagram 4a 
within the framework of ring diagrams. After integrating 
with respect to the fast frequency E,  the diagram in Fig. 5b 
turns out to be identical with diagram 4b and, for the reasons 
discussed above, the contribution of diagram 5b can be ne- 
glected. Examination of the remaining diagrams shows that 
when the charge g is renormalized the full account of the 
Coulomb interaction reduces to replacement of the Cou- 
lomb amplitudes in (3.26) and (3.23) by a sum of ladder dia- 
grams (Fig. 6). We note, to avoid misunderstanding, that 
taking these diagrams into account is not equivalent to re- 
normalization of the Coulomb amplitudes. In the calcula- 
tion of the polarization operator (2.37) it was shown that 
summation of the ladder diagrams of this type changes the 
coefficient in front of the frequency in the denominator of 
the diffusion propagator. We introduce in this connection 
the following notation for the propagators that appear when 
the diagrams 6 are summed: 

b 

FIG. 4. 
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where z,  = z - 2vrl + vr2  and z, = z + vr z .  The renor- 
malization of the charge g can then be represented in the 
form 

where 

The last term in (3.29) corresponds to diagrams 6 when 
Ti  = rj = ... = r2, and the amplitudes To and r, are not 
included. After summing over the spin projections this term 
acquires the factor 2. The contribution of the dynamically 
screened Coulomb interaction is separated in the first term 
of (3.29). As already noted in connection with Eq. (2.37), 
conservation of the total number of particles corresponds to 
r ( 0 ;  q = 0) = 0 so that Dq2 in denominator of (3.30) does not 
have any term whatever with 1.0 I. As a result, the term with 
ro is more singular than the remaining terms in (3.29). It is 
precisely to separate this singularity that the Coulomb am- 
plitude r was subdivided in the form r, + r,. 

Equation (3.29) corresponds to the following renormal- 
ization-group equation: 

dg $(E) 2 - fl (z, z1) + (2vrl)fz (z, Zl7 ~ 2 )  d g = ~ [  l+Fo 

where 6 = I d  -' and 

ln(alb) 2b 2c 
fl(a, b)=- , fz(a, b,c)=-f,(a,b)--fl(a,c). a-b b-c b-c 

(3.32) 
The functions f, and f2 are symmetric in permutation of the 
arguments, with 

f*(l ,  l)=f,(l, I, 1) = I  H f2(a, b, 0) =2fi(a7 b). 

The functions f, and& appear as the result of integration of 
products of different propagators 9. 

We turn now to Eqs. (3.23) and consider the elaboration 
of the combination J ,  when account is taken of diagrams 6. 
Replacing in J ,  the Coulomb amplitudes by sums of the cor- 
responding ladder diagrams, we obtain 

The singularity of the amplitude To leads to the appearance 
of a doubly logarithmic dependence of j ,  on A: 

For the construction of the normalization-group equation it 
is very important that the combination 3,: which contains 
the square of the logarithm, is completely cancelled out in 
the final expression (3.3 1) even though it appears in the inter- 
mediate stages of the calculation. 

3. Renormalization of the parameter z and of the Coulomb 
amplitudes 

The renormalization of the coefficient z is determined 
by two contributions. The first is the result of averaging of 
the product of S, and Sin,; an example of the diagram is 
shown in Fig. 7. The sum of diagrams 7 can be easily calcu- 
lated: 

GS,'*'= -nvgz 3, Sp (EQ) . (3.34) 

The second contribution stems from the expansion of (3.21) 
in terms of the slow frequency. It is necessary to expand in 
(3.21) in terms of the frequency E,, for if the expansion is in 
terms of the second slow frequency E ,  the unitary matrices 0 
and U + are multiplied and the functional dependence on 6 
drops out. Replacing in (3.21) the sum over E,  by an integral 
and taking into account the augmentation of the amplitudes 
ri by the ladder diagrams, we obtain after integrating by 
parts 

(2) 6S, = nvg (z E,O:: hP'lOpm" ) [d. 

