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The distribution of the displacement field u(z) in a metallic halfspacez > 0 is calculated for the case 
in which a transverse sound wave of frequency o is excited at the boundary; the frequency satisfies 
the condition wr) 1, where r is the conduction electron mean free path time. It is shown that the 
electrons whose velocity is parallel to the wave vector "drag" the displacement wave over a 
distance z-I = v,r (v, is the Fermi velocity). In the collisionless limit (I-+UJ) the sound wave 
decays nonexponentially. 

PACS numbers: 72.50. + b 

,l. It is well known14 that in the propagation of high- 
frequency sound in metals at low temperatures, a spatial dis- 
persion is more significant that temporal dispersion. This is 
connected with the fact that the Fermi velocity of the elec- 
trons v, is much greater than the speed of sound s (v,/s 
-lo3), thanks to which the condition 
kl = wrv,/s) 1 (I = v,r is the free path length of the elec- 
trons, k = o/s is the wave vector and w is the sound frequen- 
cy) is satisfied at a comparatively low frequency (even at 
or( 1). The condition kl) 1 in most cases leads to the result 
that I, and hence r ,  drops out of the formulas everywhere and 
further increase in the frequency (from wr(1 to wr) 1) does 
not change the character of the sound propagation. Recent- 
ly, in connection with the availability of sources of hyper- 
sound, and also with the development of pulse methods, in- 
terest has arisen in the properties of solids at superhigh 
sound frequencies-in the case of metals, at frequencies that 
are high compared with the relaxation frequency v = 1/ 
r(w)v). Attention has been called in theoretical papers to 
such aspects of sound propagation in metals, in which the 
temporal dispersion (in terms of the parameter wr) is quite 
appreciable. Thus in Refs. 5-7, it is shown that the existence 
of parabolic points and points of flattening on the Fermi 
surface of a metal leads to angular anomalies in the sound 
velocity and the sound absorption coefficient; these anoma- 
lies are sensitive to the value of wr (even in the case kl) 1). 
Moreover, it was noted in Ref. 7 that at wr) 1 the asymptote 
(as Z-+UJ) of the displacement field u(z) in a metallic half- 
spacez > 0, on which a longitudinal sound wave of frequency 
w is incident, should differ significantly from the asymptote 
in the intermediate case 

S I V ~ K U T K  I. (1) 

When the inequalities (1) are satisfied, the damping dis- 
tance of the sound wave in a metal, d, is determined by the 
electron absorption coefficient r (at low temperatures the 
electrons are the principal cause of dissipation of the sound 
energy): 

d=slr. (2) 
For longitudinal sound wave," in accord with Refs. 2 and 3, 
r-ws/u, and d-v,/w, i.e., of the order of the path over 
which the electron moves during one period of the field. For 

transverse sound, the case is complicated by the partial 
transformation of the sound energy into electromagnetic, 
thanks to whichr  depends on the relation between the wave- 
length s/w of the sound and the skin depth 6 = 6 (w) at the 
sound f requen~y.~  It should be emphasized that the expres- 
sion for r ,  when condition (1) is satisfied, does not contain 
the relaxation time r (although the coefficients I' are differ- 
ent at 074 1 and wr) I), i.e., there exists a collisionless limit 
for r ,  r+r, as I+ UJ . This shows that at I > d ,  = s/r, a 
mechanism of "pulling" of the disturbance over a distance 
-I should exist. It was made clear in Ref. 7 that the pulling is 
determined by electrons whose velocity is parallel to the 
wave vector of the sound; they play no role in the formation 
of the absorption coefficient. Therefore, the investigation of 
the pulling can be the source of additional information on 
the conduction electrons in comparison with the other 
acoustical effects. 

2. In the present work, we have calculated the displace- 
ment field distribution u(z) at large distances from the 
boundary z = 0 of a metallic halfspace z > 0, on which a 
transverse sound wave of frequency is excited. For simpli- 
city, the Fermi surface of the metal is assumed to be spheri- 
~ a 1 . ~ )  The pulling of the transverse wave differs from the pull- 
ing of the longitudinal, not only in the role of the co-moving 
electromagnetic fields, but also in the structure of the coeffi- 
cients that determine the effect (in particular, the deforma- 
tion potential). Since the electrons interact chiefly with the 
transverse sound, the velocity of these electrons being per- 
pendicular to the wave vector, the transverse sound is pulled 
more weakly than the longitudinal; however, as will be 
shown below, this weakening is not significant. 