As a result, just as in the derivation of (3.3 I), the combina- 
tion 3, is exactly cancelled out and the renormalization- 
group equation for the parameter z takes the form 

We proceed now to consider the renormalization-group 
equations for the Coulomb amplitudes: 

The first terms in the right-hand side of the equations are due 
to the averaging of Sin, over W. The logarithmic integration 
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FIG. 8. FIG. 10. These diagrams differ from those in Fig. 9 by the method of 
opening the ring; the diagrams b, c, and d have been left out. 

is then carried out only with respect to the momentum (see 
the diagram in Fig. 8). For example, played by the spin structure of the tensors y,,,: if one or 

several amplitudes r 2 y 2  is replaced by r,y, (or r , y , )  then 
the diagrams of the pair cancel each other. In particular, for 
this reason we have 

U+AUy,U+AU + const 4q dq dr,  (g) /dE=O. (3.40) 
4 J(2n)zv(Dqzf Q' ' The presence of paired diagrams leads to cancellation of the 

which corresponds to the first term in (3.37). doubly logarithmic corrections when the renormalization- 
group equations are constructed. Figure 1 1 shows diagrams, The function * in Eqs (3.37) and (3.38) is ofthe form 
redrawn in more conventional form, of the pair b after re- 

@ = ------ - 3 (vrz)z 2 
(z, z2) + - f z (z, Z, ZZ) placement of the amplitude r2 by ro. The diagrams 1 1 dem- 

zz 2z2 onstrate the cancellation of the elaborations of the single- 
l/z + l/zz-2 f , (z, z,) particle Green's functions containing doubly logarithmic -- (vr2)3 ffz2, Zz, Z) + ( ~ r ~ )  

22 (z-2,) (3.39) Green's functions by the augmentations of the vertex. 

We shall not derive @J here; we confine ourselves only to the 
necessary clarifications. The five terms of the function @ 
correspond to diagrams a-e in Fig. 9 in the case of Eq. (3.37) 
and to diagrams a-e of Fig. 10 in the case of (3.38). Diagrams 
9 and 10 are paired: the diagrams of each pair differ in the 
manner of opening the ring inside which the fast pulse 
passes. The factor 2 in front of the function @ in (3.38) is the 
result of summation over the spin projections. In Figs. 9 and 
10 are shown only skeleton diagrams without elaborating 
the inner amplitudes by adding ladder diagrams; in addition, 
the diffusion propagators can be differently arranged in dia- 
grams a-e. We note that all the diagrams with exception of 
the pair a are constructed with account taken of the second 
term in S,,, [see (3.18a)l. 

Let us explain, finally, why Figs. 9, 10, and 1 1  contain 
only the amplitude T,. The point is that an important role is 

4. Integration of the renormalization-group equations 

The quantity z, is the first integral of the system of equa- 
tions of the normalization group. In fact, by virtue of (3.36)- 
(3.38) 

dz,/dg=O (3.41) 

and when account is taken of relation (2.36) 

21 (E)-z (E) -2vr1 (E) +vrz(g) =l/(l+Fo). (3.42) 

We introduce new variables 

~ , = ~ r , + 1 / 2  ( i + ~ ~ )  , V ~ = V ~ ~ ,  (3.43) 

in which 
z=2u1-vz, zz=2v1. (3.44) 

We rewrite the remaining renormalization-group equations 
in terms of these variables (6 = l d  - I ) :  

a 
4 c FIG. 9. 
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FIG. 11. 

The system obtained is homogeneous and can be integrated 
in quadratures by introducing w = v,/u,. The trajectories of 
the solutions of Eqs. (3.45) are of the form 

whereg, and w, are the initial values ofg and w, while a plot 
of r(w) is shown in Fig. 12. The function r(w) has a maximum 
at wz0.9 and vanishes at w=: 1.6. 

The solution g as a function of the logarithmic variable 
( is of the form 

678 (q) 
g(E.)= - 

R (qo) 
+ qo, , q=- 

R (qo) 

where 7, is uniquely connected with wo, and the function 
R (7) is shown in Fig. 13. It is interesting that the initial 
growth ofgg  ) is replaced by the zero-charge asymptotic re- 
lation 

g(E) =I/% at EBllgo. (3.47) 

Thus, if go( 1 we have g g  )( 1 for all 6, including the 
region of the maximum. Therefore the use of the renormal- 

FIG. 12. Solution of Eqs. (3.45). 

FIG. 13. Dependence of the resistance on the logarithmic variable; 
qm,, ~ 0 . 6 7 .  

ization group equations in the lowest order in g is therefore 
legitimate. 

#. CONDUCTIVITY, COMPRESSIBILITY, AND STATE 
DENSITY 
1. The Einstein relations 

We consider dn/d,u, which determines the compress- 
ibility of the electron gas: 

Calculation shows that the diffusion corrections to dn/d,u 
cancel out. The reason for this is that of importance for diffu- 
sion corrections are small momentum transfers near the Fer- 
mi surface. In this case differentiation with respect to ,u in 
the integral (4.1) is equivalent to differentiation with respect 
to the momentum. As a result, the quantity dn/dp is deter- 
mined only by the Fermi-liquid corrections: 

The quantity dn/dp is equal to the static limit of the polar- 
ization operator. The dynamic part a(k,R ) is described by 
diagrams of type 3b. In the renormalization of a(k,n ) the 
correction to the external triangular vertices and to the 
Green's functions cancel one another [see (3.40) and Fig. 1 11, 
therefore 

1 SZ 
n(k,SZ)=- 1: ( 1 ~ D ( ~ ) X 2 + [ ~ ( ~ ) - b P I ( E ) + ~ T r ( ~ ) I I Q I  

(4.3) 
With allowance for (3.42), we obtain 

where the diffusion coefficient of the interacting electrons is 

D.= (l+F,) D (El. 
The renormalization-group equations obtained in §3 

are thus reconciled with the particle-number-conservation 
condition, since (4.4) satisfies the requirement ~ ( k  = 0) = 0. 

From (4.4) and the continuity equation [see (2.39)] fol- 
lows the Einstein relation 

It is seen thus that the connection between the charge g(6 ) 
and the film resistance r,  is preserved in the renormaliza- 
tion: 2nZ 

~ o ( E ) = ~ ~ ( E ) .  (4.6) 
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The solution (3.46) shows that when the temperature is 
lowered the initial increase of the resistance gives way to a 
decrease. 

2. Density of states 

The density of states v,(T) does not enter in the charges 
that determine the renormalization process, and the con- 
stant v [v = v,(T) at T-7-'] is eliminated from the renor- 
malization-group equations by a suitable change of varia- 
bles. 

The quantity vE (T )  directly measured in tunnel experi- 
ments is given by the expression 

In terms of the variables Q, expression (4.7) takes the form 

v e  (T) =V (AQ) ,, (4-8) 

and its calculation is analogous to the determination of the 
Debye-Waller factor 

(Lo) = (AO+AeWO) - (L\C+A exp ('I2< W W ) )  0) .  (4.9) 

The quantity ( W W )  is calculated in the samy way as 8s;'' 
[see (3.34) and Fig. 71, and is determined by the combination 
j ,  zg 2, 6 = In (7-'/max E,  T). As a result, thestate density 
decreases rapidly with decreasing temperature: 

vP(T) =v exp (-g3,) -v exp (-gt2/4). (4.10) 

In the region 6 ?g& ' it is necessary to take into account the 
renormalization of the parameter g. The renormalization- 
group equation for the quantity v(6) is of the form 

dv (t)ldE=-'/zg(E) Ev (8. (4.11) 

We must therefore use in place of (4.10) the running value of 
the parameter g(6 ): 

In the region of thezero-chargeasymptotic formg(6 ) = 1/26 
we find 

v, (T) - (max E ,  T) " I .  (4.13) 

The state density thus tends to zero as the Fermi level is 
approached, although not as rapidly as in accord with Eq. 
(4.10). 

55. CONCLUSION 

We have derived here renormalization-group equations 
for a disordered metal in a magnetic field; these equations 
take full account of the Coulomb interaction. The Coulomb 
interaction of the electrons makes the properties of a two- 
dimensional metal in a magnetic field quite unusual. When 
the temperature is lowered, the initial growth of the resis- 
tance gives way to a tendency to zero (see Fig. 13), and at the 
same time the state density on the Fermi level drops to zero 
[see (4.10) and (4.13)]. The coexistence of these seemingly 
mutually exclusive properties is due to the fact that, as 
shown in 553 and 4, the electron correlations that determine 
the conductivity and the state density are quite different. 
When the conductivity is calculated the corrections to the 

Green's functions and to the vertices cancel one another to a 
great degree. Therefore the correlation erects that cause the 
decrease of the state density do not influence the resistance. 
In contrast to v,(T), there are no diffusion corrections at all 
in the quantity dn/dp which determines the static limit of 
the polarization operator. It is important to note that it is 
precisely dn/dp which connects the conductivity with the 
diffusion coefficient of the interacting electrons in the Ein- 
stein relation (see 54.1). The use of the density of states 
vEF(T) in this relation in place of dn/dp is in error. 