For calculation of the displacement field u, =u(z), it is 
necessary to solve the boundary-value problem, for which 
one must add to the system of elasticity and Maxwell equa- 
tions which are connected with the kinetic equation for the 
conduction-electron distribution function x (see Ref. 9), 
boundary condition for u(z), for the electric field E,=E(z) 
and forx = X( p, z) (pis the quasimomentum of the electron). 
If the conditions for u(z) and E (z) are determined by the ex- 
perimental conditions (see below), the condition for x ( p, z) 
at z = 0 should describe the interaction of the electrons with 
the boundaries of the metal. In order to simplify the analysis, 
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we limit ourselves to specular scattering 
x (pz<c?; z=O) =x (pz>O; z=O). 

Since the pulling is determined by the electrons traveling 
normal to the boundary, the choice of specular reflection 
cannot be justified by the anomalous role of the glancing 
electrons withp, (pF ( p, is the Fermi momentum), as in the 
case of the calculation of the impedance of a metal under the 
conditions of the anomalous skin effect (see, for example, 
Ref. 10). The diffuseness of the reflection (or multichannel- 
ingl ') on the pulling phenomenon requires special considera- 
tion. 

The specularity of the reflection of electrons permits a 
significant simplification of the problem, allowing us to pro- 
ceed from consideration of the halfspace (z > 0) to the entire 
space (z20),l2 by continuing the functions E (z) and u(z) in 
even fashion: 

E ( - Z )  =E ( z ) ,  u ( - z )  =u  ( z ) .  (3) 
Then the necessary equations are valid over the entire space: 

d2u/dz2+ ( 0 2 / s 2 )  u ( z )  =-F ( z ) ,  

F ( z )  =f ( z )  + ( imoo/eps2)  j ( z ) ,  

d2Eldz"- (4nio ic2)  j ( z )  , 
j(z)=jx (z) is the current density, f (z)= f, (z) is the force den- 
sity. Such a setup of the problem allows us to use the Fourier 
method in which the expressions for the kinetic coefficients 
(in the T approximation) do not differ from those obtained for 
infinite space. We shall denote the Fourier components of all 
the functions by the same letters as the initial functions: 

1 "  
E ( k )  = - J E  (a)  eihz h, 

2n 

and so on. Then, according to Ref. 9, the Fourier compo- 
nents of the current density are 

j ( k )  =eZ(vxRvx>&(k) +eko(v,RA,>u ( k ) ,  
& ( k )  =E ( k )  + ( m o o Z i e )  u ( k )  , (6) 

( p is the density of the metal, e and m, are the charge and the 
"heavy" mass of the electron) and those of the force density 
are 

f ( k )  = ( iek/ps2)  ( i l ,Rv ,>b  ( k )  + ( iok2/ps2)  ( i t R h > u  ( k )  . (7) 
The angular brackets denote integration over the Fermi sur- 
face: 

where dS is an element of area of the Fermi surface (for a 
spherical Fermi surface, dS/v = (pF2/vF)d0, d o  
= sin Bdedp), v is the velocity of the electron, R is the 
Green's function of the kinetic equation in the T approxima- 
tion: 

The vector A has the components A, nk , where n = k/k (in 
our case, n, = 1, n, = n, = O), A, is the renormalized neu- 
trality condition3 for the deformation potential. For a 
spherical Fermi surface, we can set 

This expression takes into account correctly the symmetry 
of the deformation potential (we note that (A, ) = O), and 
the angle-independent factor m has the dimensionality of 
mass. It can be called the "effective mass of the electron- 
phonon interaction," m -m,, and also, m* = pF/vF. 

The existence of the boundary (z = 0) manifests itself in 
the fact that the derivatives du/dz and d E  /dz at z = 0 have 
discontinuities 

in terms of which we can express the Fourier components 
u(k ) and E (k ), through (4): 

1 k2- (4nioeZ/c2)  (v,2R> 
u ( k ) = - -  

n D (o,  k )  
u' (0) 

iek ( AxRv,>+(moo/k)  (v,ZR> 
-- 

nps2 D (o,  k )  
E'(0); (11) 

1 k2-02/s2-  ( iuk2/psZ)  ( ( h 2 R )  
E ( k ) = -  -* - E 1 ( 0 )  

X D (0 ,  k )  

where the dispersion function is 
D ( o ,  k ) = D o ( o ,  k ) - V ( o ,  k ) ,  

(13) 

and V(w,  k ) includes all the "cross" terms: 