The equations derived in the present paper show that 
when the Coulomb amplitudes are renormalized account 
must be taken of the amplitude r2 that describes large-angle 
scattering, for otherwise the Coulomb interaction is not re- 
normalized. We note that even if the unrenormalized value 
of the amplitude T, is zero, a nonzero T, arises in the renor- 
malization process. 

McMillan16 has attempted to describe the metal-insula- 
tor transition by using similarity theory. He did not derive 
renormalization-group equations, and the scheme proposed 
by him has the following shortcomings: 

1) his renormalization-group equations do not contain 
r2;  

2) these equations contain a state density shown to have 
no effect on the renormalization of the resistance and of the 
Coulomb amplitudes; 

3) he used v, in place of dn/ap in the Einstein relation. 
As a result, the conductivity and the diffusion coefficient 
vanished in the critical region in accord with different laws. 

Let us explain why the temperature dependence of the 
resistance takes in this case the form shown in Fig. 13. To 
this end we write down the resistance correction calculated 
in Ref. 2 in first order in the screened Coulomb interaction: 

6g='/zg,Y2-2F) In (11Tr). (5.1) 
Here F = 2vr2  describes the contribution of the Hartree dia- 
grams, and the coefficient 2 in front of F is of spin origin. 
Because of the additional spin factor, the negative contribu- 
tion due to r2 increases more rapidly in the course of the 
renormalization than the positive one and causes in final 
analysis the growth of the resistance to give way to a de- 
crease. 

Equation (5.1) can be obtained from (3.3 1) by putting in 
the latter f, = f2 = 1 and v r ,  = Fo = 0. When full account is 
taken of the Coulomb interaction, the correction to the con- 
ductivity is described by the following expression [see (3.3 1) 
or (3.45a) at 6 = 01: 

1n(l+vrz) In Tr, I (5.2) 

which must be kept in mind when reducing the experimental 
data. We note that (5.2) does not coincide with (5. I), even if 
F< l :  

We have so far disregarded the Zeeman splitting, which 
cuts off the pole in the diffusion propagator with opposite 
projections of the electron if 
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g,eHlmc>T 

(gL is the Land6 factor). The spin splitting can be taken into 
account by slightly modifying the equations obtained above. 
It is found then that with decreasing temperature the resis- 
tance increases without any anomalies whatever and the 
close-coupling regime is realized. We shall discuss this case 
elsewhere. 

Thus, the analysis in the present paper is valid in the 
temperature region 

eDH/c>T>gLeH/mc (5.3) 

(the first inequality was discussed in 5 1, see (1.2)). This region 
is not small, since mD = &F7% 1. For the solution shown in 
Fig. 13 to be valid all the way to the maximum, however, we 
must have 

go In (mDlgL) >x ,  x=(qm=-qo)  R ( q o ) .  (5.4) 

The quantity x isdetermined only by the value of the param- 
eter wo = 2vr2/(1 + vr2); x ~ 0 . 6 7 ,  when v r 2  = 0 and 
~ ~ 0 . 2 5  at v r 2  = 0.5. Since it is assumed that go<l, for a 
region with decreasing resistance to exist we must have 
gL 4 I .  There are a number of alloys, e.g., Al, Ga, - ,As, 
whose composition can be chosen such that gL -,O. In addi- 
tion, inp-Si andp-Ge deformed along the [ I l l ]  direction, for 
symmetry reasons, &=O (Ref. 19). This means that if the 
magnetic field is applied in a plane perpendicular to the [I1 11 
axis there is no Zeeman splitting. An experimental realiza- 
tion of the case considered in the present paper is undoubted- 
ly of interest. 
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