V ( o ,  k )  = ( i o k 2 / p s Z )  { ( 4 n i o e z / c 2 )  

X ( ( ~ ~ , R V , > ~ - ( L ~ ~ R ) ( V , Z R > )  +k2(;l,ZR> 
+2moko(AxRv,>+mo202(~,ZR>) .  (14) 

Since we are interested in high frequencies (w>v), the relaxa- 
tion frequency v should be left only in the resonant denomi- 
nator of the expression (9), which, together with (lo), allows 
us to express all the kinetic coefficients in (12) in terms of 
(v, ') and (v, 2R ) : 

and also to simplify formula (14) significantly: 

3. Formulas (12)-(15) demonstrate an important prop- 
erty of the solution of Eqs. (4). Because of the resonant de- 
nominator of R, the kinetic coefficients can have singulari- 
ties as v-+O (in the collisionless limit). The condition for the 
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(z>,?)=n/m*, k U = ~ ) , , / c ,  ~,.~=lt.rllze'/rrt*. (17) 
n is the number of electrons per unit volume and 

FIG. 1 .  The plane perpendicular to the sound wave vector k (the z axis) is 
tangent to the Fermi surface at the limiting point. The electrons at the 
point of tangency determine the pulling effect. 

existence of the singularity is multiplicity of the zero of the 
denominator of R.7 As a rule, this takes place at a definite 
value of the wave vector at an isolated point on the Fermi 
surface (we call it the critical point). If the Fermi surface is a 
sphere, the kinetic coefficients have a singularity at 
k = W/V, because d (kvFcos 8 - w)/d8 vanishes at 8 = 0; 
the angle 8 is measured from the z axis, the critical point 
coincides with the limiting point (see Fig. 1). If the numera- 
tor of the integrand for the kinetic coefficients differs from 
zero at the critical point, the coefficient itself goes to infinity 
(as a rule, logarithmically); however, according to (1 1) and 
(12), the diverging terms cancel one another if the divergence 
is due to the isolated point on the Fermi surface: the coeffi- 
cients of u'(0) and E '(0) tend to a finite limit, since the qua- 
dratic terms in V (a,  k ) 

cancel one another here. 
In our case (transverse sound isotropic dispersion law, 

see Ref. IS), the kinetic coefficients do not diverge at 
o = k /v,, since u, = 0 at the limiting point. However, what 
has been pointed out must be kept in mind when considering 
the pulling effect in the general case. 

We now give the expressions obtained for (vx 'R ) and 
(vxZ) after integration over the spherical Fermi surface. Ac- 
cording to (8) and the definition of koZ, 

4. With the help of (1 l), the displacement field u(z) is 
determined by the sum of two integrals: 

Therefore the asymptotic behavior of u(z) depends on the 
zeros of D (w, k ) and on the singularities of the integrands. 
Since the function $(l) contains a logarithmic singularity at 
the points k = f (w/vF + iv/v,), the displacement field 
splits into a sum of two terms: 

u (z) = uord(z) + ~anorn(2). (20) 
The first (ordinary) term is due to the zeros of the dispersion 
function D (o, k ); the second (anomalous) term-to the loga- 
rithmic singularity. 

The zeros of D (w, k ) are close to their unperturbed val- 
ues (at V=O): to the acoustic k = * w/s and to the electro- 
magnetic-the roots of the equation 

k2=-k,2$(E), z= ( w + i v ) / k v F .  (21) 

The roots of interest to us are 

Calculation of the integrals entering into formula (19) is 
carried out in Appendix I. According to (I 1)-(I6), by taking it 
into account that w<kovF- 1013 s-', we have 

u ( z )  = - ~ ' ( 0 )  { ( i s l o )  exp ( i o z l s - z l d )  + ( y o Z k o 2 i L ~ f s 2 ( x 2 + 0 2 / ~ 2 ) x )  exp ( - x z ) +  ( 3 s z p / M o v F )  ( ~ , / o z ) ~  exp ( - ioz /vp- - z l l ) )  

- eE1(0)  (nR/ps2m')  { ( i o 3 / s 3 )  exp ( ioz l s - z ld )  +x-a ( ~ ~ + o ~ / s ~ ) - ~  exp ( - x z )  - (2sZ/okoZvF)  ( v ~ / w z ) ~  exp ( i o z / v p - d l ) ) .  

(23) 

Herep/M = #zzn/pm* (M is the mass of the ion). This rela- 
tion is the definition of the quantity p, which is of the order 
of the mass of the free electron, d is the damping distance of 
the sound wave and is determined by the imaginary part of 
the "acoustical" root of the equation D (0, k ) = 0 (various 
limiting cases are analyzed in Ref. 13). It must be kept in 
mind that the assumption that the Fermi surface is totally 
isotropic leads to a significant increase in the value of d in 
comparison with the general case. The quantity x is deter- 
mined by formula (22), w/s and x become equal at 
w = sk,(s/vF)'12-3-107 s-' (see Ref. 22). The obtained for- 
mulas show that in the collisionless limit (xl, I /d> I), at suffi- 
ciently large distances, a quasiwave due to the electrons of 

I 
the limiting point on the Fermi surface "survives." The elec- 
trons move with velocity v, along the normal from the sur- 
face of the metal, pulling both the electromagnetic and the 
acoustic fields. Because of the fact that the transverse com- 
ponent of the velocity of the electrons at the limiting point is 
equal to zero, $g) has a singularity of the type 
A In A (A = k - w/v,), which leads to a quadratic depen- 
dence of v,/wz of the amplitude of the quasiwave (see Eq. 
23), i.e., it increases its damping somewhat (in comparison 
with the longitudinal case7). 

5. The jumps in the derivatives ul(0) and E '(0) are deter- 
mined by the specific setup of the problem. In contactless 
excitation (i.e., excitation by an electromagnetic field), since 
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the transformation of the electromagnetic energy into acous- 
tic is very small, we can express E '(0) in terms of the value of 
the magnetic field at the surface, the amplitude of which is 
approximately twice the amplitude of the wave incident on 
the metal [E '(0) = (io/c)H (O)], and set ul(0) equal to zero: 
u ( z )  =- ( i eo lc )  (nrTi/ps2m') H ( 0 )  

X( ( i s 3 / 0 3 )  exp ( iozls-z ld)  x-' (x2+ 02/s2)- '  exp ( - x z )  

- (2~~1avpkp")  ( ~ p l o ~ ) 2  exp (ioz/v,-211)). (24) 
In contact excitation of sound, because of the smallness 

of the impedance of the metal, the electric field at the bound- 
ary can be considered to be zero. This makes it possible to 
express E '(0) in terms of ul(0) with the help of (12) (see Appen- 
dix 11, in which the small parameter p/M(1 is used in the 
calculations): 

eEf (0) / a f  ( 0 )  =ko2s2Afi ( a ) ,  

(25) 

I, 
a 4 1  

where a = (3~r/4)(k,,%~/v,w~). The parameter a can be larg- 
er or smaller than unity [see the discussion in connection 
with formula (22)l. 

Substituting the value of eE '(0) in (23), we obtain 
u ( z )  = - ( i s / @ )  ~ ' ( 0 )  ( [ I +  (pIM)  ( k o 2 s Z p / 0 2 ) ]  exp ( iwzls-z ld)  

+ (3iyslMv,) (1-813) (vP/oz ) '  exp ( ioz/v , --z l l )  + . . .) . 
(26) 

The dots denote the omitted electromagnetic wave 
which is damped over the skin depth. The obtained expres- 
sion shows that the role of the electric field is not small even 
in contact excitation of sound: terms containing the factor fl 
can be of the same order as the terms due to direct (contact) 
excitation (they do not contain f l  ). 

6. The foregoing analysis allows us to conclude how the 
formulas given here change for an aribitrary dispersion law. 
First, not only the electrons of the limiting points take part in 
the pulling (for an aribtrary Fermi surface, there can be sev- 
eral such points), but also those for which v, reaches a maxi- 
mal value (Fig. 2). This means that a spectrum of quasiwaves 
with velocities - v, should be excited in the metal. Second, 
in the case of a complicated Fermi surface, Eqs. (10) and (15) 

FIG. 2. Fermi surface of the dumbbell type. The sound propagates along 
the axis. The pulling effect is determined not only by the electrons at the 
turning point, but also by the electrons on the line of parabolic points 
(indicated). At the right is the dependence of u, on the angle 0. 

do not hold, and the kinetic coefficients should have singu- 
larities at k =  +mu,""". In turn, this means that the 
quasiwaves are damped more slowly in the general case than 
according to the I /zZ law [see (24) and (26)l. 

In conclusion, we emphasize that it is simplest to ob- 
serve the pulling effect by exciting a sound pulse in a plate of 
thickness L and measuring the signal reflected from the rear 
wall, which arrives after a time interval -2L /v,(2L /s. 
Furthermore, the electron pulling of the sound has been ob- 
served experimentally l4 and the correct theoretical interpre- 
tation is given in Ref. 15. However, in the works cited,14 the 
propagation of sound in a metal in a comparatively strong 
magnetic field was observed, which is also reflected in the 
constructed theory of the pulling effect.I5 As is seen from the 
present paper, the pulling of the excitation (electromagnetic 
or acoustic) by the electrons is a universal phenomenon 
which should be observed under the simplest conditions. 

APPENDIX I 
Calculation of the integrals in formula (19) 

- i-$(E) .= j - e-"' dk. 
D ( 0 .  k )  

For the calculation of the integrals, it is convenient to 
use the contour shown in Fig. 3. We have 

where I, are the integrals around the cut. Here k, and k, are 
the exact values of the zeros of D (0, k).  Then, taking into 
account the closeness of the exact values of the zeros to their 
unperturbed values [k, =: - o/s, k, =: - ix, see Eq. (22)] we 
have 

- 2 n i ~ ~ : , - - "  ( n i s l o )  exp ( ioz/s--z ld)  
-i- (npIM)  [ ~ 2 k o Z I ~ 2 ( n 2 + ~ 2 / ~ z )  n ]  exp (-nz) , 

(13) 

We have made use of the fact that t ~ ~ ( k , ~  at o(kovF. Simi- 
larly, 

- 2 n i ~ i , ~ =  ( i n s 3 / 0 3 )  exp ( i o z l s - z / d )  

FIG. 3. Contour of integration for calculation of the integrals J,  asnd J, 
[see (Il)]. 
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In the calculation of the integrals I, and I, around the 
cut, we must make use of the smallness of the dimensionless 
parameter p/M. In accord with (1 6)-(18) 

where k = - w/uF + ik ", +,,, is the value of the function 
$(18) on the different edges of the cuts. Transforming to the 
new variable of integration 5 according to the formula 

k " = ~ / z + v / u ,  

and noting that as z+ co the principal role is played by small 
k ", we obtain the asymptotic value of I,: 

1," (3nps2 /Mu,o)  ( u F / o z )  erp ( i o z / u , - z l i ) .  (15) 
We have made use of the fact that w(kovF. In the calculation 
of the integral, I, we can omit V (w, k ) in the dispersion func- 
tion because of the smallness of p/M. In the same approxi- 
mation as was used in the calculation of I,. 

I,=.-2n ( U , / ~ Z ) ~  (s2/ou,ko2)  exp ( i w z / u , - d l ) .  (16) 

APPENDIX II 
Calculation of the factorp = P(a) In formula (25) 

In accord with (12), using the smallness ofp/M and the 
Eqs. (IS), we have 

a 
dk 

eE' (0 )  - I l k 2 -  w (4n ioe2 /c2)  ( u : ~ )  

In the limiting case of interest to us, 

(4nioeZIc2)  ( I J ~ R ) =  (33ti/4) (ko20 /u ,k )  sgn k ,  

e E 1 ( o )  j k  d k  

- w k3- (3niko20/4u,)  sgn k  

- -- 
" 

[%+ ( 3 n i / 4 )  ( o / v , k )  sgn k  ( Z + m o )  ] d k  
w2k02u' ( 0 )  J - 

- rn (k2-02 / s2 - i0 )  [ k 2 -  ( 3 n i / 4 )  (ko201v,k)  sgn k ]  

We have used the fact that k " is much smaller than the 
reciprocal of the skin depth for the acoustical root of the 
dispersion equation, and have replaced k " by iO. The charac- 
teristic wave vectors entering (112) are w/s and (k2w/vF)'/'. 
In both cases, w/vFk(l, which allows us to omit the second 
term in the numerator in the integrand at the right. Taking 
into account the evenness of the integrands and transform- 
ing to the new integration variable we obtain 

a= (3n/4)  (ko2sn /u ,02) .  

The integral in the denominator is well known from the the- 
ory of the anomalous skin effect;" 

We now calculate the integral in the numerator: 
01 

zax - - x dz 
( s z - - 0  ( x - a )  2 

and the integral in the sense of the principal value has the 
simple estimate 

Thus, comparing (113) and (114) with (25), we see that 
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